用户名: 密码: 验证码:
东昆仑造山带(东段)晚古生代-早中生代造山作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东昆仑造山带是一条具有漫长演化历史,由不同期次、不同类型造山作用叠加复合的大陆复合造山带。东昆仑造山带早古生代早期发育有与原特提斯洋相关的洋盆系统,且洋陆构造演化过程完整,而晚古生代-早中生代则又受控于其南缘的古特提斯洋。因此东昆仑东段是一个研究东昆仑造山带形成演化及复合造山作用的得天独厚之区域。本文通过构造地质学、沉积学、岩石学、岩石地球化学、锆石U-Pb同位素年代学及地球物理学相结合的研究方法,对东昆仑造山带(东段)的物质组成、晚古生代-早中生代盆地充填序列、沉积盆地原型、岩浆弧属性、造山带结构构造、造山带晚古生代-中生代构造变形序列进行了详细的野外观测和室内综合研究,在此基础上恢复重建了晚古生代-早中生代洋陆构造演化史并探讨了东昆仑造山带的造山作用过程。取得以下主要进展和认识:
     1、在对东昆仑造山带(东段)晚古生代-早中生代沉积充填序列详细研究基础上,恢复了其盆地原型及盆地演化序列。根据沉积体系的研究,结合东昆仑地区几个重要的角度不整合面及其它区域资料,认为东昆仑地区泥盆纪盆地原型为大陆裂陷盆地,石炭纪-早中二叠世盆地原型为被动大陆边缘浅水盆地,晚二叠世-中三叠世早期盆地原型为弧前盆地,中三叠世晚期—晚三叠世早期盆地原型为类前陆盆地,晚三叠世中晚期盆地原型为背驮盆地,早侏罗世盆地原型为断陷或小型拗陷盆地。横向上,东昆仑-布青山地区石炭纪时期整体是一个北缘发育被动大陆边缘、中南部海山遍布、北浅南深的有限洋盆系统,而东昆仑地区位于布青山-阿尼玛卿古特提斯洋伸展体制下的复杂被动大陆边缘系统的北缘。东昆仑地区晚古生代-早中生代不同时期沉积盆地性质的变化及演化序列特征很好地指示了晚古生代以来与其南缘布青山-阿尼玛卿古特提斯洋密切相关的构造演化历程,对建立东昆仑造山带晚古生代构造演化格架及复合造山作用具有重要意义。
     2、确定了晚二叠世末-早三叠世哈拉尕吐陆缘弧型花岗岩和晚三叠世中期后碰撞型花岗岩。哈拉尕吐花岗岩体主要由花岗闪长岩、二长花岗岩和钾长花岗岩组成,且普遍发育有暗色闪长质包体。岩石成因研究表明,其具有壳幔岩浆先混合再经历分异结晶作用的特征。岩石主量、微量元素特征表明其形成于火山弧或大陆弧构造环境。获得该套陆缘弧花岗岩的形成时限为256~247Ma。哈拉尕吐花岗岩体年代学与构造属性表明南缘布青山-阿尼玛卿古特提斯洋于晚二叠世开始向北俯冲,晚二叠世末-早三叠世为强烈俯冲期,并且俯冲极性为由南向北。和勒岗希里可特花岗岩体主要由花岗闪长岩组成,岩体含有较多暗色闪长质包体。岩石地球化学特征和其它多种地质证据一致表明其形成于后碰撞构造环境,岩体的形成与陆陆碰撞后深部俯冲板片断离有关。获得和勒岗希里可特花岗岩体LA-ICP-MS锆石U-Pb年龄为225Ma,属于晚三叠世中期。和勒岗希里可特后碰撞型花岗岩的厘定为东昆仑地区晚三叠世中期进入后碰撞阶段提供较好的约束。
     3、根据东昆仑地区现今构造变形特征及相关构造要素的统计分析,结合区域不整合面特征,按构造变形样式及变形组合差异,把东昆仑造山带晚古生代-中生代地层划分为三大构造层,并筛分出四期构造变形序列。第一期构造变形以俯冲阶段的地壳浅部构造层次褶皱变形为特征,且褶皱形态相对较宽缓。第二期构造变形以地壳浅部构造层次的紧闭褶皱为特征,并伴随有逆冲断裂构造,该期变形与中三叠世晚期-晚三叠世早期陆陆碰撞造山相关。第三期变形主要是陆内造山的产物,主要构造变形样式为上构造层的宽缓等厚褶皱及逆冲推覆构造。第四期构造变形以地壳表部构造层次的脆性断裂构造为特征,该期变形与新生代以来青藏高原不均匀隆升及其向东侧向挤出逃逸密切相关。
     4、通过对东昆仑(东段)晚古生代以来不同地史时期盆地沉积充填序列、盆地原型、造山作用构造岩浆响应、构造变形序列等特点综合研究,认为研究区晚古生代-早中生代遭受了同一构造旋回多期不同类型造山作用的改造,分别为晚二叠世-中三叠世早期俯冲造山作用、中三叠世晚期-晚三叠世早期碰撞造山作用、晚三叠世中晚期后碰撞造山、中晚侏罗世陆内造山作用。其中,碰撞造山作用是东昆仑地区晚古生代以来最强烈的一次造山运动,强度之大,波及面之广,铸就了东昆仑及周缘地区的主导构造格架。
     5、东昆仑地区在新元古代晚期-早寒武世发育以清水泉蛇绿岩、乌妥蛇绿岩和科科可特镁铁-超镁铁质岩等为代表的(小)洋盆系统。早中寒武世以来,洋壳开始发生复杂的俯冲作用及后续的碰撞造山作用,形成了东昆仑地区大致以490~411Ma为峰值的弧花岗岩和碰撞型花岗岩,并于晚志留世进入后造山阶段。至此已基本奠定了东昆仑地区早古生代末期的主要构造格架。换言之,东昆仑造山带新元古代晚期-早古生代洋陆构造演化过程完整齐备,自成体系,构成一个独立的构造旋回。晚古生代以来,东昆仑地区在古中元古代造山带结晶基底与加里东造山作用形成的浅变质褶皱基底的基础上再次拉张裂解,转变为与其南缘布青山-阿尼玛卿古特提斯洋洋陆演化息息相关的构造演化阶段。之后,复合叠置有晚二叠世-中三叠世早期俯冲造山作用,中三叠世晚期-晚三叠世早期碰撞造山作用,晚三叠世中晚期后碰撞造山及中晚侏罗世陆内造山作用,终究铸成东昆仑造山带现今的主体构造格架。简而言之,东昆仑造山带是一个具有漫长演化历史、以加里东期造山作用为主造山期、多期次、多类型造山作用复合叠加的大陆复合造山带,对探讨造山带的复合造山机制及造山动力学等问题具有重要的理论价值。
