用户名: 密码: 验证码:
纳米羟基磷灰石处理含氟废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟是人体必需的微量元素之一,它不但维持人体骨骼正常发育,而且可以增进骨骼和牙齿强度,适量的摄入氟对人体健康是有好处的。但是如果摄入量过多会导致一类总称为“氟中毒”的疾病,表现为氟骨病、氟斑牙等等。长期摄入高剂量的氟更可导致骨骼变形、疼痛,关节僵硬、钙化,行走困难,严重者可导致瘫痪。目前,我国仍有几千万人饮用高氟水,对人体健康危害严重。为了探索合理的除氟方法和工艺,本论文对纳米羟基磷灰石(n-HAp)除氟性能进行了系统的研究,分析了n-HAp对氟的吸附规律,同时也考察了骨粉的除氟性能。
     论文分四个部分:
     1)沉淀法和溶胶凝胶法制备n-HAp粉体的研究
     采用沉淀法和溶胶凝胶法合成不同粒度的n-HAp粉体,利用X射线衍射(XRD)、红外光谱(IR)和透射电镜(TEM)对其形貌、晶型结构等各方面的性能进行了表征。结果表明:沉淀法制备的n-HAp为纯相态物质、粒度均匀,其粒度随着制备温度的升高而增大;溶胶凝胶法制备的n-HAp,陈化时间影响其粒度大小,陈化时间越长粒度越大。
     2)n-HAp粉体修复含氟废水的研究
     通过实验考察了各因素对氟在n-HAp粉体上吸附效果的影响。考察了用量、F-溶液浓度、溶液pH、搅拌时间、温度、无机盐离子、再生条件等。得出结论为:在反应温度为25℃时,F-初始浓度为5 mg/L,pH为5.0,反应时间为120 min,n-HAp投加量为0.5 g/25 mL,除氟效果较佳。溶液中CO32-的存在对n-HAp吸附F-的竞争作用很大。吸附F-后的n-HAp经过NaOH和H2SO4稀溶液处理后,吸附效果基本恢复,是较为理想的饮水除氟材料。
     3)不同粒度的n-HAp修复含氟废水的研究
     本部分实验主要对由沉淀法和溶胶凝胶法分别合成的不同粒度的n-HAp除氟的静态实验做了研究。实验结果表明:沉淀法合成的n-HAp对氟的吸附性能优于溶胶凝胶法合成的纳米粉体;n-HAp对水溶液中F-的吸附与粒度大小有关,纳米粉体除氟效果显著高于体相材料,而粒度较小的纳米粉体除氟效果明显高于粒度较大的纳米粉体。在溶胶凝胶法合成的n-HAp粉体中,陈化时间较短的样品吸附效果优于陈化时间较长的样品。
     4)骨粉修复含氟废水的研究
     本部分实验考察单因素对氟在骨粉上的吸附效果的影响。静态实验结果表明:F-初始浓度为10 mg/L时,骨粉用量为0.1 g/25 mL,pH为5.0左右,搅拌时间120 min时,吸附效果较佳;骨粉对含氟废水的去除效果要优于n-HAp;H2O2处理和热处理后的骨粉有机成分降低,H2O2处理后的骨粉对F-的吸附性能有所升高,而热处理后的骨粉吸附性能低于骨粉的吸附性能。骨粉对于饮用水中氟离子的去除具有很高的研究和应用价值。
Fluoride is a necessary trace element for human since it plays an important role in bone development as well as bone and tooth strengthening. Proper quantity of fluoride intake are helpful for human, however, excess adsorption will cause a kind of disease called "Fluorosis". Long term of over dose fluoride intake will lead to bone distortion, bone aching, muscle and tendon calcium, walking trouble and even paralysis for severe victims. In China there are several ten millions of people suffer from endemic disease caused by extra intake of fluoride from drinking water. In order to explore the methods of fluoride removal from drinking water, this paper chose nano-hydroxyapatite, and conducted researches on this defluoridation performance, analysised the law of n-HAp's adsorption of fluoride, and this paper also investigated the defluoridation performance of bone meal.
