用户名: 密码: 验证码:
植物三维信息检测及视觉伺服控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传感技术是实现精细农业的基础,在自动化农业生产作业中需要对作业对象目标的空间信息进行检测进而用于对作业执行机构的控制,机器视觉作为潜在的、低故障、低风险、非接触式测量技术非常适宜于农业环境的应用,大多数的农业生产作业需要执行机构与作业对象间的相对运动,本文以机器视觉技术结合农业生产作业中的执行机构与目标物的相对运动关系提出了一种基于视点移动的植物三维信息检测和一种直接基于图像特征的摄像机相对于目标物的视觉伺服定位控制策略,主要研究内容和结果如下:
     (1)对基于色彩空间的绿色植物信息分割提取方法进行了研究。以手动提取绿色植物的方法制备植物信息分割提取的样本图像集,分别以植物欠分割率、植物过分割率、植物错分割率和图像处理时间为分割性能的比较参数对植物信息分割算法进行了试验对比研究。设计了一种结合HSV颜色空间下的固定阈值分割和超绿减超红(3G-2.4R-B)图像数据Otsu自动取阈值分割的植物图像分割策略。
     (2)研究了图像对应点的搜索匹配算法。采用绝对误差和作为区域匹配的误差度量,对图像中不同位置点的对应点搜索在作用图像数据不同、匹配模板类型不同和匹配模板大小不同的情况下的匹配效果进行了试验研究,设计了依据匹配点的位置的不同而不同的差异性的匹配算法。
     (3)研究了摄像头在X-Y平面内运动时的植物三维信息检测算法。以作物为试验对象对摄像头在X-Y平面内不同运动参数和位置参数对植物三维信息检测的结果的影响进行了试验研究,试验结果显示,摄像头的移动距离越大,摄像头与目标物的距离越近,检测结果越好。
     (4)研究了摄像头沿光轴方向移动时的目标与相机的深度信息检测方法。对摄像头沿光轴方向移动时的目标物在摄像机投影方向的等效平面与摄像头的距离的计算方法进行了研究,对摄像头与植物的距离不同以及摄像头的移动距离不同情况下对测量结果的影响进行了试验研究,试验结果显示,摄像头的移动距离越大,摄像头与目标物的距离越近,测量的结果越好。
     (5)采用两相步进电机驱动的电动平移台和直流电机驱动的电动缸搭建了一个直角坐标机器人系统,基于摄像头沿光轴方向移动的目标与摄像头深度信息检测方法设计了视觉伺服控制策略。分别以三个图像特征实现对执行机构在空间内的三个方向移动定位的视觉伺服控制,以绿色作物为试验对象实现了视觉伺服定位控制功能。
     本文的研究结果为机器视觉在农业生产中的检测和对执行机构的控制方面的应用奠定了基础,研究对基于手眼方式的自动化施药、采摘、移栽等农业生产作业具有重要价值。
Sensing technology is the basis for precision agriculture. Detect spatial information of the target, which can be used to control the the actuator, is needed in automated agricultural production operations. Machine vision is considered to be a potential, low failure and risk and contactless measuring technology which makes it suitable for being applied to agricultural circumstances. Most of the agricultural production tasks accompany the relative motion between the objects and the actuator A method of the plants'three-dimensional information detecting based on the translation of the camera and a visual servo positioning control strategy directly based on the image features was proposed, which was combined used the motion relationship and the machine vision technology. The main research contents and conclusions were as follow:
     (1) Plant image green information segmentation method was studied based on different color space. A set of sample images' green information was extracted manully. Plant defective segmentation percentage, plant exceeded segmentation percentage, plant segmentat error percentage, as well as the image processing time was used as the performance parameters of different segmentation algorithm. A green information segmentation method which combined the fixed threshold segmentation under HSV color space and threshold segmentation by Otsu for the image data after the operation of Exceed Green minus Exceed Red (3G-2.4R-B) was designed.
     (2) The corresponding points matching algorithm was studied for images acquired from different views. The sum of absolute defferences (SAD) was choosed as the mearement error for the area maching. The maching algorithm was studied based on the experimentions which were operated on different image data, with different template size and different template types. A difference matching algorithms strategy was designed depending on the position of the matching points.
     (3) Plant three dimensional information detection algorithms were studied when the camera was translated in the X-Yplane. The experimentions was done with the crops as the subjects in order to find out the influence on the detected results of the plant three dimensional information while the camera was under different motion parameters and different position parameters. According to the experiment, the direction of movement of the camera has little effect to the measurment results, and there would be get better results when the moving distance of the camera becoming larger and the distance was closer between the camera and the object.
