用户名: 密码: 验证码:
甜菜栽培品种的DNA指纹图谱构建及遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
品种的真实性和纯度是种子检测最重要的指标之一,而研究快速、准确、简便的DNA分子标记技术鉴定甜菜种子和将来新品种授权均具有重要的意义。本研究首次利用SSR分子标记对我国生产上应用的甜菜品种进行指纹图谱的构建,同时对影响品种纯度和真实性鉴定的各种因素进行系统的分析,建立了一套快速、高效的品种纯度和真实性鉴定方法,使快速鉴定甜菜品种及不同实验室的交流成为可能。主要结果如下:
     1.建立了快速高效提取甜菜基因组DNA的方法。
     本研究使用甜菜干种子或者叶片经真空冷冻干燥机处理1-2天后的干粉为原料,使用96孔PCR板代替单个离心管,利用碱裂解法对两种样品进行DNA的提取,该方法无需使用液氮,提取上百份DNA仅需要20分钟,提取的DNA能够作为SSR-PCR的模板。
     2.筛选出29对可用于指纹图谱构建的SSR核心引物。
     利用8%非变性聚丙烯酰胺凝胶电泳对101对甜菜SSR扩增产物进行检测,共找到29对带型清晰、重复性好、多态性高、易于识别的引物,每对引物平均扩增出2~11个等位基因。扩增的片段大小在90~500bp之间,这29对引物可以作为甜菜品种纯度和真实性鉴定的核心引物。
     3.建立了甜菜多重SSR-PCR扩增体系。
     在单一SSR~PCR的基础上,甜菜2~3重SSR-PCR的体系为:每增加1重SSR,仅仅增加相应引物的量以及减少相应去离子水的量,其余成分不变。甜菜4~5重SSR-PCR要在单一PCR的基础上增加0.5倍的DNTPs以及相应引物的量,同时根据个别引物扩增效率的不同,相应减少个别引物的用量,此体系对大多数4重和5重PCR有效。多重PCR扩增体系的检测效率是单引物PCR的2~5倍。
     4.有7对引物可单独进行品种鉴定,利用其中3对引物构建了46个甜菜品种的SSR指纹图谱。
     聚类分析结果表明,在遗传距离0.20处,所有的品种被分为一类,在遗传距离0.16处,46个品种被分为4个类群,聚类分析结果与材料的来源有很好的一致性,基本上是同一公司或者同一国别的品种聚在了一起,从分子水平上说明了甜菜品种之间的遗传基础狭窄。另外,有7对引物SB04、S7、S6、BVV45、SB13、S13和S8单独使用时能够鉴别不同的品种,利用其中的3对引物SB04、S6和S7构建的指纹图谱就能区别所有的品种。
     5.建立了一套快速鉴定甜菜品种纯度和真实性的方法。
     该方法使用96孔PCR板,利用碱裂解法提取干粉DNA;使用GV及λ DNA检测提取样品DNA的浓度和质量; PCR反应体系为10μL;PCR反应程序将循环中的变性和退火温度均改为15s,延伸为30s,35个循环;PCR产物的分离使用8%非变性聚丙烯酰胺凝胶电泳;最后使用快速银染法对电泳后的聚丙烯酰胺凝胶进行检测;同时我们将模板DNA、引物稀释到工作浓度后和DNTPs以及PCR Buffer一起放入到冰箱保鲜层中,使用时不需要融化,可直接吸取,3个月内均能正常使用。利用以上的方法最终确立了一套简单、快速、节约、污染小的甜菜品种真实性和纯度的鉴定体系,促进了该技术的大规模使用,利用优化后的程序,一个成熟的实验室操作人员只需一天就可以完成192份样品的检测。
One of the most major targets of seed quality testing is the authenticity and Purity of cultivar.Theimportant significance to research rapidly,simple and accurate method of molecular maker with beetvarieties identified during seed quality testing and granting the new variety authorigation.Thefingerprint was built for the sugarbeet varieties applied in the sugar beet production in our country.SSRmolecular marker used in this research first time,and various factors affecting the variety purity andauthenticity identification were analyzed to establish a set of quick and efficient method for the varietyidentifying, which would make it possible to interchange between different laboratories.The majorresults obtained as follows:
     1. An improved method of rapid,high effective DNA extraction was set up.
     In this study, Used dry beet seeds or leaves which treated1~2days with frozen and dried in thevacuum freezing machine and extract DNA,the PCR plates of96were used to instead of a singlecentrifugal tube,Alkali decomposition method was used for DNA extraction,and in stead of liquidnitrogen.one person can extract about100DNA samples in20minutes,DNA extracted to be used astemplate of SSR-PCR.