     This paper mainly includes four parts as follows:
     1) Study of preparation of n-HAp powders via precipitation and sol-gel method
     Different particle sized n-HAp powders were synthesized by the precipitation and sol-gel method. XRD、IR、TEM were used to characterize the different particle sized HAp. Results showed that the samples were pure HAp. The nano-sized HAp was sphere-like and weakly aggregated. Particle sizes of samples increased with annealing temperature. While for the different particle sized HAp synthesized by sol-gel method, the crystal size of the HAp nanopowders increases with the increase of aging time.
     2) Study on removal of fluoride-containing wastewater onto n-HAps
     The affection of factors on adsorption were studied, the influence factors including: adsorbent dose, fluoride concentration, pH, temperature, competitive ions. Got the conclusion was:when the temperature was 25℃, initial fluoride concentration was 5 mg/L, pH was 5.0, adsorbent dose was 0.5 g/25 mL, reaction time was 120 min, the effects was better. The addition of CO32- had effects on the adsorption of fluoride. The adsorbent can be regenerated by NaOH and H2SO4 solution.
     3) Size-dependent defluoridation properties of n-HAp
     This part researched the static experiment of synthetic HAp with different particle sizes. Results showed that the adsorption capability of n-HAp synthesized by precipitation was better than that of n-HAp by sol-gel method. Better performance was obtained with smaller particle sized HAp, which presented the higher adsorption efficiency. For the n-HAp by sol-gel method, the smaller the aging time, the better the defluoridation performance.
     4) Study on removal of fluoride-containing wastewater onto bone meal
     The affection of factors on adsorption was studied. The static experiment results showed:Initial fluoride concentration was 10 mg/L, pH was 5.0, adsorbent dose was 0.1 g/25 mL, reaction time was 120 min, the effects was better. It was found that bone meal has a more fluoride adsorption capacity compared to n-HAp. After heat and the acidification treatment, the organic materials were removed and the fluoride removal performance can be noticeably increased after the acidification treatment. Bone meal owns the high value of research and applies for the removal of fluoride in the drinking water.
引文
[1]Aharoni C, Llngarish M. Kinetics of activated chemisorption, Part Ⅰ:The non-Elovichian part of the isotherm [J]. J. Chem. Sac. Faraday Trans,1976,72:400-408
    [2]Amor Z, Bariou B. Fluoride removal from brackish water by electrodialysis [J]. Desalination. 2001,133:215-223
    [3]Aoki H. An additional clinieal application of apatite coated ceramies for use as dental prosthesis [J]. Jpn Kakai Tokkyo Koho,1978,118:411
    [4]Bahdod A, El Asri S, Saoiabi A, et al. Adsorption of phenol from an aqueous solution by selected apatite adsorbents:kinetic process and impact of the surface properties [J]. Water Res.,2009,43: 113-118
    [5]Bailliez S. The kinetics of surface area reduction during isothermal sintering of hydroxyapatite adsorbent [J]. Chem. Eng. J.,2004,98:141-152
    [6]Baldacci G, Cherif-Zahar B, Bernardi G..The initiation of DNA replication in the mitochondrial genome of yeast [J]. EMBO J.,1984,3:2115-2120
    [7]Berg LVD, Rosenberg Y, Martinus AJS van Boekel, et al. Microstructural features of composite whey protein/polysaccharide gels characterized at different length scales [J]. Food hydrocoll, 2009,23:1288-1298
    [8]Bernache-Assollant D. Sintering of calcium phosphate hydroxyapatite Ca10(PO4)6(OH)2 I. Calcination and particle growth [J]. J. Eur. Ceram. Soc.,2003,23:229-241
    [9]Bouyer E, Gitzhofer F, Boulos M I. Morphological study of hydroxyapatite nanocryatal suspension [J]. J. Mater. Sci.:Mater. Med.,2000,11:523-531
    [10]Carpenter R. Factors controlling the marine geochemistry of fluorine [J]. Geochim. Cosmochim. Acta,1969,33:1153-1167
    [11]Chinoy NJ, Bhattacharya S. Effect of chronic administration of aluminium chloride on reproductive function of testes and some accessory sex organs of male mice [J]. Indi. J. Environ.Toxicol.1997,7:12-5.