     (4) The depth information between target and the camera was studied while the camera was moving along the optical axis. The distance between the equivalent plane of the target in the direction of projection of the camera and the camera center would be calculated when the camera was moving along the optical axis. A standard target and a potted plant was chose as the subjects in order to find out the measurement performance under the different distance between target and the camera and the different distance of the camera moved. As a result, the larger the moving distance of the camera, the closer between the camera and the target object, the better of results of the measurement.
     (5) A visual servo positioning control strategy based on the method depth information measurement between target and the camera when the camera was moving along the optical axis. Three image features was directly used to control the moving and positioning of the actuator in the three directions of space. A Cartesian robot system was set up with two electric translation platforms driver by two-phase stepper motor and an electric cylinder driver by DC motor. The experiments of target's three dimensional measurements and visual servoing control of the camera relative to the plant was done based on the robot system. A satisfying result was abtained through the experiments.
     Research laid the foundation for machine vision inspection and the actuator's visual servoing in agricultural production. Meanwhile this tudy has important value to automate spraying, harvesting, transplanting and other agricultural production operations which based on hand-eye approach.
引文
[1]Derek Byerlee,Alain de Janvry,and Elisabeth Sadoulet. Agriculture for Development:Toward a New Paradigm. Annu. Rev. Resour. Econ,2009,1:15-31
    [2]汪懋华.“精细农业”发展与工程技术创新.农业工程学报,1999,5(1):1-8
    [3]Marta G. Rivera-Ferre. The future of agriculture. EMBO reports,2008,9(11):1061-1066.
    [4]Robin Gebbers and Viacheslav I. Adamchuk. Precision Agriculture and Food Security. Science 2010,327:828-830
    [5]Naiqian Zhang, Maohua Wang, Ning Wang. Precision agriculture—a worldwide overview. Computers and Electronics in Agriculture,2002,36:113-132
    [6]W.S. Lee, v. Alchanatis, C. Yang, et al. Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture,2010,74:2-33
    [7]Murray B. Isman. Botanical Insecticides, Deterrents, and Repellents in Modern Agriculture and an Increasingly Regulated World. Annu. Rev. Entomol,2006,51:45-66
    [8]Sally A. Miller, Fen D. Beed, and Carrie Lapaire Harmon. Plant Disease Diagnostic Capabilities and Networks. Annu. Rev. Phytopathol,2009,47:15-38
    [9]R.M.C. Jansen, J. Wildt, I.F. Kappers, et al. Detection of Diseased Plants by Analysis of Volatile Organic Compound Emission. Annu. Rev. Phytopathol,2011,49:157-174
    [10]张建,李宗南,张楠,等.基于实测数据的作物三维信息获取与重建方法研究进展.华中农业大学学报,2013,32(4):126-134
    [11]黄道平,雷加,王成,等.植物冠层三维结构获取技术的研究进展.计算机应用与软件,2011,28(12):108-111,114
    [12]林开颜,徐立鸿.计算机视觉技术在作物生长监测中的研究进展.农业工程学报,2004,20(2):279-283
    [13]孙红,孙明,王一鸣.植物生长机器视觉无损测量研究综述.农业机械学报,2006,37(10):181-184
    [14]C. L. McCarthy, N. H Hancock, S. R Raine.Applied machine vision of plants:a review with implications for field deployment in automated farming operations. Intel Serv Robotics,2010,3: 209-217
    [15]赵春江,陆声链,郭新宇,等.数字植物及其技术体系探讨.中国农业科学,2010,43(10):2023-2030
    [16]Rosangela Sozzani, Wolfgang Busch, Edgar P. Spalding, and Philip N. Benfey. Advanced imaging techniques for the study of plant growth and development. Trends in Plant Science,2013,1125:1-7
    [17]Meyer G.E, Davison D.A.An electronic image plant growth measurement system. Transaction of the ASAE,1987,30(1):242-248
    [18]Trooien T P, Heermann T F. Measurement and simulation of potato leaf area using image processing:Ⅲ. Measurement.Transactions of theASAE,1992,35(5):1719-1721
    [19]Chien C.F., Lin T.T..Non-destructive growth measurement of selected vegetable seedlings using orthogonal images.Transaction of theASAE,2005,48(5):1953-1961