East Kunlun Orogen is a compound orogenic belt having a long geologicalhistory, overprinted by different orogenic phase and different type orogeny. Theirdeveloped an ocean system relating to Prototethys Ocean and its evolution process isintact, and is controlled by the Paletethys Ocean lying in the southern margin of theEast Kunlun tectonic belt in late Paleozoic-Mesozoic. Thus, East Kunlun Mountain isa unique area in which we can detaidly study the compound orogeny and formationevolution. This thesis mainly focus on the composition, sedimentary filling sequences,basin protype, magmatic arc attribute, structure of orogenic belt, tectonic deformationcharacteristics with comprehensive research of structure, sedimentary, petrology,zircon U-Pb geochronology and geophysics, on basis of which we rebuild theevolution history in late Paleozoic-early Mesozoic and discuss the orogenic process.Until now, some new points have been achieved as follows:
     1、On the basis of depositional filling sequence of East Kunlun orogen(easternsegment) in late Paleozoic-early Mesozoic, this thesis restore the basin protype andevolution sequence. According to the results of basin depositional system, combiningseveral important unconformity and other regional geological data, we realized thatthe protype basins are faulted basin developed on the Palo-continent in Devonian,shallow-water basin developed on the continental margin in Carboniferous toearly-middle Permian, forarc basin in late Permian to middle Triassic, forland basin inlate Triassic and fault basin in early Jurassic, respectively in East Kunlun area. EastKunlun is located in the passive continental margin, as Buqingshan location in thelimited ocean basin in the south of which developed some seamounts. In other words,the passive continental margin system indicated by the depositional characteristic ofEast Kun area formed in the background of the Paleotethys Ocean extension regime.East Kunlun orogen evoluted passively with the Buqingshan-Anemaqen Ocean, thisconclusion is significant to reconstruct the late Paleozoic framework and study thecompound orogeny of East Kunlun Orogen.