    [12]Czarnowski W, Wrzesniowska K, Krechniak J. Fluoride in drinking water and human urine in Northern and Central Poland [J]. Sci. Total Environ.,1996,191:177-184.
    [13]Dash AK, Cudworth GC. Therapeutic applications of implantable drug delivery systems [J]. J Pharm Toxi Methods,1998,40:1
    [14]Deydier E, Guilet R, Cren S, et al. Evaluation of meat and bone meal combustion residue as lead immobilizing material for in situ remediation of polluted aqueous solutions and soils:" Chemical and ecotoxicological studies" [J]. J. Hazard. Mater.,2007,146:227-236
    [15]Deydier E, Guilet R, Sharrock P. Beneficial use of meat and bone meal combustion residue:" an efficient low cost material to remove lead from aqueous effluent" [J]. J. Hazard. Mater.,2003, B101:55-64
    [16]Dimovic S, Smciklas I, Plecas I, et al. Comparative study of differently treated animal bones for Co2+removal [J]. J. Hazard. Mater.,2009:164:279-287
    [17]Driyan S, Milev G S, Kamalikannangara et al. Temperature effects on hydroxyapatite precursor solution [J]. Phys. Chem. B,2004,108:5516-5521.
    [18]Drury JS, Ensminger JT, Hammonds AS, et al. Reviews of the environmental effects of pollutants, Ⅸ [J]. Fluoride. Cincinnati. Ohio:U. S. EPA,1980:549-560
    [19]Edward S, Ahn, Nathaniel J, Gleason, et al. Nanostructure Processing of Hydroxyapatite-based Bioceramics [J]. Nano Letters,2001,10(3):149-153.
    [20]Elliot JC. Structure and Chemistry of Apatites and Other Calcium Orthoposphates [M]. Amsterdam, Elsevier.1994
    [21]Fan X, Parker DJ, Smith MD. Adsorption kinetics of fluoride on low cost materials [J]. Water Res.,2003,37:4929-4937
    [22]Fathi MH, Hanifi A. Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol-gel method [J]. Mater. Lett.2007,61:3978-3983.
    [23]Fowler BO. Infrared Studies of Apatites. Ⅱ.Preparation of Normal and Isotopically Substituted Calcium, Strontium, and Barium Hydroxyapatites and Spectrastructure composition Correlationlnorg [J].Chem.,1974,13:207-314
    [24]Freundlich H M F. Uber die adsorption in losungen [J]. J. Phys. Chem.,1906,57:385-470
    [25]Gamal MS, EI Shafei, Nabawaya A Moussa. Adsorption of Some Essential Amino Acids on Hydroxyapatite [J]. J. Colloid Interface Sci.,2001,238:160-166
    [26]Gbmez-Morales J, Torrent-Burg SJ, et al. Precipitation of stoichiometric hydroxyapatite in a continuous floe MSMPR reactor [J]. Chem. Engng. Sci.,1997
    [27]George C, Koumoulidis, Alexandros P, et al. Preparation hydroxyapatite via microemulsion route [J]. J. Colloid Interface Sci.2003,259:254-260
    [28]Gosselin R E, Smith R O. Clinical toxicology of commercial products.5th ed [M]. Baltimore, MD: Williams and Wikins.1972,127:185-193
    [29]Hattori T, Twadate Y, Kato T. Hydrothermal synthesis of hydroxyapatite from calcium pyrophosphate [J]. J. Mater. Sci. Lett.,2001,20:85-87
    [30]Heifetz SB, Horowitz HS. Amounts of fluoride in self-administered dental products:Safety
    considerations for children [J]. Pediatrics 1986,77:876-882.