    [20]Yu-Hui Flora Yeh, Tsung-Cheng Lai. Ting-Yu Liu, et al. An automated growth measurement system for leafy vegetables. Biosystems Engineering,2014,117:43-50
    [21]王传宇,赵明,阎建河.基于双目立体视觉的苗期玉米株形测量.农业机械学报,2009,40(5):145-148,144
    [22]杨亮,郭新宇,赵春江,等.基于立体视觉的玉米叶片形态测量与三维重建.计算机应用,2008,28(10):2661-2663,2682
    [23]王传宇,赵明,阎建河,等.基于双目立体视觉技术的玉米叶片三维重建.农业工程学报,2010,26(4):198-202
    [24]赵春江,杨亮,郭新宇,等.基于立体视觉的玉米植株三维骨架重建.农业机械学报,2010,41(4):157-162
    [25]陈兵旗,何醇,马彦平,等.大田玉米长势的三维图像监测与建模.农业工程学报,2011,27(增刊1):366-372
    [26]N Ivanov P, Boissard, MChapron, P Valery. Estimation of the height and angles of orientation of the upper leaves in the maize canopy using stereovision.agronomie,1994.2:183-194
    [27]Bernhard Biskup, Hanno Scharr, Ulrich Schurr. A stereo imaging system for measuring structural parameters of plant canopies. Plant, Cell and Environment,2007,30:1299-1308
    [28]瞿端阳,王维新,马本学,等.基于视觉技术的棉株识别定位.中国棉花,2013,40(2):16-19
    [29]杨亮,郭新宇,陆声链,等.基于多幅图像的黄瓜叶片形态的三维重建.农业工程学报,2009,25(2):141-144
    [30]Hans J. Andersen, Lars Reng, Kristian Kirk.Geometric plant properties by relaxed stereo vision using simulated annealing. Computers and Electronics in Agriculture,2005,49:219-232
    [31]Ping Tan, Gang Zeng, Jianxiong Xiao, et al. Image-based Tree Modeling. ACM Transactions on Graphics,2007,26(3):87
    [32]Ping Tan, Tian Fang, Jingdong Wang, et al. Single image tree modeling. ACM Transactions on Graphics (TOG) ACM,2008,27 (5):108
    [33]Jiguo Zeng, Yan Zhang, and Shouyi Zhan.3D tree models reconstruction from a single image. IADA'06 Sixth International Conference on Intelligent Systems Design and Applications. Jinan: IEEE Computer Society Press,2006.445-450
    [34]AD. Nakarmi, L. Tang. Automatic inter-plant spacing sensing at early growth stages using a 3D vision sensor.Computers and Electronics in Agriculture,2012,82:23-31
    [35]Yann Chene, David Rousseau, Philippe Lucidarme, et al. On the use of depth camera for 3D phenotyping of entire plants.Computers and Electronics in Agriculture,2012,82:122-127
    [36]方慧,胡令潮,何任涛,等.植物三维信息采集方法的研究.农业工程学报,2012,28(3):142-147
    [37]Franz Uhrmann, Lars Seifert, Oliver Scholz, et al. Improving sheet-of-light based plant phenotyping with advanced 3D simulation. Berlin:Springer,2011:253-263
    [38]A. Piron, V Leemans, F. Lebeau, et al. Improving in-row weed detection in multispectral stereoscopic images. Computers and Electronics in Agriculture,2009,69:73-79
    [39]Francisco Rovira-Mas, Qin Zhang, John F. Reid. Stereo vision three-dimensional terrain maps for precision agriculture. Computers and Electronics in Agriculture,2008,60:133-143
    [40]Jian Jin, Lie Tang. Corn Plant Sensing Using Real-Time Stereo Vision. Journal of Field Robotics, 2009,26(6-7):591-608
    [41]M. Kise, Q. Zhang, F. Rovira Mas. A Stereovision-based Crop Row Detection Method for Tractor-automated Guidance. Biosystems-Engineering,2005,90 (4):357-367
    [42]Michio Kise, Qin Zhang. Development of a stereovision sensing system for 3D crop row structure mapping and tractor guidance. Biosystems Engineering,2008,101:191-198
    [43]Kenji Omasa, Fumiki Hosoi, Atsumi Konishi.3D lidar imaging for detecting and understanding plant responses and canopy structure. Journal of Experimental Botany,2007,58 (4):881-898
    [44]S. D. Tumbo, M. Salyani, J. D. Whitney, et al. Investigation of laser and ultrasonic ranging sensors for measurements of citrus canopy volume. Applied Engineering in Agriculture,2002,18(3): 367-372
    [45]Joan R Rosell, Jordi Llorens, Ricardo Sanz, et al.Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning. Agricultural and Forest Meteorology,2009, 149:1505-1515
    [46]Joan Ramon Rosell Poloa, Ricardo Sanz, Jordi Llorens, et al. A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements. Biosystems Engineering,2009,102: 128-134
    [47]王剑.果树枝干三维重建关键技术研究:[博士学位论文].北京:中国农业科学院,2009
    [48]王剑,周国民.利用激光扫描仪获取植物三维模型的方法.湖北农业科学,2008,47(1):104-106