     2、Halagatu granite in eastern segment of East Kunlun Orogen consists of granodiorite, monzonitic granite, potassium granite, with large quantities of dioriticenclaves in general. The major element and rare element characteristics show that itwas formed in volcanic arc or continental arc setting. The granite intruded in thePrecambrian strata between256Ma and247Ma in age. The chronology andgeochemical characteristic indicated that Buqingshan-Anemaqen Paleotethys Oceanbegan to subduct in late Permian, and the polarity of subduction is northward.Helegangxilikete granite mainly consists of granodiorite with many dioritic enclaves.The geochemical feature and the other geological data prove that the granite formedin post-collision setting, and the petrogenesis is related to the breakoff of subductioncrust. It is obtained that the granite age is225Ma, belong to middle stage of lateTriassic. The ascertainment of Helegangxilikete granite can provide new constraint topost-collision orogeny in middle stage of late Triassic.
     3、According to the tectonic deformation feature, statistic results of someattitudes, regional unconformity, and difference deformation style, the latePaleozoic-early Mesozoic strata were divided into three important tectonic layer andfour tectonic deformation sequence. The first phase of deformation is characterized byfold deformation in the shallow tectonic level of the earth's crust in subduction stage,and the fold style is relatively wide. The second phase of tectonic deformation ischaracterized by tight fold accompanying the fault structure in the shallow tectoniclevel, and this deformation is related to the collision orogen in the late stage of middleTriassic to early stage of late Triassic. The third phase of deformation is characterizedby wide fold and thrust structure in upper tectonic level of crust, and closely related tothe intro-continent orogeny. The fourth phase of deformation is characterized bycrritle fault in surface-seated tectonic level, closely related to the inhomogeneousuplift of Qing-tibet plateau and eastward lateral extrusion escape in Cenozoic.
     4、 By comprehensive research of basin filling sequence, basin protype,magmatic response to orogeny, tectonic deformation sequence, we draw a preliminaryconclusion that East Kunlun Orogen suffered several tectonic movement in latePaleozoic-early Mesozoic, i.e, subduction orogeny in late Permian to middle Triassic,collision orogeny in middle Triassic to early stage of late Triassic, post collision in middle-late Triassic, intro-continent orogeny in late-middle Jurassic, in which thecollision orogeny is the most strongly tectonic movement forming the main tectonicframework in East Kunlun and adjacent area.
     5、 East Kunlun developed a small Ocean basin system represented byQingshuiquan ophiolite, Wutuo ophiolite, and Kekekete mafic-ultramafic rocks in latestage of Neoproterozoic to early Cambrian. From middle Cambrian on, the oceaniccrust began to subduct and collide followly, and produced some arc magmatic granitesand collision-type granites with the peak time being490~411Ma. It is concludes thatthe post-collision event taken place in the late Silurian in which the main tectonicframework formed. From late Paleozoic on, East Kunlun began to breakup on thebasis of early-middle Proterozoic crystalline basement and metamorphic foldbasement formed by Caledonian orogen, and turned into another tectonic evolutionstage related to Buqingshan-Anemaqen Paleotethys Ocean closely. Subductionorogeny in late Permian to middle Triassic, collision orogeny in middle Triassic toearly stage of late Triassic, collision orogeny in middle-late Triassic, intro-continentorogeny in late-middle Jurassic followly overprinted on the Pre-Caledonian orogeny,and form the present main tectonic framework. In a word, East Kunlun Orogen is acontinental compound orogenic belt having a long geological history, overprinted bydifferent orogenic phase and different type orogeny. So research on these issues inEast Kunlun has important theoretical value and actual significance to discuss thecompound orogenic regime and orogenic dynamics.