    [31]Hocine G, Francoise P, Jacqueline S, et al. Defluoridation of groundwater by a hybrid process combining adsorption and Donnan dialysis [J]. Desalination,2002,145:287-291
    [32]Hodge H C, Smith F A. Fluorine Chemistry:V.4. Simons J.H. ed [M]. New York, NY:Academic press.1965
    [33]Hodson ME, Valsami-Jones E, Cotter-Howells JD, et al., Effect of bone meal (calcium phosphate) amendments on metal release from contaminated soil—a leaching column study [J]. Environ. Pollut.,2001,112:233-243
    [34]Ho Y S, Mckay G. Pseudo-second order model for sorption process [J]. Process Biochemistry, 1999,34:451-465
    [35]Hseu Z Y. Evaluating heavy metal contents in nine composts using four digestion methods [J]. Bioresour. Technol.2004,95:53-59
    [36]Hu J, Russell JJ, Ben-nissan B, et al., Production and analysis of hydroxyapatite from Australian corals via hydrothermal process [J]. J. Mater. Sci. Lett.,2001,20:85-87
    [37]Indra DM, Vimal CS, Nitin KA, et al. Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses [J]. Colloids Surf. A:Physicochem. Eng. Aspects 2005,264:17-28
    [38]Islam M, Patel RK. Evaluation of removal efficiency of fluoride from aqueous solution using quick lime [J]. J. Hazard. Mater.2007,143:303-310
    [39]Jiang JQ, Cooper C, Quki S. Comparison of modified montmorillonite adsorbents Part I: preparation, characterization and phenol adsorption [J]. Chemosphere,2002,47:711-716
    [40]Josse S, Faucheux C, Soueidan A, et al. Novel biomaterials for bisphosphonate delivey [J]. Biomaterials.2005,26:2073-2080
    [41]Kandori K, Miyagawa K, Ishikawa T. Adsorption of immunogamma globulin onto various synthetic calcium hydroxyapatite particles [J]. J. Colloid Interface Sci.,2004,273:406-413
    [42]Kinoshita M, Itatani K, Nakamura S. Preparatlon and Morpholo and of Carbonate Eontaining hydroxyapatite by Homogeneous and Hydrothe Methods [J]. GyPSum & Lime,1990,227:19-27
    [43]Kumar V, Rana A, Yadav MS, et al. Size-induced effect on nano-crystalline CoFe2O4. J. Magn [J]. Magn. Mater.2008,320:1729-1734
    [44]Langmuir I. The adsorption of gasses on plane surface of glass, mice and platinum [J]. J. Am. Chem. Soc.,1916,40:1361-1368
    [45]Lim GK, Wang J, Ng SC, et al. Processing of fine hydroxyapatite powders via increase microe mulsion route [J]. Mater. Lett.1996,28:431-436
    [46]Lim GK, Wang J, Ng SC, et al. Processing of fine hydroxyapatite via microe mulsion route [J]. Biomaterials 1997,21:1433-1439
    [47]Lim GK, Wang J, Ng SC, et al. Nanosized hydroxyapatite powders from microe mulsions and emulsions stabilized by a biodegradable surfactant [J]. Mater. Chem.,1999,9:1635-1639
    [48]Liu Y, Comodi P. Some aspeets of crystal-ehemistry of apatites [J]. MinMag,1993,57:709-719
    [49]Long M, Hong FS, Li W, et al. Size-dependent microstructure and europium site preference influence fluorescent properties of Eu3+-doped Ca10(PO4)6(OH)2 nanocrystal [J]. J. Lumin.,2008, 128:428436
    [50]Lopez-Macipe A,Gomez-Morales J, Rodriguez-Clemente R. Hydroxyapatite nanoparticles precipitation from homogeneous Ca-citrate complexed aqueous solutions using microwaves and conventional heating [J]. Adv. Mater.,1998,10:19-53
    [51]Lusvardi G, Malavasi G, Menabue L, et al. Removal of cadmium ion by means of synthetic hydroxyapatite [J], Waste Manage.2002,22:853-857.