    [49]王剑,周国民.基于激光扫描仪的树干三维重建方法研究.微计算机信息,2009,25(8-3):228-230
    [50]W. Saeys, B. Lenaerts, G. Craessaerts, et al. Estimation of the crop density of small grains using LiDAR sensors. Biosystems Engineering,2009,102:22-30
    [51]Valeriano Mendez, Heliodoro Catalan, Joan R. Rosell-Polo, et aL LiD AR simulation in modelled orchards to optimise the use of terrestrial laser scanners and derived vegetative measures. Biosystems Engineering,2013,115:7-19
    [52]Detlef Ehlert, Michael Heisig, Rolf Adamek. Suitability of a laser rangefinder to characterize winter wheat. Precision Agric,2010,11:650-663
    [53]Jan U.H. Eitel, Lee A. Vierling, Troy S. Magney. A lightweight, low cost autonomously operating terrestrial laser scanner for quantifying and monitoring ecosystem structural dynamics. Agricultural and Forest Meteorology,2013,180:86-96
    [54]Aljaz Osterman, Tone Godesa, Marko Hocevar, et al Real-time positioning algorithm for variable-geometry air-assisted orchard sprayer. Computers and Electronics in Agriculture,2013, 98:175-182
    [55]Ulrich Weiss, Peter Biber. Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robotics and Autonomous Systems,2011,59:265-273
    [56]Dominik Seidel, Friderike Beyer, Dietrich Hertel, et al. 3D-laser scanning:Anon-destructive method for studying above-ground biomass and growth of juvenile trees. Agricultural and Forest Meteorology,2011,151:1305-1311
    [57]王万章,洪添胜,陆永超,等.基于超声波传感器和DGPS的果树冠径检测.农业工程学报,2006,22(8):158-161
    [58]张霖,赵祚喜,俞龙,等.超声波果树冠层测量定位算法与试验.农业工程学报,2010,26(9):192-197
    [59]E. Gil, A Escola, J.R. Rosell, et al. Variable rate application of plant protection products in vineyard using ultrasonic sensors. Crop Protection,2007,26:1287-1297
    [60]J. Llorens, E. Gil, J. Llop, et al. Variable rate dosing in precision viticulture:Use of electronic devices to improve application efficiency. Crop Protection,2010,29:239-248
    [61]E. Gil, J. Llorens, J. Llop, et al.Variable rate sprayer. Part 2-Vineyard prototype:Design, implementation, and validation. Computers and Electronics in Agriculture,2013,95:136-150
    [62]Zaman Q.U., Schumann A.W., Hostler H.K..Quantifying sources of error in ultrasonic measurements of citrus orchards. American Society of Agricultural and Biological Engineers,2007, 23(4):449-453
    [63]Zaman Q.U., Salyani M.. Effects of foliage density and ground speed on ultrasonic measurement of citrus tree volume. Applied Engineering in Agriculture,2004,20 (2):173-178
    [64]Zaman Q.U., Schumann AW.. Performance of an ultrasonic tree volume measurement system in commercial citrus groves. Precision Agriculture,2005,6 (5):467-480
    [65]Zaman Q.U., Schumann AW., Miller, W.M.Variable rate nitrogen application in Florida citrus based on ultrasonically-sense tree size. Applied Engineering in Agriculture,2005,21 (3):331-335
    [66]Q. U. Zaman, A W. Schumann, H. K. Hostler. Quantifying sources of error in ultrasonic measurements of citrus orchards.Applied Engineering in Agriculture,2007,23(4):449-453
    [67]AW. Schumann, Q.U. Zaman. Software development for real-time ultrasonic mapping of tree canopy size. Computers and Electronics in Agriculture,2005,47:25-40
    [68]Qamar Uz Zaman, Travis J. Esau, Arnold W. Schumann, et al. Development of prototype automated variable rate sprayer for real-time spot-application of agrochemicals in wild blueberry fields. Computers and Electronics in Agriculture,2011,76:175-182
    [69]Aitazaz A Farooque, Young K. Chang, Qamar U. Zaman, et al. Performance evaluation of multiple ground based sensors mounted on a commercial wild blueberry harvester to sense plant height, fruit yield and topographic features in real-time. Computers and Electronics in Agriculture,2013, 91:135-144
    [70]A Escola, J.R. Rosefl-Polo, S. Planas, et al. Variable rate sprayer. Part 1-Orchard prototype: Design, implementation and validation. Computers and Electronics in Agriculture,2013,95: 122-135