     2.29primers were screened as the core primer of SSR to apply in fingerprint construction
     Using8%non denaturing polyacrylamide gel to test101pairs of sugar beet SSR amplificationproduct, each experiment repeated once at least,29pairs of primers were found which with clear bands,good repeatability, high polymorphism and easy to identify, each pair of primers amplified out2-11alleles average, there were159alleles all together,including116polymorphic alleles,and the ratio ofpolymorphism was72.95%.The fragment sizes vaired from90-500bp.The29primers can be used ascore primers for sugar beet varieties purity and authenticity identification.
     3.Multiplex SSR-PCR amplification system of beet was established
     Based on the single-pair of primer SSR-PCR, Duplex or triplex SSR-PCR system for Beet is thatevery increase one plex of SSR, and the amount of the appropriate primers increases only and thecorresponding amount of deionized water reduced, and the remaining ingredients unchanged. Four orfive plex SSR-PCR of beet is on the basis of the single PCR to increase the amount of0.5times DNTPsand the corresponding primer, at the same time which is according to the different individual primers inamplification efficiency, a corresponding reduction of the individual primer in mutiplex PCRamplification system, In this system,most four or five plex PCR is effective. the detection efficiency is2~5times than the single-primer PCR.
     4. Seven pairs of primer can be used to identify different varieties independently, The DNA fingerprintsof46beet varieties were constructed by three primers。
     UPGMA cluster analysis of genetic distance showed that all of the varieties were clustered in onegroup at the genetic distance of0.20, In genetic distance0.16,46varieties were divided into four groups,Cluster analysis and the source of the material has fine consistency, varieties come from the samecompany or the same country basically to join together,it is indicated that the genetic basis of beetvarieties was narrow. In addition, there are seven pairs of primers SB04, S7, S6, BVV45、SB13、S13、 S8, which can be able to identify the different varieties independently, the primer of SB04, S6and S7will made distinguishi for all varieties.
     5. A rapid method to identify beet varieties purity and authenticity was established
     A96-well PCR plate was used which instead of a single PCR tube, alkaline lysis method was usedto extract form dry seeds (or dry powder) DNA; the GV (Goldview) and λ DNA were used to test DNAconcentration and quality; PCR reaction system is10μL; PCR reaction program cycle denaturation andannealing temperature were converted to the15s, and extends for30s,35cycles; the high resolution of8%non-denaturing polyacrylamide gel was used to separate the PCR product; finally, A rapid silverstaining was used to detect polyacrylamide gel. At the same time,we put DNA templates, primers,DNTPs and PCR Buffer into the refrigerator-fresh-layer, Don't need to melt when using, all of themcan normally use within3months.In this way,we established a set of simple, fast, low costing and littlepollution technical system of the beet varieties authenticity and purity identification system, which is topromote the application of the technology in large-scale,A mature operator of laboratory can detect192samples by one day.
引文
1.常宏,王汉宁,张金文,等.玉米品种真实性和纯度鉴定的SSR标记多重PCR体系优化[J].草业学报.2010(02):204-211.
    2.陈碧云,张冬晓,伍晓明,等.89份油菜区试品种的AFLP指纹图谱分析[J].中国油料作物学报.2007(02):115-120.
    3.陈杰,杨静,郭鸿雁,等. DNA分子标记技术在烟草遗传育种中的应用[J].中国农学通报,2012(07):95-99.
    4.程保山,万志兵,洪德林.35个粳稻品种SSR指纹图谱的构建及遗传相似性分析[J].南京农业大学学报.2007(03):1-8.
    5.程道军,曾华明. RFLP技术构建家蚕现行品种DNA指纹图谱的研究[J].西南农业大学学报.2000,22(6):484-486.
    6.崔成德,王克林,李涢,等. Genefinder和EB在DNA电泳谱带定量分析中的比较[J].安徽农业科学.2008,36(002):452-453.
    7.戴剑.杂交稻亲本SSR指纹图谱构建及两系杂交稻和大青棵鉴定的研究[博士]:南京农业大学;2011.
    8.戴剑,李华勇,丁奎敏,等.植物新品种DUS测试技术的现状与展望[J].种子.2007,177(09):44-47.
    9.旦巴,何燕,卓嘎,等. SDS法和CTAB法提取西藏黄籽油菜干种子DNA用于SSR分析[J].西藏科技.2011(08):9-11.
    10.邓俭英,刘忠,康德贤,等. RFLP分子标记及其在蔬菜研究中的应用[J].分子植物育种.2005(02):245-248.
    11.丁奎敏,沈奇.棉花新品种DUS测试方法与建议[J].河北农业科学.2009,13(10):159-160.
    12.丁锐,李利华.利用EST同工酶谱鉴定黑稻品种纯度的研究[J].种子.2006(04):21-22+26.
    13.段艳凤,刘杰,卞春松,等.中国88个马铃薯审定品种SSR指纹图谱构建与遗传多样性分析[J].作物学报.2009,35(08):1451-1457.
    14.方宣钧,刘思衡,江树业.品种纯度和真伪的DNA分子标记鉴定及其应用[J].农业生物技术学报.2000,8(02):106-110.