    [52]Mark E, Hodson, Eva Valsami-Jones. Bonemeal additions as a remediation treatment for metal contaminated soil [J]. Environ. Sci. Technol.2000,34:3501-3507
    [53]Meat and Bone Meal as Fuel. ECN-B-01-003
    [54]Meenakshi S, Viswanathan N. Identification of selective ion exchange resin for fluoride sorption [J]. J. Colloid Interface Sci.2007,308:438-450
    [55]Mitsuru A, Mihoko T, Shoji Y, et al. Health effects of fluoride pollution caused by coal burning [J]. Sci. Total Environ.,2001,271:107-116
    [56]Mjengern H, Mkongo G. Appropriate defluoridation technology for use in flourotic areas in Tanzania [J]. Phys. Chem. Earth,2003,28:1097-1104
    [57]Mohapatra D, Mishra D, Mishra SP, et al. Use of oxide minerals to abate fluoride from water [J]. J. Colloid Interface Sci.2004,275:355-359
    [58]Monma H, Kamiya T. Preparation of hydroxyapatite by the hydrolysis of brushite [J]. J. Mater. Sci.1981,22:4247-4250
    [59]Murase N, Jagannathan R, Kanematsu Y, et al. Preparation and fluorescence properties of Eu3+-doped strontium chloroapatite nanocrystals [J]. J. Lumin.,2000,87-89:488-490
    [60]Nelson DGA. The influence of carbonate on the atomic structure and reactivity of hydroxyapatite [J]. J. Dent. Res.,1981,60(C):1621
    [61]Netzd JA, Sepulveda P, Pandolfelli VC, et al. Potential use of gelcasting hydroxyapatite porous ceramic as an implantable drug delivery system [J]. Int. J. Pharm.2001,213:117-125
    [62]Ozcan A, Oncu EM, Ozcan AS. Kinetics, isotherm and thermodynamic studies of adsorption of
    Acid and Blue 193 from aqueous solution onto natural sepiolite [J]. Colloids Surf. A: Physicochem. Eng. Aspects,2006,277:90-97
    [63]Pmamoto AK, Akiiehi. Arti6eial bone apatite coated ceramies [J]. Jpn Kakai Tokkyo Koho,1978, 460:4
    [64]Raichur AM, Jyoti Basu M. Adsorption of fluoride onto mixed rare earth oxides [J]. Sep. Purif. Technol.,2001 (24):121-127
    [65]Reardon EJ, Wang Y. Limestone reactor for fluoride removal from waste water [J]. Environ. Sci. Technol.2000,34:3247-3253
    [66]Saha S. Treatment of aqueous effluent for fluoride removal [J]. Water Res.1993,27:1347-1350
    [67]Sandrine B, Ange N, Didier B, et al. Removal of aqueous lead ions by hydroxyapatite:equilibria and kinetic process [J]. J. Hazard.Mater.,2007,139:443-446
    [68]Shawkat-Zamil S, Ahmad S, et al. Correlating metal ionic characteristics with biosorption capacity of Staphylococcus saprophyticus BMSZ711 using QICAR model [J]. Bioresour. Technol.,2009,100:1895-1902
