用户名: 密码: 验证码:
分子烙印及相关技术分离分析那格列奈和氨基安替比林
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子烙印以其良好的专一性和卓越的分子识别能力可用于高效液相色谱(HPLC)、毛细管电色谱(CEC)和薄层色谱(TLC)的固定相,固相萃取(SPE)等许多方面。那格列奈为新型抗糖尿病新药,关于其质量的分析测定极其重要。全文共分四章,分别介绍了分子烙印技术的发展概况、分子烙印技术在药物分析中应用以及那格列奈的液相色谱分析。
     第一章:介绍了分子烙印技术的基本知识和发展状况以及在药物分析中的应用。
     第二章:以甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,合成了一种氨基安替比林分子烙印聚合物。将所得聚合物用作高效液相色谱的固定相,研究了对结构类似物氨基安替比林和氨基比林的拆分能力。分析结果表明,在以甲醇:异丙醇=2:8的条件下两种结构类似物可以得到基线分离,实验还发现在以100%异丙醇为流动相时只有氨基比林被洗脱出来,而模板分子氨基安替比林完全被保留在色谱柱上。
     第三章:建立了一种抗糖尿病新药那格列奈的高效液相色谱(HPLC)手性拆分的新方法。D,L-那格列奈在sumichiral OA-3300色谱柱上实现了分离。试验证明那格列奈的最佳拆分条件为0.0025 mol/L NH_4AC甲醇溶液,紫外检测波长为210nm。在此条件下,那格列奈在12min内实现了基线分离,D-那格列奈的检测限为80pg,L-那格列奈的检测限为120pg。
     第四章:建立了反相高效液相色谱法测定国家二类新药那格列奈溶出度的方法。色谱条件为:色谱柱,JASCO-ODS柱;流动相,乙腈—甲醇—磷酸二氢铵(0.1mol/L)=5:2:4(以磷酸调节pH至3.0);检测波长为210 nm;30 min内平均溶出度为99.9%。通过与进口药片对比结果显示,那格列奈的溶出度与进口片的溶出度差别不大,且不同批号之间无明显差异,稳定性较好。
Molecular imprinting polymer (MIP) has draw increasing attention in recent years. Because of its higher molecular recognition ability and stability than that of biological molecules. MIP has been used in a wide rang of applications, such as chiral separartion, solid phase extraction, sensor, immuno-analysis and has become an effective strategy to prepare stationary phase of HPLC having a specific molecular recognition. In this thesis, four chapters are consisted, the technological and development of MIP, the application of MIP in Pharmaceuticals, the chiral separation of Nateglinide and the determination of degree of stripping of Nateglinide by reverse phase high performance liquid chromatography.
    Chapter one: it is an introduction of the basic knowledge of molecular imprinting and its application in pharmaceutical analysis.
    Chapter two: A synthetic polymer selector for aminoantipyrine is prepared by molecular imprinting technology. Methacrylic acid and ethylene glycol dimethacrylate are copolymerised in the presence of the template aminoantipyrine. The template is extracted from the polymer leaving specific recognition sites, complementary to the template. The polymer is utilized as a stationary phase in HPLC. The mixture of the two close analogues, aminoantipyrine and aminopyrine, can be baseline separated when the mobile solution is composed of methanol: isopropanol = 2: 8. When the concentration of isopropanol is 100%, only aminopyrine is eluted and the aminoantipyrine is completely reserved by the column.
    Chapter three: A high-performance liquid chromatographic method was developed for separation of a new anti-diabetic agent, N-(trans-4-isopropylcyclohexylcarbonyl)--D-phenyl- alanine, and its L-enantiomer. The separtion was performed on a Sumichiral OA-3300 column. Optimized mobile phase was 0.025 mol/L ammoniumacetate in methanol solution. UV detection was at 210nm. Baseline chiral separation was obtained within 12 minutes. The detection limits are 80 pg for D-enantiomer and 120 pg for the L-enantiomer. RSD of the method was below l%(n=5).
    Chapter four: A method of determination of degree of stripping(%) of Nateglinide by HPLC was developed. The chromatography conditions were as follows: column, JASCO-ODS; mobile phase, acetonitrile -methanol - NH4H2PO4(0.1 mol/1) =5:2:4(adjusted to pH 3.0 with phosphoric acid ), flow rate, 1 mL/min; detection
    