    15.高建明,罗峰,裴忠有,等.甜高粱重要种质材料的SRAP指纹分析[J].华北农学报.2010,25(02):93-98.
    16.高居荣,王洪刚,刘树兵,等.小麦种子醇溶蛋白聚丙烯酰胺凝胶电泳技术的简化研究[J].华北农学报.2003,18(02):43-46.
    17.高文伟,李晓辉,田清震,等.利用SSR标记快速鉴定玉米杂交种农大108和豫玉27的种子纯度[J].种子.2004(05):32-33.
    18.葛亚英,张飞,沈晓岚,等.丽穗凤梨ISSR遗传多样性分析与指纹图谱构建[J].中国农业科学.2012(04):726-733.
    19.郭景伦,赵久然,王凤格.适用于SSR分子标记的玉米单粒种子DNA快速提取新方法[J].玉米科学.2005(02):16-17+25.
    20.郭景伦,赵久然,尉德铭,等.玉米单粒种子DNA提取新方法[J].北京农业科学.1997(02):2-3.
    21.郭旺珍,张天真,潘家驹,等.我国棉花主栽品种的RAPD指纹图谱研究[J].农业生物技术学报.1996(02):29-34.
    22.侯静,马凤鸣,陈胜勇,等.甜菜基因组DNA的提取及Southern杂交分析[J].东北农业大学学报.2008(12):14-18.
    23.黄进勇,盖树鹏,张恩盈,等. SRAP构建玉米杂交种指纹图谱的研究[J].中国农学通报.2009,25(18):47-51.
    24.贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学.1996(04):2-11
    25.贾希海,李仁凤,何晓艳,等.玉米品种酯酶同工酶酶谱纯度与田间品种纯度的相关研究[J].种子.1992(01):5-7.
    26.金伟栋,李娜,洪德林.粳稻品种间种子贮藏蛋白多态性分析[J].南京农业大学学报.2007,114(01):7-13.
    27.孔祥彬,张春庆,许子锋. DNA指纹图谱技术在作物品种(系)鉴定与纯度分析中的应用[J].生物技术.2005(04):74-77.
    28.匡猛,杨伟华,许红霞,等.中国棉花主栽品种DNA指纹图谱构建及SSR标记遗传多样性分析[J].中国农业科学.2011(01):20-27.
    29.腊萍,罗淑萍,章建新,等.甜菜总DNA不同提取方法的研究[J].新疆农业大学学报.2006(02):43-46.
    30.腊萍,罗淑萍,章建新,等.甜菜RAPD反应体系优化及亲缘关系研究[J].新疆农业大学学报.2010,127(01):1-6.
    31.兰青阔,张桂华,王永,等.基于SNP标记的黄瓜杂交种纯度鉴定方法[J].中国蔬菜.2012(06):58-63.
    32.李海渤,杨军,吕泽文,等.甘蓝型油菜SSR核心引物研究[J].中国油料作物学报.2010,32(03):329-336.
    33.李兰芬.玉米新品种DUS测试及数量性状一致性评价[J].黑龙江农业科学.2006(04):78-80.
    34.李欧静,张桂华,兰青阔,等.基于SNP标记的种子纯度高效检测分析模型的建立[J].湖南农业科学.2012(19):9-11+14.
    35.李强,马代夫,李洪民,等.甘薯DUS测试标准制定及新品种保护[J].杂粮作物.2005(01):24-26.
    36.李双铃,任艳,陶海腾,等.山东花生主栽品种AFLP指纹图谱的构建[J].花生学报.2006(01):18-21.
    37.李韬. AFLP标记技术的发展和完善[J].生物工程学报.2006(05):861-865.
    38.李祥羽.玉米新品种DUS测试中数量性状的适宜样本容量研究[J].中国农学通报.2009,25(08):150-153.
    39.李晓辉,李新海,张世煌.植物新品种保护与DUS测试技术[J].中国农业科学.2003(11):1419-1422.
    40.李晓辉,李新海,李文华,等. SSR标记技术在玉米杂交种种子纯度测定中的应用[J].作物学报.2003(01):63-68.
    41.李亚利,扈新民,赵丹,等.运用SRAP分子标记鉴定辣椒杂交种纯度[J].中国农学通报.2010,26(24):67-70.
    42.李严,张春庆.新型分子标记―SRAP技术体系优化及应用前景分析[J].中国农学通报.2005(05):108-112.
    43.李彦丽,柏章才,马亚怀.丰产优质抗病甜菜新品种ZM202的选育[J].中国糖料.2010(03):6-8.
    44.李勇,牛永春.基于琼脂糖凝胶电泳的小麦SSR扩增体系优化[J].华北农学报.2009(06):174-177.
    45.梁宏伟,王长忠,李忠,等.聚丙烯酰胺凝胶快速、高效银染方法的建立[J].遗传.2008(10):1379-1382.
    46.刘峰,冯雪梅,钟文,等.适合棉花品种鉴定的SSR核心引物的筛选[J].分子植物育种.2009,7(06):1160-1168.