    [69]Sheha RR. Sorption behavior of Zn(Ⅱ) ions on synthesized hydroxyapatites [J]. J. Colloid Interface Sci.,2007,310:18-26
    [70]Slosarczyk A, Szymura-Oleksiak K, Mycek B. The kinetics of pentoxifylline release from drug-loaded hydroxyapatite implants [J]. Biomaterials.,2000,21:1215-1221
    [71]Smiciklas I, Dimovic S, Plecas I, et al. Removal of Co2+from aqueous solutions by hydroxyapatite [J]. Water Res.,2006,40:2267-2274
    [72]Sujana MG, Thakur RS, Ban SB. Removal of fluoride from aqueous solution by using alum sludge [J]. J. Colloid Interface Sci.,1998,206:94-101
    [73]Sundaram CS, Viswanathan N, Meenakshi S. Defluoridation chemistry of synthetic hydroxyapatite at nano scale:Equilibrium and kinetic studies [J]. J. Hazard. Mater.,2008,155: 206-215
    [74]Sundaram CS, Viswanathan N, Meenakshi S. Uptake of fluoride by nano-hydroxyapatite/chitosan, a bioinorganic composite [J]. Bioresour. Technol.,2008,99:8226-8230
    [75]Kawasaki T, Kobayashi W, Ikeda K, et al. High-performance liquid chromatography using spherical aggregates of hydroxyapatite micro-crystal as adsorbent [J]. Eur. J. Biochem.1986,157: 291-295
    [76]USEPA. Integrated risk information system. Reference dose for oral exposure for fluoride on line, 1987
    [77]Usha R, Maheshwari BDS, Janet T McDonald, et al. Fluoride balance studies in ambulatory healthy men with and without fluoride supplements [J]. Am. J. Clin. Nutr.,1981,34:2679-2684
    [78]Vega ED, Pedregosa JC, Narda GE, et al. Removal of oxovanadium (IV) from aqueous solutions by using commercial crystalline calcium hydroxyapatite [J]. Water Res.,2003,37:1776-1782
    [79]Vimal CS, Mahadeva MS, Indra DM, et al. Adsorptive removal of phenol by bagasse fly ash and activated carbon:Equilibrium, kinetics and thermodynamics [J]. Colloids Surf. A:Physicochem. Eng. Aspects,2006,272:89-104
    [80]Wang F, Li MS, Lu YP, et al. A simple sol-gel technique for preparing hydroxyapatite nanopowders [J]. Mater. Lett.2005,59:916-919
    [81]Wang LF, Huang JZ. Outline of control practice of endemic fluorosis in China [J]. Soc. Sci. Med., 1995,41:1191-1195
    [82]Wei ZG, Sun LD, Liao CS, et al. Synthesis and size dependent luminescent properties of hexagonal (Y, Gd)BO3:Eu nanocrystals [J]. J. Mater. Chem.,2002,12:3665-3670
    [83]Wei ZG, Sun LD, Liao CS, et al. Size-Dependent Chromaticity in YBO3:Eu Nanocrystals: Correlation with Microstructure and Site Symmetry [J]. J. Phys. Chem.,2002,106 (41): 10610-10617