引文
[1] Hyndman R D, Currie C A and Mazzotti S P. Subduction zone lackarcs, mobilebelts, and orogenic belt[J].GSA Today,2005,15(2):4-10
    [2]许志琴,李延栋,杨经绥,等.大陆动力学的过去,现在和未来-理论与应用[J].岩石学报,2008,24(7):1433-1444
    [3]姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M].北京:地质出版社,1992:58-100
    [4]姜春发,王宗起,李锦轶.中央造山带开合构造[M].北京:地质出版社,2000:1-100
    [5]姜春发.中央造山带几个重要地质问题及其研究进展(代序)[J].地质通报,2002,(增刊):1-3
    [6]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001,1-855
    [7]许志琴.青藏高原大陆动力学[M].北京:地质出版社,2006
    [8]杨经绥,许志琴,马昌前,等.复合造山作用和中国中央造山带的科学问题[J].中国地质,2010,37(1):1-10
    [9]滕吉文,杨辉,张雪梅.中国地球动力学研究的方向和任务[J].岩石学报,2010,26(11):3159-3176
    [10]张国伟,董云鹏,姚安平.关于中国大陆动力学与造山带研究的几点思考[J].2002,29(1):7-13
    [11]张国伟,董云鹏,赖绍聪,等.秦岭-大别造山带南缘勉略构造带与勉略缝合带[J].中国科学(D辑):地球科学,2003,(12):1121-1135
    [12]张国伟,程顺有,郭安林,等.秦岭-大别中央造山系南缘勉略古缝合带的再认识-兼论中国大陆主体的拼合[J].地质通报,2004,23(Z2):27-34
    [13]万天丰.关于中国构造地质学研究中几个问题的探讨[J].地质通报,2008,27(9):1441-1450
    [14]莫宣学.岩浆作用与青藏高原演化[J].高校地质学报,2011,17(3):351-367
    [15]王德滋,周新民.中国东南部晚中生代花岗质火山—侵入杂岩成因与地壳演化[M].北京:科学出版社,2002
    [16]王德滋,舒良树.花岗岩构造岩浆组合[J].高校地质学报,2007,13(3):362-370
    [17] Pitcher W S.The nature and Origin of granite[J].London,1997
    [18]肖庆辉,邱瑞照,邢作云,等.花岗岩成因研究前沿的认识.地质论评,2007,53(增刊):17-27
    [19]肖庆辉,邓晋福,莫宣学,等.中国花岗岩重大基础问题研究[A].见:肖庆辉等.花岗岩研究思维与方法[M].北京,地质出版社,2009:276-294
    [20]邓晋福,赵海玲,莫宣学,等.中国大陆根柱构造―大陆动力学的钥匙
    [M].北京:地质出版社,1996,110
    [21]邓晋福,罗照华,苏尚国.岩石成因,构造环境与成矿作用[M].北京:地质出版社,2004,1-381
    [22] Collins W J.Evolution of petrogenetic models for Lachlan Fold Belt granitoids:implications for crustal architecture and tectonic models[J].Australian Journalof Earth Sciences,1998,45:483-500
    [23] Castro A,Patino Douce A E,Correge L G,et al.Origin of peraluminousgranites and granodiorites,Iberian massif,Spain:an expermental test of granitepetrogenesis,Contrib[J].Mineral Petrol,1999
    [24]邱检生,胡建,王孝磊,等.广东河源白石冈岩体:一个高分异的I型花岗岩[J].地质学报,2005,79(4):504-514
    [25李献华,李武显,李正祥.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报,2007,52(9):981-991
    [26]朱弟成,莫宣学,王立全,等.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束[J].中国科学(D辑):地球科学,2009,39(7):833-848
    [27]王涛.花岗岩混合成因研究及大陆动力学意义.岩石学报,2000,16(2):161-168
    [28]韩宝福.后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J].地学前缘,2007,14(3):64-72