    
    
    wavelength, 210 nm; temperature, room temperature. The degree of stripping(%) of Nateglinide was 99.9% by this method in 30 minutes.
引文
[1] Andersson, LI., B. Ekberg, and K. Mosbach. Bioseparation and catalysis in molecularly imprinted polymers. In molecular interactions in bioseparations[M].Edited by T. Ngo. New York: Plenum Press. 1993.383-394.
    [2] Michael J. Whitecome, M. Esther Rodrigue, Pablo Villar, et al. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol[J]. J Am Chem Soc, 1995,117,7105-7111.
    [3] Maria Kempe. Antiboty-mimicking polymers as chiral stationary phases in HPLC[J]. Anal Chem, 1996,68,1948-1953.
    [4] Irene Idziak, Amina Benrebouh. A molecularly imprinted polymer for 17α-ethynlestradiol evaluated by immunoassay[J]. Analyst, 2000,125,1415-1417.
    [5] Richard J, Ansell, Klaus Mosbach. Molecularly imprinted polymers by suspension polymerisaton in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent[J]. J Chromatography A, 1997,787,55-66.
    [6] Maria Kempe, Klaus Mosbach. Direct resolution of naproxen on a non-covalently molecularly imprinted chiral stationary phase[J]. J Chromatography A, 1994,664,276-279.
    [7] 王进防,周良模,猛子晖,等。复合碱性功能单体分子烙印手性固定相[J]。化学学报,1999,57,1147-1151。
    [8] 猛子晖,周良模,王进防,等。复合作用分子烙印手性色谱固定相[J]。分析化学,1998,26(10),1251-1253。
    [9] Patrick T. Vallano, Vincent T. Remcho. Affinity screening by packed
    
    capillary high-performance liquid chromatography using molecular imprinted sorbents Ⅰ. Demonstration of feasibility[J]. J Chromatography A, 2000,888,23-34.
    [10] Leif Schweitz, Lars I. Andersson, Staffan Nilsson. Capillary electrochromatography with molecular imprinted-based selectivity for enantiomer separation of local anaesthetics[J]. J Chromatography A, 1997,792,401-409.
    [11] Leif Schweitz, Lars I. Andersson, Staffan Nilsson. Capillary electrochromatography with predeterminted selectivity obtained through molecular imprinting[J]. Anal Chem, 1997,69, 1179-1183.
    [12] Leif Schweitz, Lars I. Andersson, Staffan Nilsson. Molecularly imprinted microparticles for capillary electromatographic enantiomer separation of propranolol[J]. Analyst, 2000,125, 1899-1901.
    [13] Lars I. Andersson. Efficient sample pre-concentriation of bupivacaine from human plasma by solid-phase extraction on molecularly imprinted polymers[J]. Analyst, 2000,125,1515-1517.
    [14] 刘勤,周永新,猛子晖,等。分子烙印固相萃取-毛细管电泳法分析大米中的神经性毒剂降解产物[J].分析化学,2001,29(4),387-390.
    [15] Tatiana A. Sergeyeva, Heike Matuschewski, Sergiy A. Piletsky, et al. Molecularly imprinted polymer membranes for substance-selecttive solid-phase extraction from water by sufance photo-grafting polymerization[J]. J Chromatography A, 2001,907,89-99.
    [16] 猛子晖,王进防,周良模,等.球型分子烙印聚合物分离立体异构体[J].色谱,1999,17(4),323-325.
    [17] 周杰,王善伟,何锡文,等.原位分子印迹法制备的连续棒型模板聚合物的手性识别[J].分析化学,2000,28(3),296-299.
    [18] 郭洪声,何锡文,周杰,等.药物氟哌酸分子模板聚合物的分子识别特性[J].分析化学,2001,29(2),128-132.
    [19] 郭洪声,贾裕梅,何锡文,等.微球型4-氨基吡啶分子模板聚合物的合成及
    