    [84]WHO. Fluorine and Fluorides, Environmental Health Criteria, vol.36, WHO, Geneva,1984
    [85]Yasuda HY, Mahara S. Microstructure and mechnical property of synthesized hydroxyapatite prepared by colloidal process [J]. Biomaterials,2000,21:2045-2049
    [86]Yina A, Margolisc HC, Grogana J, et al. Physical parameters of hydroxyapatite adsorption and effect on candidacidal activity of histatins [J]. Archives of Oral Biology,2003,48:361-368
    [87]Zhou JM, Zhang XD, Chen JY, et al. High temperature characteristics of synthetic hydroxyapatite [J]. J. Mater. Sci. Mater. Med,1993,4:83-85
    [88]安德森MA,鲁宾AJ.水溶液吸附化学[M].刘莲生译,北京:科学出版社,1999
    [89]白卯娟,褚衍洋.铝酸钙渣处理含氟废水研究[J].环境科学与技术,2008,31(9):117-120
    [90]薄颖慧,廖凯荣,卢泽俭等.聚乳酸/羟基磷灰石复合材料的研究.超细微羟基磷灰石的合成及表面处理[J].中山大学学报(自然科学版),1999,38(3):43-47
    [91]陈若墩,陈青萍,等编著.环境监测实验[M],上海:同济大学出版社,1993
    [92]陈思怀,黎晓敏,魏光何等.高氟水的危害及控制[J].畜禽业,2003,2:53-54
    [93]程艳玲.溶胶凝胶法制备羟基磷灰石粉体的新工艺[D].甘肃:兰州理工大学,2007
    [94]杜利成,彭汝芳,刘义深.骨粉、磷酸氢钙在饲料生产中的应用比较[J].饲料研究,2003,1:37
    [95]楚耀辉,刘君键,聂新.对骨粉、肉骨粉加工生产的研究[J].饲料广角,2006,16:19-22
    [96]董辉.水中氟化物测定的注意事项[J].中国卫生检验杂志,2008,18:1667
    [97]冯建梅.用离子色谱法测定饮用水中氟化物含量[J].山西化工,2006,26:41-43
    [98]巩雄,张桂兰,汤国庆等.纳米晶体材料研究进展[J].化学进展,1997,9(4):349-360
    [99]国家环境保护总局.水与废水分析监测方法[M],北京:中国环境科学出版社,2002,187
    [100]GB7484-87中国标准书号[S].中国环境检测站,1987
    [101]郭大勇,储成磷,林萍华等.柠檬酸对溶胶凝胶法制备羟基磷灰石粉体的影响[J],东南大学学报,2002,3:402-405
    [102]郭学锋,丁维平,颜其洁.一种新的制备纳米微粒的方法-快速均匀沉淀法[J].无机化学学报.2000,16(3):527-529
    [103]胡恋,陈朝猛,谢水波.羟基磷灰石生物活性材料处理重金属废水的机理及效果研究[J].南华大学学报(自然科学版),2005,19:28-33
    [104]霍广进,刘桂英.环境水中微量氟的测定[J].河北师范大学学报(自然科学版),2005,4(29):390-395
    [105]江昕,韩颖超,李世将等.快速均匀沉淀法制备纳米级级HAP粉末[J].硅酸盐通报,2002,1:44-46
    [106]靳朋勃.粉煤灰沸石化及其处理污水的实验研究[D].江苏:江苏大学,2007
    [107]鞠海燕,黎剑华,袁源平.矿山酸性污水土石坝渗漏探测及诱因分析[J].中国钨业,2007,22:42-45
    [108]廖洪波,李洪军,李铁牛等.动物骨粉的营养、加工及应用[J].肉制品加工及设备,2003,1:23-25
    [109]廖其龙,徐光亮,周大利等.水热合成纳米羟基磷灰石粉末及其结构表征[J].四川大学学报,2002,3:69-71
    [110]廖其龙,徐光亮,尹光福等.纳米羟基磷灰石的水热合[J].功能材料,2002,33(3):338-340
    [111]梁桂勇,催学良.徽乳液法制备纳米银粒子[J].功能材料,1999,30(5):484-485
    [112]李军,王正辉,程晓天等.山西省盐湖区地方性氟中毒病情调查分析[J].中国地方病防治杂志,2005,3:168-169
    [113]李洁莹,陈金龙,费正皓.大孔吸附树脂对邻甲酚的吸附行为研究[J].离子交换与吸附,2004,20:430-437
    [114]李世普,陈晓明.生物陶瓷[M].湖北:武汉工业大学出版社.1989
    [115]李霞.溶胶-凝胶法羟基磷灰石纳米粉体的制备[J].牙膏工业,2003,4:33-34
    [116]李卫东.饮水理化除氟方法与进展[J].安徽预防医学杂志,2002,8:126-129
    [117]李玉娥.动物骨粉的应用研究[J].贵州畜牧兽医,2005,29:20-22
    [118]刘裴文,王萍.天然含氟水的水质特征及其对人体和处理工艺的影响[J].中国给水排水,1990,6(5):17-19
    [119]刘斐文,肖举强.含氟水处理过程的“吸附交换”机理[J].离子交换与吸附,1991,7:378-382
    [120]刘晓园.饮用水除氟技术的发展及应用[J].中国给水排水,1989,5(6):31-34
    [121]刘羽,彭明生.磷灰石在废水治理中的应用[J].安全与环境学报,2001,1:9-11