    47.刘焕霞,赵图强,王维成,等.甜菜新品种新甜16号的选育[J].中国糖料.2006(03):29-31.
    48.刘焕霞,赵图强,王维成,等.甜菜新品种新甜17号的选育[J].中国甜菜糖业.2007(03):8-10.
    49.刘敏轩,王赞文,阎建锋.利用超薄层等电聚焦电泳技术对燕麦种子进行蛋白多态性和品种鉴定方法的研究[J].现代农业科技.2006(03):22-24.
    50.刘巧红,程大友,杨林,等.甜菜品种(系)的ISSR标记数字指纹图谱构建及聚类分析(英文)[J].农业工程学报.2012(S2):280-284.
    51.刘威生,冯晨静,杨建民,等.杏ISSR反应体系的优化和指纹图谱的构建[J].果树学报.2005(06):30-33.
    52.刘之熙,陈祖武,朱克永,等.利用SSR分子标记快速鉴定杂交水稻种子纯度技术体系的优化[J].杂交水稻.2008(01):60-63.
    53.柳李旺,龚义勤,雷春,等.辣椒F_1杂种遗传纯度的种子蛋白、同工酶与RAPD鉴定[J].分子植物育种.2003,1(5/6):663-667.
    54.鲁忠富,徐沛,汪宝根,等.基于SSR分子标记技术的长豇豆种子纯度快速鉴定技术[J].浙江农业学报.2010(06):727-730.
    55.鲁忠富,徐沛,吴晓花,等.SSR分子标记技术在瓠瓜种子纯度快速鉴定中的应用[J].浙江农业学报.2012(04):578-581.
    56.路运才,王华忠.RAPD分子标记技术及其在甜菜上的研究进展[J].中国糖料.2000(03):45-48.
    57.路运才,王华忠.我国甜菜多倍体品种的RAPD分析[J].中国糖料.2006(03):5-8.
    58.栾雨时,苏乔,李海涛,等.利用RAPD技术快速鉴定番茄杂种纯度[J].园艺学报.1998(03):40-44.
    59.罗冉,吴委林,张旸,等.SSR分子标记在作物遗传育种中的应用[J].基因组学与应用生物学.2010,29(01):137-143.
    60.马雪霞,王凯,郭旺珍,等.棉花SSR多重PCR技术的初步研究和利用[J].分子植物育种.2007(05):648-654.
    61.马亚怀,李彦丽,柏章才,等.优质丰产抗病甜菜新品种ZD204的选育[J].中国糖料.2002(04):9-12.
    62.马亚怀,李彦丽,柏章才,等.优质丰产抗病甜菜新品种ZD210的选育[J].中国糖料.2006(04):24-26.
    63.梅德圣,李云昌,胡琼,等.甘蓝型油菜中油杂8号种子纯度的SSR鉴定[J].中国农学通报.2006(05):49-52.
    64.缪恒彬,陈发棣,赵宏波,等.应用ISSR对25个小菊品种进行遗传多样性分析及指纹图谱构建[J].中国农业科学.2008(11):3735-3740.
    65.牛福肉,李满亮,焦纯红,等.愈创木酚测定大豆种子纯度的试验与应用[J].种子科技.2003(01):44-45.
    66.牛泽如,杨文柱,庞磊,等.基于ISSR和AFLP标记开发甜菜SSR引物[J].中国农学通报.2010(21):147-151.
    67.欧阳新星,许勇,张海英,等.应用RAPD技术快速进行西瓜杂交种纯度鉴定的研究[J].农业生物技术学报.1999(01):23-27.
    68.彭汝生,徐明洲.对愈创木酚反应法鉴别新陈稻谷试验的改进[J].粮食流通技术.2004(03):36-37.
    69.秦智锋,吕建强,肖性龙,等.禽流感H5、H7、H9亚型多重实时荧光RT-PCR检测方法的建立[J].病毒学报.2006(02):131-136.
    70.萨姆布鲁J,弗里奇EF.曼尼阿蒂斯T.分子克隆实验指南.北京:科学出版社;1998.
    71.史树德,魏磊,张子义,等.甜菜EST-SSR引物的开发与应用[J].中国糖料.2011(3):1-5.
    72.孙利萍,贾芝琪,胡建斌,等.碱裂解法快速提取番茄DNA的研究[J].河南农业大学学报.2012,46(02):136-138.
    73.孙敏,乔爱民,王和勇,等.黄瓜杂交种子纯度的RAPD鉴定[J].西南师范大学学报(自然科学版).2003(01):103-107.
    74.孙秀峰,陈振德,李德全.分子标记及其在蔬菜遗传育种中的应用[J].山东农业大学学报(自然科学版).2005(02):317-321.
    75.谭君,杨俊品.玉米种子DNA快速提取及杂交种纯度的快速鉴定[J].分子植物育种.2009(04):811-816.