    [71]D. E. Guyer, G. E. Miles, M. M. Schreiber, et al. Machine Vision and Image Processing for Plant Identification. TRANSACTIONS of the ASAE,1986,29(6):1500-1507
    [72]T. F. Burks, S. A Shearer, F. A Payne. Classification of weed species using color texture features and discriminant analysis. Transactions of the ASAE,2000,43(2):441-448
    [73]D. M. Woebbecke, G. E. Meyer, K.Von Bargen, et al. Color indices for weed identification under various soil, residue, and lighting conditions. TRANSACTIONS of the ASAE,1995,38 (1): 259-269
    [74]AJ. Perez, F. Lopez, J.V Benlloch. Colour and shape analysis techniques for weed detection in cereal fields. Computers and Electronics in Agriculture,2000,25:197-212
    [75]L.J. Wiles. Software to quantify and map vegetative cover in fallow fields for weed management decisions. Computers and Electronics in Agriculture,2011,78:106-115
    [76]Xavier P. Burgos-Artizzu, Angela Ribeiro, Alberto Tellaeche. Improving weed pressure assessment using digital images from an experience-based reasoning approach Computers and Electronics in Agriculture,2009,65:176-185
    [77]Takashi Kataoka, Toshihiro Kaneko, Hiroshi Okamoto, et al. Crop growth estimation system using machine vision. In:Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003),2003.1079-1083
    [78]Nobuyuki Otsu. A Threshold Selection Method from Gray-Level Histogram. IEEE Transactions on Systems, Man, and Cybernetics,1979,9(1):62-66
    [79]George. E. Meyer, Joao Camargo Neto, David D. Jones, et al. Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Computers and Electronics in Agriculture,2004,42:161-180
    [80]Joao Camargo Neto, George E. Meyer, David D. Jones. Individual leaf extractions from young canopy images using Gustafson-Kessel clustering and a genetic algorithm. Computers and Electronics in Agriculture,2006,51:66-85
    [81]Zhenghong Yu, Zhiguo Cao, Xi Wu, et al. Automatic image-based detection technology for two critical growth stages of maize:Emergence and three-leaf stage. Agricultural and Forest Meteorology,2013,174-175:65-84
    [82]Lei F. Tian, David C. Slaughter. Environmentally adaptive segmentation algorithm for outdoor image segmentation. Computers and Electronics in Agriculture,1998,21:153-168
    [83]G. Ruiz-Ruiz, J. Gomez-Gilb, L.M. Navas-Gracia. Testing different color spaces based on hue for the environmentally adaptive segmentation algorithm (EASA). Computers and Electronics in Agriculture,2009,68:88-96
    [84]Nick D. Tillett, T. Hague, S.J. Miles. Afield assessment of a potential method for weed and crop mapping on the basis of crop planting geometry. Computers and Electronics in Agriculture,2001, 32:229-246
    [85]Onyango C.M., Marchant J.A. Physics based colour image segmentation for scenes containing vegetation and soil Image and Vision Computing,2001,19 (8):523-538
    [86]Christine M. Onyango, J.A Marchant. Segmentation of row crop plants from weeds using colour and morphology. Computers and Electronics in Agriculture,2003,39:141-155
    [87]曹晶晶,王一鸣,毛文华,等.基于纹理和位置特征的麦田杂草识别方法.农业机械学报,2007,8(4):107-110
    [88]毛罕平,胡波,张艳诚,等.杂草识别中颜色特征和阈值分割算法的优化.农业工程学报,2007,23(9):154-158
    [89]Liying Zheng, Jingtao Zhang, Qianyu Wang. Mean-shift-based color segmentation of images containing green vegetation.Computers and Electronics in Agriculture,2009,65:93-98
    [90]Liying Zheng, Darning Shi, Jingtao Zhang. Segmentation of green vegetation of crop canopy images based on mean shift and Fisher linear discriminant.Pattern Recognition Letters,2010,31: 920-925
    [91]George E. Meyer, Joao Camargo Neto.Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture,2008,63:282-293
    [92]M. Guijarro, G. Pajaresb, I. Riomorosc. Automatic segmentation of relevant textures in agricultural images. Computers and Electronics in Agriculture,2011.75:75-83
    [93]J. Romeo, G. Pajares, M. Montalvo. A new Expert System for greenness identification in agricultural images. Expert Systems with Applications,2013,40:2275-2286