    [122]刘羽,钟康年,胡文云.溶胶-凝胶法合成条件与羟基磷灰石特征的关系[J].材料科学与工程,1997,15(1):63-65
    [123]刘转年,周安宁,金奇庭,新型煤基吸附剂吸附硝基苯的机理研究[J].煤炭转化,2006,29:73-76
    [124]罗媛.氟元素与人体健康[J].广东微量元素科学,2002,9:21-23
    [125]卢莉莉.运城盆地高氟地下水的分布及成因分析[J].地下水,2006,28:82-83
    [126]陆德荣,何春霞.纳米复合材料微观结构研究进展[J].工程塑料应用,2008,36:74-78
    [127]吕景旭.肉骨粉的营养价值及可利用性[J].中国饲料,1998,22:25-26
    [128]孟紫强,耿红,刘海龙.6种吸附材料饮水除氟效果的比较研究[J].中国地方病学杂志,2002,21:373-376
    [129]苗雪原.粗蛋白含量测定中试样的快速分解——H2O2-H2SO4-混合催化剂法[J].饲料工业,2006,27:32-33
    [130]南开辉,王迎军.水解时间对溶胶-凝胶法制备羟基磷灰石粉体的影响[J].材料科学与工程学报,2004,22(2):175-178
    [131]潘家永.纳米羟基磷灰石粉体的制备与对水溶液中酚类化合物的吸附研究[D].上海:华东师范大学,2007
    [132]彭继荣,李珍,刘明阳等.羟基磷灰石的湿法制备及其对F的吸附特性研究[J].环境科学与技术,2005,28:33-35
    [133]平雅坤,刘红英,刘冬梅,郭兰英.中子活化法测定氟保护漆释放的临床研究[J].中华口腔医学杂志,2006,41:664-665
    [134]帕特森(美):工业废水处理技术手册[M].北京:化学工业出版社,1985,145-148
    [135]骞曾山,骞新华.燃煤污染型氟中毒预防措施的研究——改灶降氟[J].中国地方病学杂志,1985,4:297-300
    [136]仇振琢.高氟水及其净化[J].水处理技术,1987,13(1):44-46
    [137]任启勤.饮水氟中毒与人体健康[J].安徽预防医学杂志,2002,8:123-125
    [138]任卫,曹献英,玛凌云等.纳米羟基磷灰石合成及表面改性的途径和方法[J].硅酸盐通报,2002,1:38-42
    [139]苏荣梅.高氟地下水除氟研究[D].吉林:吉林大学,2007
    [140]石袁媛,刘吕胜.溶胶-凝胶法制备纳米羟基磷灰石[J].中国医学科学学报,2002,2:129-133
    [141]孙殿军.饮水加氟需慎重[J].中国地方病学杂志,2002,21:510-511
    [142]王凤鸣,王东.含氟饮矿泉水中氟的净化工艺研究[J].水处理技术,1996,22(4):223-226
    [143]王惟咨,何增跃,叶兆杰.氟化物对土壤中几种生化代谢过程影响的研究初报[J].农业环境保护,1989,8:5-7
    [144]王志强,马铁成,韩趁涛等.湿法合成纳米羟基磷灰石粉末的研究[J].无机盐化工,2001,33(1):3-5
    [145]王艳,王学荣,刘博林.羟基磷灰石多孔陶瓷的研究[J].长春理工大学学报,2002,25:67-69
    [146]王晓玲,邵金凤.氟化物的自然分布和在人体代谢及其生理作用[J].中国地方病防治杂志,2002,17:314-316
    [147]王三反,王文琴.电凝聚除氟条件的研究[J].水处理技术,1990,16(4):298-303
    [148]徐艺展,刘榕芳,肖秀峰.羟基磷灰石/淀粉基复合生物材料[J].材料导报,2005,19(9):100-104
    [149]魏杰,李玉宝,左奕等.水热合成法制备纳米磷灰石晶体的比较研究[J].高技术通讯,2003,9:76-79
    [150]武丽敏,钱振华.含F工业废水处理的一种新方法[J].工业水处理,1995,15(3):20-22
    [151]吴王锁,岳廷盛.含氟饮用水降氟的简便方法及机理[J].水处理技术,1993,19(2):98-101
    [152]许保玖,安鼎年著.给水处理理论与设计[M].北京:中国建工出版社,1992
    [153]张超杰,周琪.含氟水治理研究进展[J].给水排水,2002,28:26-29
    [154]张金梅.羟基磷灰石去除饮用水中氟的试验研究[J].云南:昆明理工大学,2008
    [155]张强国,谢果.氟危害及重庆氟污染的对策[J].重庆科技学院学报(自然科学版),2005,7:17-27
    [156]张树春.刍议饮水氟化处理[J].环境科学与技术,1992,2:41-44
    [157]张淑兰.水中氟化物测定的国际标准的应用[J].中国地方病学杂志,1994,13(3):158-160
    [158]张晓辉.氟污染及防治[J].邯郸职业技术学院学报,2001,1:67-69
    [159]张玉明,石庆.氟试剂分光光度法测定氟化物的方法分析[J].水文,2002,22:50-53
    [160]郑宝山.地方性氟中毒及工业氟污染研究[M].北京:中国环境科学出版社,1992,28:2-3
    [161]郑岳华,侯小妹.多孔羟基磷灰石生物陶瓷的进展[J].硅酸盐通报,1995,3:20-24
    [162]周钮明,余春香.吸附法处理含氟废水的研究进展[J].离子交换与吸附,2001,17:369-376
    [163]左奕,李玉宝,魏杰等.纳米羟基磷灰石的常压合成与表征[J],高技术通讯,2003,4:58-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700