    76.田雷,曹鸣庆,王辉,等.AFLP标记技术在鉴定甘蓝种子真实性及品种纯度中的应用[J].生物技术通报.2001(03):38-40+44.
    77.田清震,盖钧镒,喻德跃,等.我国野生大豆与栽培大豆AFLP指纹图谱研究[J].中国农业科学.2001(05):480-485.
    78.田再民,龚学臣,季伟.小麦DNA提取方法的比较[J].河北北方学院学报(自然科学版).2009(04):22-25.
    79.王从彦,李晓慧,胡小丽,等.SRAP技术在西瓜种子纯度鉴定中的应用[J].河南农业大学学报.2008(05):491-495.
    80.王大莉.香菇栽培品种SNP指纹图谱库的构建[硕士]:华中农业大学;2012.
    81.王芳.种子纯度鉴定方法及其评述[J].中国种业.2008(10):62-63.
    82.王凤格,赵久然,郭景伦,等.一种改进的玉米SSR标记的PAGE/快速银染检测新方法[J].农业生物技术学报.2004(05):606-607.
    83.王凤格,赵久然,佘花娣,等.中国玉米新品种DNA指纹库建立系列研究Ⅲ.多重PCR技术在玉米SSR引物扩增中的应用[J].玉米科学.2003(04):3-6.
    84.王凤格,赵久然,王璐,等.适于玉米杂交种纯度鉴定的SSR核心引物的确定[J].农业生物技术学报.2007(06):964-969.
    85.王桂艳,鞠平.我国甜菜制糖工业五十年回眸[J].中国甜菜糖业.2001(02):28-30.
    86.王海飞,关建平,马钰,等.中国蚕豆种质资源ISSR标记遗传多样性分析[J].作物学报.2011(04):595-602.
    87.王红意,翟红,王玉萍,等.30个中国甘薯主栽品种的RAPD指纹图谱构建及遗传变异分析[J].分子植物育种.2009,7(05):879-884.
    88.王华忠,吴则东,王晓武,等.利用SRAP与SSR标记分析不同类型甜菜的遗传多样性[J].作物学报.2008(01):37-46.
    89.王茂芊,吴则东,王华忠.利用SRAP标记分析我国甜菜三大产区骨干材料的遗传多样性[J].作物学报.2011(05):811-819.
    90.王茂芊,吴则东,陈丽,等.利用SRAP分析东北地区甜菜品系遗传多样性[J].中国糖料.2010(02):4-8+11.
    91.王维成,胡华兵,李蔚农.新疆甜菜发展历程的回顾与展望[J].中国糖料.2010(04):69-71.
    92.王玉兰.不同小麦品种对苯酚测纯的染色反应比较[J].河南农业.2008(15):45.
    93.文雁成,王汉中,沈金雄,等.SRAP和SSR标记构建的甘蓝型油菜品种指纹图谱比较[J].中国油料作物学报.2006(03):233-239.
    94.吴敏生,戴景瑞,王守才.RAPD在玉米品种鉴定和纯度分析中的应用[J].作物学报.1999(04):489-493.
    95.吴渝生,杨文鹏,郑用琏.3个玉米杂交种和亲本SSR指纹图谱的构建[J].作物学报.2003(04):496-500.
    96.吴则东,王华忠,韩英.种子纯度鉴定的常用方法及其在甜菜上的应用展望[J].中国糖料.2010(01):59-61.
    97.武耀廷,张天真,郭旺珍,等.陆地棉品种SSR标记的多态性及用于杂交种纯度检测的研究[J].棉花学报.2001(03):131-133.
    98.肖小余,王玉平,张建勇,等.四川省主要杂交稻亲本的SSR多态性分析和指纹图谱的构建与应用[J].中国水稻科学.2006(01):1-7.
    99.辛业芸,张展,熊易平,等.应用SSR分子标记鉴定超级杂交水稻组合及其纯度[J].中国水稻科学.2005(02):95-100.
    100.熊利荣,郑宇.基于形态学的稻谷种子品种识别[J].粮油加工.2010(06):45-48.
    101.徐振江,刘洪,李春兰,等.水稻新品种DUS测试数量性状特异性统计分析判别研究[J].华南农业大学学报.2008(01):6-9.
    102.徐振江,刘洪,饶得花,等.水稻DUS测试新品种品质性状的差异性分析及应用[J].华南农业大学学报.2013(02):1.
    103.许一平,成炜,邵彦春,等.沙门菌、大肠杆菌和金黄色葡萄球菌的多重PCR检测[J].微生物学通报.2006(06):89-94.
    104.许云华,沈洁.DNA分子标记技术及其原理[J].连云港师范高等专科学校学报.2003(03):78-82.
    105.闫庆祥,黄东益,李开绵,等.利用改良CTAB法提取木薯基因组DNA[J].中国农学通报.2010(04):30-32.
    106.颜廷进,李群,公茂洪.作物种子纯度鉴定技术的研究现状[J].种子世界.1999(03):16-17.