    [94]J.M. Guerrero, G. Pajares, M. Montalvo. Support Vector Machines for crop/weeds identification in maize fields. Expert Systems with Applications,2012,39:11149-11155
    [95]M. Montalvo, J.M. Guerrero, J. Romeo. Automatic expert system for weeds/crops identification in images from maize fields. Expert Systems with Applications,2013,40:75-82
    [96]M. Montalvo, G. Pajares, J.M. Guerrero. Automatic detection of crop rows in maize fields with high weeds pressure. Expert Systems with Applications,2012,39:11889-11897
    [97]Isabelle Philipp, Thomas Rath. Improving plant discrimination in image processing by use of different colour space transformations. Computers and Electronics in Agriculture,2002,35:1-15
    [98]Bernard Panneton, Michel Brouillard. Colour representation methods for segmentation of vegetation in photographs. Biosystems Engineering,2009,102:365-378
    [99]X.D. Bai, Z.G. Cao, Y. Wang. Crop segmentation from images by morphology modeling in the CIE L*a*b* color space. Computers and Electronics in Agriculture,2013,99:21-34
    [100]L. Tang, L. Tian, B. L. Steward Color Image Segmentation with Genetic Algorithm for In-field Weed. Transactions of theASAE,2000,43(4):1019-1027
    [101]Wei Guo, Uday K. Rage, Seishi Ninomiya. Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Computers and Electronics in Agriculture, 2013,96:58-66
    [102]Juan Ignacio Arribas, Gonzalo V. Sanchez-Ferrero, Gonzalo Ruiz-Ruiz, et al. Leaf classification in sunflower crops by computer vision and neural networks. Computers and Electronics in Agriculture,2011,7.8:9-18
    [103]Massimo Minervini, Mohammed M. Abdelsamea, Sotirios A Tsaftaris. Image-based plant phenotyping with incremental learning and active contours. Ecological Informatics,2013
    [104]王远,王德建,张刚,等.基于数码相机的水稻冠层图像分割及氮素营养诊断.农业工程学报,2012,28(17):131-136
    [105]Yuan Wang, Dejian Wang, Gang Zhang, et al. Estimating nitrogen status of rice using the image segmentation of G-R thresholding method. Field Crops Research,2013,149;33-39
    [106]周俊,王明军,邵乔林.农田图像绿色植物自适应分割方法.农业工程学报,2013,29(18):163-170
    [107]张志斌,罗锡文,臧英,等.基于颜色特征的绿色作物图像分割算法农业工程学报,2011,27(7):183-189
    [108]J Rasmussen, M Norremark, BM Bibby. Assessment of leaf cover and crop soil cover in weed harrowing research using digital images. European Weed Research Society Weed Research,2007, 47:299-310
    [109]Jiangui Liu, Elizabeth Pattey. Retrieval of leaf area index from top-of-canopy digital photography over agricultural crops. Agricultural and Forest Meteorology,2010,150:1485-1490
    [110]D.S. Shrestha, B.L. Steward, S.J. Birrell. Video Processing for Early Stage Maize Plant Detection. Biosystems Engineering,2004,89 (2):119-129
    [111]Xavier P. Burgos-Artizzu, Angela Ribeiro, Maria Guijarro, et al. Real-time image processing for crop/weed discrimination in maize fields. Computers and Electronics in Agriculture,2011,75: 337-346
    [112]Xavier P. Burgos-Artizzu, Angela Ribeiro, Alberto Tellaeche, et al. Analysis of natural images processing for the extraction of agricultural elements. Image and Vision Computing,2010,28: 138-149
    [113]Umesh R. Dhond, J. K. Aggarwal. Structure from Stereo — A Review. IEEE Transactions on System, Man, and Cybernetics,1989,19(6):1489-1510
    [114]Andreas Koschan. What is New in Computational Stereo Since 1989:A Survey on Current Stereo Papers[Technischer Bericht]. Germany:Technische Universitat Berlin,1993:1-8
    [115]Daniel Scharstein, Richard Szeliski. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. International Journal of Computer Vision,2002,47(1/2/3):7-42
    [116]Barbara Zitova,Jan Flusser. Image registration methods:a survey. Image and Vision Computing, 2003,21:977-1000
    [117]Myron Z. Brown, Darius Burschka, Gregory D. Hager. Advances in Computational Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25:993-1008
    [118]Ming Xie. Automatic feature matching in uncalibrated stereo vision through the use of color. Robotics and Autonomous Systems,1997,21:355-364