    结合性质研究[J].高等学校化学学报,2001,22(3),371-375.
    [20] 郭洪声,何锡文,景莹,等.4-氨基吡啶分子模板聚合物选择性识别及结合性质的研究[J].高等学校化学学报,2001,22(5),739-743.
    [21] Kazuyoshi Yano, Koichiro Tanaba, Toshifumi Takeuchi, et al. Molecularly imprinted polymers which mimic multiple hydrogen bonds between nucleotide bases[J]. Analytica Chimica Acta, 1998,363,111-117.
    [22] Wen Chen, Feng Liu, Ke An Li, et al. Molecular recognition of procainamide-imprinted polymer[J]. Analytiea Chimica Acta, 2001,432,277-282.
    [23] Kurt Nilsson, Johan Lindell, Olof Norrlow, et al. Imprinted polymers as antibody mimetics and new affinity gels for selective separations in capillary electrophoresis[J]. J Chromatography A, 1994,680,57-61.
    [24] Hui Peng, Chengdu Liang, Deliang He, et al. Non-aqueous assay system for Phenobarbital using biomimetic bulk acoustic wave sensor band on a molecularly imprinted polymer[J]. Analytical Letters, 2000,33(5),793-808.
    [25] Wen Chen, Feng Liu, Ke-An Li, et al. A hydrochlorothiazide-imprinted polymer[J]. Analytical Letters, 2000,33(5),809-818.
    [26] Borje Sellergren. Direct drug determination by selective sample enrichment on an imprinted polymer[J]. Anal Chem, 1994,66,1578-1582.
    [27] Sean D. Plunkett, Frances H. Arnold. Molecularly imprinted polymers on silica: selective supports for high-performance ligand-excnange chromatography[J]. J Chromatography A, 1995,708,19-29.
    [28] Sundaresan Vidyasankar, Michael Ru, Frances H. Arnold. Molecularly imprinted ligand-exchanged adsorbents for the chiral separation of underivatized amino acid[J]. J Chromatography A, 1997,775,51-63.
    [29] 孟子晖,王进防,周良模,等。分子烙印技术进展[J].化学进展,1999,11(4),358-366.
    [30] 应太林,高孟娇,张晓岚。一种具有高度选择性的技术—分子烙印[J].分
    
    析化学,2001,29(1),99-102.
    [31] Sanku Mallik, Robert D. Johnson, Frances H. Arnold. Synthetic his-metal ion receptor forbis-imidazole "Protein Analogs" [J]. J Am Chem Soc, 1994,116,8902-8911.
    [32] Cong Yu, Klaus Mosbach. Molcular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymer[J]. J Org Chem, 1997,62,4057-4064.
    [33] S. Rimmer. Sysnthesis of molecular imprinted polymer networks[J]. Chromatography, 1998, 46(7/8),470-474.
    [34] Ken Hosoya, Yuichi Shirasu, Kazuhiro Kimata, et al. Molecularly imprinted chiral stationary phase prepared with racemic template[J]. Anal Chem, 1998,70,943-945.
    [35] Borje Sellergren. Imprinted chiral stationary phases in high-performance liquid chromatography[J]. J Chromatography A, 2001,906,227-252.
    [36] Borje Sellergren, Kenneth J, Shea. Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers[J]. J Chromatography, 1993,635:31-49.
    [37] Borje Sellergren, Kenneth J. Shea. Origin of peak asymmetry and the effect of temperature on solute retention in enantiomer separations on imprinted chiral stationary phase[J]. J Chromatography A, 1995,600:29-39.
    [38] Peter Sajonz, Borje Sellergren, Georges Guiochon, et al. Study of the themodynamics and mass transfer Kinetics of two enantiomers on a polymeric imprinted ststionary phase[J]. J Chromatography A, 1998,810:1-17.
    [39] F. Lanza. B. Sellergren. Method for automated synthesis and screening of large groups of MIPs. [J] Anal Chem, 1999,71,2902.
    [40] Ken Hosoya, Kimihiro Yoshzako, Yuichi Shirasu, et al. Molecularly
    
    imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatograpy Structral contribution of cross-linked polymer network on specific molecular recognition[J]. J chrmomatography A, 1996,728,139-147.
    [41] Karsten Haupt, Klaus Mosbach. Molecularly imprinted polymers and their usse in biomimeic sensors[J]. Chem Rev, 2000,100, 2495-2504.
    [42] matz A, Davis M. E. Molecular imprinting of bulk, micoporous silica[J]. Nature, 2000, 403(6767),286-289.
    [43] Xiao-Chun Liu, Klaus Mosbach. Surface imprinting of RNase B using boronate-carbohydrate interaction[J]. Am. Biotech. lab., 1998,16(10),90.
    [44] Wulff, G. Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates-A Way towards Artificial Antibodies[J]. Angew. Chem. Int. Ed. Engl. 1995.34: 1812-1832.
    [45] Mayes, AG., K. Mosbach. Molecularly Imprinted Polymers: Useful Materials for Analytical Chemistry[J]. Trends Anal. Chem. 1997 16(6): 321-332.
    [46] Sellergren, B. Noncovalent Molecular Imprinting: Antibody-Like Molecular Recognition in Polymeric Network Materials[J]. Trends Anal. Chem. 1997 16 (6):310-320.
    [47] Ansell, RJ., O. Ramstr, K. Mosbach.. Artificial antibodies prepared by molecular imprinting[J]. Clin. Chem. 1995 42(9):1506-1512.
    [48] Kriz, D., O. Ramstr, K. Mosbach. Molecular imprinting New possibilities for sensor technology[J]. Anal. Chem 69(11): 345-A349.
    [49] Sellergren B, Ekberg B, Mosbach K. J. Chromatogr., 1985,347:1.
    [50] Zhang W S, Li W A. Medicinal Chemistry(药物化学), 高等教育出版社, 1999;360
    [51] Goodman-Gilman, A.; Goodman, L.S.; Rall, W.; Murad(eds),F. The
    