    107.杨飞,张敏,彭兴扬,等.金银花五个品系的RAPD分析及DNA指纹图谱的建立[J].武汉植物学研究.2007(03):235-238.
    108.翟文强,田清震,贾继增,等.哈密瓜杂交种纯度的AFLP指纹鉴定[J].园艺学报.2002(06):587-586.
    109.张春庆,尹燕枰,高荣岐,等.棉花种子蛋白多态性与品种鉴定方法的研究[J].中国农业科学.1998(04):16-19.
    110.张晗,沙伟.RAPD技术在遗传多样性研究中的应用[J].贵州科学.2003(03):81-85.
    111.张慧.大白菜细胞核雄性不育基因的分子标记及定位[博士]:中国农业科学院;2010.
    112.张金霞,黄晨阳,管桂萍,等.白黄侧耳Pleurotuscornucopiae微卫星间区(ISSR)分析[J].菌物学报.2007(01):115-121.
    113.张金渝,张建华,杨晓洪,等.玉米DUS测试标准品种的SSR分子指纹图谱的构建[J].玉米科学.2006(04):47-52.
    114.张明永,孙彩云,梁承邺.一步法提取植物DNA用于大规模RAPD分析[J].遗传.2000(02):106.
    115.张万菊,何静,管文采,等.多重PCR检测方法和液态芯片技术在呼吸道病毒检测中的应用研究.新发和再发传染病防治热点研讨会.中国广东珠海2011.2.
    116.张肖娟,孙振元.植物新品种保护与DUS测试的发展现状[J].林业科学研究.2011,24(02):247-252.
    117.张晓科.中国小麦矮秆基因和春化基因分布及小麦品质相关性状多重PCR体系建立[博士后]:中国农业科学院;2007.
    118.张晓科,夏先春,王忠伟,等.小麦品质性状分子标记多重PCR体系的建立[J].作物学报.2007(10):1703-1710.
    119.张义君,周琦霞.苯酚染色法鉴定小麦品种纯度的研究[J].种子.1987(05):22-24.
    120.赵丽萍,柳李旺,龚义勤,等.萝卜品种指纹图谱SRAP与AFLP分析(英文)[J].植物研究.2007,120(06):687-693+714.
    121.赵培,王振英,彭永康.琼脂糖和聚丙烯酰胺凝胶电泳技术检测小麦基因组DNARAPD扩增产物的方法学比较[J].中国生物工程杂志.2003(08):96-100.
    122.赵伟,邵景侠,张改生.麦醇溶蛋白电泳技术在杂交小麦种子纯度鉴定中的应用[J].麦类作物学报.2007No.154(02):223-225+330.
    123.赵耀,刘康,李仕钦,等.种子质量检测工作的思考与体会[J].中国种业.2011(06):42-43.
    124.郑文寅,朱宗河,姚大年,等.蛋白质电泳技术及在杂交油菜种子纯度鉴定中的应用[J].安徽农业科学.2007(36):11768-11769.
    125.朱飞雪,杜建材,王照兰,等.五种不同苜蓿的种子蛋白指纹图谱研究[J].中国草地学报.2007(05):1-7.
    126.庄杰云,施勇烽,应杰政,等.中国主栽水稻品种微卫星标记数据库的初步构建[J].中国水稻科学.2006(05):460-468.
    127.Abbasi Z, Arzani A, Majidi M, et al. Assessment of genetic diversity by SSR markersin sugar beet in the context of breeding for salt tolerance [J].
    128.Barzen E, Mechelke W, Ritter E, et al. An extended map of the sugar beet genomecontaining RFLP and RAPD loci[J].TAG.1995,90(2):189-193.
    129.Barzen E, Mechelke W, Ritter E, et al. RFLP markers for sugar beet breeding:chromosomal linkage maps and location of major genes for rhizomania resistance,monogermy and hypocotyl colour[J].The Plant Journal.2005,2(4):601-611.
    130.Botstein D, White RL, Skolnick M, et al. Construction of a genetic linkage map inman using restriction fragment length polymorphisms[J].American journal of humangenetics.1980,32(3):314.
    131.Chamberlain JS, Gibbs RA, Rainer JE, et al. Deletion screening of the Duchennemuscular dystrophy locus via multiplex DNA amplification[J].Nucleic acidsresearch.1988,16(23):11141-11156.
    132.Choudhury PR, Kohli S, Srinivasan K, et al. Identification and classification ofaromatic rices based on DNA fingerprinting[J].Euphytica.2001,118(3):243-251.
    133.Cureton A, Burns M, Ford‐Lloyd B, et al. Development of simple sequence repeat (SSR)markers for the assessment of gene flow between sea beet (Beta vulgaris ssp. maritima)populations[J].Molecular Ecology Notes.2002,2(4):402-403.