    [119]Mohamed El Ansari, Lhoussaine Masmoudi, Abdelaziz Bensrhair. Anew regions matching for color stereo images. Pattern Recognition Letters,2007,28:1679-1687
    [120]Lior Shamir. A proposed stereo matching algorithm for noisy sets of color images. Computers & Geosciences,2007,33:1052-1063
    [121]兰海滨,王平,赵保军.基于色调空间的彩色图像匹配算法.计算机应用研究,2009,26(3):1174-1176,1188
    [122]葛娟,曹伟国,周炜,等.一种颜色仿射变换下的局部特征描述子.2013,25(1):26-33
    [123]刘岩,吕肖庆,秦叶阳,等.尺度与颜色不变性图像特征描述小型微型计算机系统,2012,33(10):2297-2302
    [124]Hayit Greenspan, Guy Dvir, Yossi Rubnerb. Context-dependent segmentation and matching in image databases. Computer Vision and Image Understanding,2004,93:86-109
    [125]Andreas Klaus, Mario Sormann, Konrad Karner. Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure. In:The 18th International Conference on Pattern Recognition (ICPR'06). Hong Kong,2006.15-18
    [126]Michael Bleyer, Margrit Gelautz. A layered stereo matching algorithm using image segmentation and global visibility constraints. ISPRS Journal of Photogrammetry & Remote Sensing,2005,59: 128-150
    [127]R. Vazquez-Martin, R. Marfil, P. Nunez, et al. A novel approach for salient image regions detection and description. Pattern Recognition Letters,2009,30:1464-1476
    [128]Martin Humenberger, Christian Zinner, Michael Weber, et al. A fast stereo matching algorithm suitable for embedded real-time systems. Computer Vision and Image Understanding,2010,114: 1180-1202
    [129]J.A Kalomiros, J. Lygouras. Design and hardware implementation of a stereo-matching system based on dynamic programming. Microprocessors and Microsystems,2011,35:496-509
    [130]Qingqing Yang, Pan Ji, Dongxiao Li, et al. Fast stereo matching using adaptive guided filtering. Image and Vision Computing,2014,32:202-211
    [131]Li Cheng, Terry Caelli. Bayesian stereo matching. Computer Vision and Image Understanding, 2007,106:85-96
    [132]Menglong Yang, Yiguang Liu, Zhisheng You, et al. Ahomography transform based higher-order MRF model for stereo matching. Pattern Recognition Letters,2014,40:66-71
    [133]Sylvie Chambon, AlainCrouzil. Similarity measures for image matching despite occlusions in stereo vision. Pattern Recognition,2011,44:2063-2075
    [134]R. Correal, G. Pajares, J.J. Ruz. Automatic expert system for 3D terrain reconstruction based on stereo vision and histogram matching. Expert Systems with Applications,2014,41:2043-2051
    [135]Kuk-Jin Yoon, In So Kweon. Distinctive Similarity Measure for stereo matching under point ambiguity. Computer Vision and Image Understanding,2008,112:173-183
    [136]F. Dornaika and R. Chung. Cooperative Stereo-Motion:Matching and Reconstruction. Computer Vision and Image Understanding,2000,79:408-427
    [137]F. Dornaika, R. Chung. Binocular matching constraints from motion. Pattern Recognition,2002, 35:2003^2012
    [138]Seth Hutchinson, Gregory D. Hager, Peter L Corke. A Tutorial on Visual Servo Control. IEEE Transactions on Robotics and Automation Magazine,1996,12(5):651-670
    [139]Francois Chaumette, Seth Hutchinson. Visual servo control part Ⅰ:basic approaches. IEEE Robotics & Automation Magazine,2006(12):82-90
    [140]Francois Chaumette, Seth Hutchinson. Visual servo control part Ⅱ:advanced approaches. IEEE Robotics & Automat ion Magazine,2007, (3):109-118
    [141]Maciej Staniak, Cezary Zielinski. Structures of visual servos. Robotics and Autonomous Systems, 2010,58:940-954
    [142]V Kyrkia, D. Kragic, H.I. Christensen. Measurement errors in visual servoing. Robotics and Autonomous Systems,2006,54:815-827
    [143]Jose R. Sanchez-Lopez, Antonio Marin-Hernandez, Elvia R Palacios-Hernandez, et al. A Real-time 3D Pose Based Visual Servoing Implementation for an Autonomous Mobile Robot Manipulator. Procedia Technology,2013,7:416-423
    [144]Xavi Gratal, Javier Romero, Jeannette Bong, et al. Visual servoing on unknown objects. Mechatronics,2012,22:423-435