    Pharmacological Basis of Therapeutics, McMillen Publishing Co, New York, NY, 1985.
    [52] FDA Policy Statement for the Development of New Stereoisomeric Drugs, Washington KC, May 1992.
    [53] Taylor, D.R.; Maher, K. Chiral separation by high performance liquid chromatography J. Chromatogr. Sci. 1992, 30, 67.
    [54] Lindner, W. Recent development in high performance liquid chromatography enantiomers separation. Chromatographia, 1987, 24, 97.
    [55] White law, D.C.; Clark, P.M.; Smith, J.M.; Nattrass, M. Effects of the new oral hypoglycaemic agent nateglinide on insulin secretion in type 2 diabetes mellitus. Diabetic Med. 2000, 17(3), 225-229.
    [56] Keilson, L.; Mather, S.; Walter, Y.H.; Subramanian, S.; Mcleod, J.F. Synergistic effects of nateglinide and meal administration on inslulin secretion in patients with type 2 diabetes mellitus. J. Clin. Endocrinol, Metab. 2000, 85(3), 1081-1086.
    [57] Yoshikazu, N.; Hiroyui, A., Makoto, I.; Kazutoshi, T.; Kazuo, H.; Shoj T. Yakuri to Chiryo, 1999, 27, 1177.
    [58] Shuzo, O.; Shinichiro, I.; Susumu, Y.; Kazutoshi, T.; Kazuo, H.; Shoji T. Yakuri to Chiryo, 1999, 27, 1205.
    [59] Walle,.; walle, U.K. Trends Phamacol. Sci. 1986, 7, 155.
    [60] Sato, Y.; Nishikawa, M.; Shinkai, H. High performance liquid chromatography method for quantitation of a new antidiabetic agentin plasma[J].J. Liq. Chromatogr. 1988, 11(16), 3425-3433.
    [61] Sato, Y.; Nishikawa, M.; Shinkai, H. Analysis of enantiomers of a new antidiabetic agentin plasma by high performance liquid chromatography[J] J. Liq. Chromatogr. 1989, 12(3), 445-455.
    [62] Nishikawa, M.; Shinkai, H.; Sato, Y. Separation of a new antidiabetic agent N-(trans-4-isopropylcyclo-hexylcarbonyl)-D-phenylalanine and its isomeers by chiral high performance liquid chromagtography[J]
    
    
    [63] Hanefeld Markolf, Bouter, K. Paul, Dickinson, Sheila et al. Rapid and short-acting meatine insulin secretion with nateglinlde controls both prandial and mean glycemia[J]. Diabetes Care, 2000, 23, 2: 202-207.
    [64] 徐楚鸿,吕永宁,王虎.双氯芬酸钠栓溶出度测定方法的研究[J].中国药房,2001,12,7:427—428.
    [65] 王惠珍,郭金凤,鲁云兰等.盐酸氟桂利嗪胶囊与片剂的溶出度测定[J].中国药学杂志,1996,31,10:621—622.
    [66] 童荣生,陈素华,张研林.盐酸环丙沙星片的溶出度测定[J].中国医药工业杂志,1997,28,7:308—309.
    [67] 刁勇.复方氯唑沙宗片含量及溶出度的双波长分光光度测定[J].中国医药工业杂志,1998,29,1:25—27.
    [68] 顾明冬.酸性色素比色法测定盐酸苯环壬酯片的质量分数及溶出度[J].淮海工学院学报,2000,9,4:35—37.
    [69] 姜自彬,魏学彦,袁继民等.复方胶囊中右美沙芬和布洛芬的溶出度测定[J].中国药学工业杂志.2000,31,4:173—175.
    [70] 危华玲,范石林,杨青.阿莫西林胶囊的制备及溶出度研究[J].中国药学工业杂志.2002,33,3:126-127.
    [71] 申文照.制剂的生物利用度和释放度测定[J].中国医药工业杂志,1982,8,34-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700