    134.Desplanque B, Boudry P, Broomberg K, et al. Genetic diversity and gene flow betweenwild, cultivated and weedy forms of Beta vulgaris L.(Chenopodiaceae), assessed byRFLP and microsatellite markers[J].TAG Theoretical and AppliedGenetics.1999,98(8):1194-1201.
    135.Draycott P. Sugar beet. World Agriculture Series: Blackwell Pub.;2006.
    136.Gidner S, Lennefors B-L, Nilsson N-O, et al. QTL mapping of BNYVV resistance fromthe WB41source in sugar beet[J].Genome.2005,48(2):279-285.
    137.Grimmer M, Bean KM, Asher MJ. Mapping of five resistance genes to sugar-beet powderymildew using AFLP and anchored SNP markers[J].TAG Theoretical and AppliedGenetics.2007,115(1):67-75.
    138.Grimmer M, Trybush S, Hanley S, et al. An anchored linkage map for sugar beet basedon AFLP, SNP and RAPD markers and QTL mapping of a new source of resistance to Beetnecrotic yellow vein virus[J].TAG.2007,114(7):1151-1160.
    139.Gupta P, Rustgi S, Sharma S, et al. Transferable EST-SSR markers for the study ofpolymorphism and genetic diversity in bread wheat[J].Molecular Genetics andGenomics.2003,270(4):315-323.
    140.Halldén C, Hjerdin A, Rading I, et al. A high density RFLP linkage map of sugarbeet[J].Genome.1996,39(4):634-645.
    141.Hao Q, Liu ZA, Shu QY, et al. Studies on Paeonia cultivars and hybrids identificationbased on SRAP analysis[J].Hereditas.2008,145(1):38-47.
    142.Jia X-P, Shi Y-S, Song Y-C, et al. Development of EST-SSR in foxtail millet (Setariaitalica)[J].Genetic Resources and Crop Evolution.2007,54(2):233-236.
    143.Jones C, Edwards K, Castaglione S, et al. Reproducibility testing of RAPD, AFLP andSSR markers in plants by a network of European laboratories[J].Molecularbreeding.1997,3(5):381-390.
    144.Koller B, Lehmann A, McDermott J, et al. Identification of apple cultivars usingRAPD markers[J].Theoretical and Applied Genetics.1993,85(6-7):901-904.
    145.Laurent V, Devaux P, Thiel T, et al. Comparative effectiveness of sugar beetmicrosatellite markers isolated from genomic libraries and GenBank ESTs to map thesugar beet genome[J].TAG Theoretical and applied genetics Theoretische undangewandte Genetik.2007,115(6):793-805.
    146.Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker systembased on a simple PCR reaction: its application to mapping and gene tagging inBrassica[J].TAG Theoretical and Applied Genetics.2001,103(2):455-461.
    147.Li J, Schulz B, Stich B. Population structure and genetic diversity in elite sugarbeet germplasm investigated with SSR markers[J].Euphytica.2010,175(1):35-42.
    148.Lin J-J, Kuo J, Ma J, et al. Identification of molecular markers in soybean comparingRFLP, RAPD and AFLP DNA mapping techniques[J].Plant Molecular BiologyReporter.1996,14(2):156-169.
    149.Liu L-W, Zhao L-P, Gong Y-Q, et al. DNA fingerprinting and genetic diversity analysisof late-bolting radish cultivars with RAPD, ISSR and SRAP markers[J].Scientiahorticulturae.2008,116(3):240-247.
    150.LOH JP, KIEW R, KEE A, et al. Amplified fragment length polymorphism (AFLP) providesmolecular markers for the identification of Caladium bicolor cultivars[J].Annalsof Botany.1999,84(2):155-161.
    151.M hring S, Salamini F, Schneider K. Multiplexed, linkage group-specific SNP markersets for rapid genetic mapping and fingerprinting of sugar beet (Beta vulgarisL.)[J].Molecular Breeding.2005,14(4):475-488.
    152.M rchen M, Cuguen J, Michaelis G, et al. Abundance and length polymorphism ofmicrosatellite repeats in Beta vulgaris L[J].TAG Theoretical and AppliedGenetics.1996,92(3):326-333.
    153.McGregor C, Lambert C, Greyling M, et al. A comparative assessment of DNAfingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanumtuberosum L.) germplasm[J].Euphytica.2000,113(2):135-144.
    154.McGregor C, Lambert C, Greyling M, et al. A comparative assessment of DNAfingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanumtuberosum L.) germplasm[J].Euphytica.2000,113(2):135-144.
    155.Messeguer R, Arus P, Carrera M. Identification of peach cultivars with pollenisozymes[J].Scientia horticulturae.1987,31(1):107-117.
    156.Munthali M, Newbury H, Ford-Lloyd B. The detection of somaclonal variants of beetusing RAPD[J].Plant cell reports.1996,15(7):474-478.
    157.N.Nagl, J.Weiland, R.Lewellen. Detection of DNA Polymorphism in Sugar Beet Bulksby SRAP and RAPD Markers.第二届植物分子育种国际会议.中国海南三亚2007.2.