    [145]P. Prem Kumar, Laxmidhar Behera.Visual servoing of redundant manipulator with Jacobian matrix estimation using self-organizing map. Robotics and Autonomous Systems,2010,58: 978-990
    [146]D.I. Kosmopoulos. Robust Jacobian matrix estimation for image-based visual servoing. Robotics and Computer-Integrated Manufacturing,2011,27:82-87
    [147]Yin-Hui Liu, Hesheng Wang, Chengyou Wang, et al. Uncalibrated visual servoing of robots using a depth-independent interaction matrix. IEEE Transactions on Robotics,2006,22 (4):804-817
    [148]Yun-Hui Liu, Hesheng Wang, Weidong Chen, et al. Adaptive visual servoing using common image features with unknown geometric parameters. Automatica,2013,49:2453-2460
    [149]Hesheng Wang,Yun-Hui Liu, Dongxiang Zhou. Adaptive visual servoing using point and line features with an uncalibrated eye-in-hand camera. IEEE Transactions on Robotics,2008,24 (4): 843-857
    [150]Hesheng Wang, Maokui Jiang, Weidong Chen, et al. Visual servoing of robots with uncalibrated robot and camera parameters. Mechatronics,2012,22:661-668
    [151]Junping Wang, An Liu, Xiaodong Tao, et al. Microassembly of micropeg and-hole using uncalibrated visual servoing method. Precision Engineering,2008,32:173-181
    [152]Omar Tahri, Helder Araujo, Francois Chaumette, et al. Robust image-based visual servoing using invariant visual information. Robotics and Autonomous Systems,2013,61:1588-1600
    [153]Geert De Cubber, Sid Ahmed Berrabah, Hichem Sahli. Color-based visual servoing under varying illumination conditions. Robotics and Autonomous Systems,2004,47:225-249
    [154]Jian Chen, Darren M. Dawson, Warren E. Dixon, et al. Navigation function-based visual servo control. Automatica,2007,43:1165-1177
    [155]ZHANG Xue-Bo, FANG Yong-Chun, MA Bo-Jun. A PFM-based Global Convergence Visual Servo Path Planner. Acta Automatica Sinica,2008,34(10):1250-1256
    [156]CAO Zheng-Cai, YIN Long-Jie, FU Yi-Li, et al. Predictive Control for Visual Servo Stabilization of Nonholonomic Mobile Robots. ActaAutomatica Sinica,2013,39(8):1238-1245
    [157]N.R. Gans, G. Hu, J. Shen, et al. Adaptive visual servo control to simultaneously stabilize image and pose error. Mechatronics,2012,22:410-422
    [158]Cosmin Copot, Adrian Burlacu, Clara M. Ionescu, et al. A fractional order control strategy for visual servoing systems. Mechatronics,2013,23:848-855
    [159]Omar Tahri, Youcef Mezouar. On visual servoing based on efficient second order minimization. Robotics and Autonomous Systems,2010,58:712-719
    [160]Eissa Nematollahi, Aleksandar Vakanski, Farrokh Janabi-Sharifi. A second-order conic optimization-based method for visual servoing. Mechatronics,2012,22:444-467
    [161]S.S. Mehta, V Jayaraman, T.F. Burks, et al. Teach by zooming:Aunified approach to visual servo control. Mechatronics,2012,22:436-443
    [162]S.S. Mehta, T.F. Burks. Vision-based control of robotic manipulator for citrus harvesting. Computers and Electronics in Agriculture,2014,102:146-158
    [163]赵庆波,赵德安,姬伟,等.采摘机器人视觉伺服控制系统设计.农业机械学报,2009,40(1):152-156
    [164]方勇纯.机器人视觉伺服研究综述.智能系统学报,2008,3(2):109-114
    [165]Rafael C. Gonzalez, Richard E. Woods.数字图像处理(第三版)(阮秋琦,阮宇智,等译).北京:电子工业出版社,2011,247-288
    [166]T. Hague, N. D. Tillett, H. Wheeler. Automated crop and weed monitoring in widely spaced cereals. Precision Agric,2006,7:21-32
    [167]左飞,万晋森,刘航.数字图像处理原理与实践:基于Visual C++开发.北京:电子工业出版社,2011
    [168]Ohta Y., Kanade T., Sakai, T.. Colour information for region segmentation. Computer Graphics and Image Processing,1980,13:222-241
    [169]Milan Sonka,Vaclav Hlavac, Roger Boyle.图像处理、分析与机器视觉(第3版)(艾海舟,苏延超,等译).北京:清华大学出版社,2011
    [170]近藤直,门田充司,野口伸.农业机器人Ⅰ.基础与理论(乔军,陈兵旗译).北京:中国农业大学出版社,2009,9-70
    [171]陈兵旗,孙明Visual C++实用图像处理专业教程.北京:清华大学出版社,2004
    [172]Richard Hartley, Andrew Zisserman. Multiple View Geometry in Computer Vision (Second Edition). New York:Cambridge University Press,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700