    158.Nilsson NO, Hansen M, Panagopoulos A, et al. QTL analysis of Cercospora leaf spotresistance in sugar beet[J].Plant breeding.2008,118(4):327-334.
    159.Nybom H, Hall HK. Minisatellite DNA ‘fingerprints’ can distinguish Rubus cultivarsand estimate their degree of relatedness[J].Euphytica.1991,(2).
    160.Oraguzie NC, Gardiner SE, Basset HC, et al. Genetic diversity and relationships inMalus sp. germplasm collections as determined by randomly amplified polymorphicDNA[J].Journal of the American Society for HorticulturalScience.2001,126(3):318-328.
    161.Prevost A, Wilkinson M. A new system of comparing PCR primers applied to ISSRfingerprinting of potato cultivars[J].Theoretical and AppliedGenetics.1999,98(1):107-112.
    162.Qureshi SN, Saha S, Kantety RV, et al. EST-SSR: a new class of genetic markers incotton[J].2004.
    163.Rae S, Aldam C, Dominguez I, et al. Development and incorporation of microsatellitemarkers into the linkage map of sugar beet (Beta vulgaris spp.)[J].TAG Theoreticaland Applied Genetics.2000,100(8):1240-1248.
    164.Richards CM, Brownson M, Mitchell SE, et al. Polymorphic microsatellite markers forinferring diversity in wild and domesticated sugar beet (Beta vulgaris)[J].MolecularEcology Notes.2004,4(2):243-245.
    165.Rongwen J, Akkaya M, Bhagwat A, et al. The use of microsatellite DNA markers forsoybean genotype identification[J].Theoretical and AppliedGenetics.1995,90(1):43-48.
    166.Russell BL, Rathinasabapathi B, Hanson AD. Osmotic stress induces expression ofcholine monooxygenase in sugar beet and amaranth[J].Plantphysiology.1998,116(2):859-865.
    167.Schmidt T, Heslop-Harrison J. The physical and genomic organization ofmicrosatellites in sugar beet[J].Proceedings of the National Academy ofSciences.1996,93(16):8761.
    168.Schondelmaier J, Steinr cken G, Jung C. Integration of AFLP markers into a linkagemap of sugar beet (Beta vulgaris L.)[J].Plant breeding.1996,115(4):231-237..
    169.Simpson DAC, Feeney S, Boyle C, et al. Technical Brief: Retinal VEGF mRNA Measuredby SYBR Green I Fluorescence: A Versatile Approach to Quantitative PCR[J].MolVis.20006:178-183.
    170.Sehgal D, Raina SN. Genotyping safflower (Carthamus tinctorius) cultivars by DNAfingerprints[J].Euphytica.2005,(1-2).
    171.Sharon D, Adato A, Mhameed S, et al. DNA fingerprints in plants using simple-sequencerepeat and minisatellite probes[J].HortScience.1995,30(1):109-112.
    172.Smulders MJ, Esselink GD, Everaert I, et al. Characterisation of sugar beet (Betavulgaris L. ssp. vulgaris) varieties using microsatellite markers[J].BMCgenetics.2010,11:41.
    173.Tancred S, Zeppa A, Graham G. The use of the PCR-RAPD technique in improving theplant variety rights description of a new Queensland apple (Malus domestica)cultivar[J].Animal Production Science.1994,34(5):665-667.
    174.Tenaillon MI, Sawkins MC, Long AD, et al. Patterns of DNA sequence polymorphism alongchromosome1of maize (Zea mays ssp. mays L.)[J].Proceedings of the National Academyof Sciences.2001,98(16):9161-9166.
    175.Trujillo I, Rallo L, Ar s P. Identifying olive cultivars by isozymeanalysis[J].Journal of the American Society for HorticulturalScience.1995,120(2):318-324.
    176.Uphoff H, Wricke G. A genetic map of sugar beet (Beta vulgaris) based on RAPDmarkers[J].Plant breeding.1995,114(4):355-357.
    177.Viard F, Bernard J, Desplanque B. Crop-weed interactions in the Beta vulgaris complexat a local scale: allelic diversity and gene flow within sugar beet fields[J].TAGTheoretical and Applied Genetics.2002,104(4):688-697.
    178.Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNAfingerprinting[J].Nucleic acids research.1995,23(21):4407-4414.
    179.W nsch A, Hormaza J. Cultivar identification and genetic fingerprinting of temperatefruit tree species using DNA markers[J].Euphytica.2002,125(1):59-67.
    180.Williams JG, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitraryprimers are useful as genetic markers[J].Nucleic acidsresearch.1990,18(22):6531-6535.
    181.Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification[J].Genomics.1994,20(2):176-183.
    182.Zipper H, Brunner H, Bernhagen J, et al. Investigations on DNA intercalation andsurface binding by SYBR Green I, its structure determination and methodologicalimplications[J].Nucleic acids research.2004,32(12):e103-e103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700