    [29] Leech M L.Arrested orogenic development:eclogitization,delamination,and tectonic collapse [J].EPSL,2001,185(1/2):149-159
    [30]马昌前,佘振兵,等.地壳根、造山热与岩浆作用[J].地学前缘,2006,13(2):130-139
    [31]吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217-1238
    [32] Waight T E,Waver S D,Muir R J.Mid-Cretaceous granitic magmatism duringthe transition from subduction to extension in southern New Zealand:achemical and tectonic synthesis [J].Lithos,1998,45:469-482
    [33]李继亮,肖文交,闫臻.盆山耦合与沉积作用[J].沉积学报,2003,21(1):52-60
    [34] Busby C J,Ingersoll R V.Tectonics of Sedimentary Basin[M].Oxford:Blackwell Scientific Publications,1995
    [35] Haughton P D W.Developments in Sedimentary Provenance Studies[M]:London:Oxford University Press,1991
    [36] Dichinson W R.Plate tectonics and sedimentation[J].Soc Econ palaeot minerSpec Publ,1974,22:1-27
    [37] Dickinson W R.Interpreting provenance relations from detrital modes ofsandstones [A]. In:Zuffa G G ed. Provenance of Arenites[M].Dordrecht:D.Reidel,NATO-ASI Series,1985,148:333-361
    [38] Dickinson W R.Basin geodynamics[J].Basin Resesrch,1993,5:195-196
    [39] Link P K,Mahoney J B and Fanning C M.Isotopic determination of sedimentprovenance:Techniques and applications[J].Sedimentary geology,2005,182:1-2
    [40] Moonres E, Twiss R Y. Tectonics[M].1995, Fremman and Co., New York
    [41]吴根耀,马力.试论盆山的耦合和脱耦及其运动学[J].石油实验地质,2003,25(2):99-109
    [42] Ingersoll R V and Busby CJ.Tectonics of Sedimentsry Basins[J]. Cambridge:Blackwell Science,1995,1-51
    [43] Zuffa G G.Provenance of Arenites[J].Dordrecht,Reidel Publishing Company,NATO-SAI Series:1985,165-189
    [44]任纪舜,牛宝贵,刘志刚,等.软碰撞,叠复造山和多旋回缝合作用[J].地学前缘,1999,6(3):85-93
    [45]郑健康.东昆仑区域构造的发展演化[J].青海地质,1992,1:15-25
    [46]潘裕生,周伟明,许容华.昆仑山早古生代地质特征与演化[J].中国科学(D辑):地球科学,1996,26(4):302-307
    [47]殷鸿福,张克信.东昆仑造山带的一些特点[J].地球科学,1997,(4):339-3423.
    [48]殷鸿福,张克信.中华人民共和国区域地质调查报告:冬给措纳湖幅(I47C001002)[R].武汉:中国地质大学出版社,2003.1-457
    [49]朱云海,张克信,PanYuanming,等.东昆仑造山带不同蛇绿岩带的厘定及其构造意义[J].地球科学,1999,24(2):134-138
    [50]朱云海,张克信,王国灿,等.东昆仑复合造山带蛇绿岩、岩浆岩及构造岩浆演化[M].武汉:中国地质大学出版社,2002:104-105
    [51]王国灿,张克信,梁斌,等.东昆仑造山带结构及构造岩片组合[J].地球科学,1997,22(4):352-356
    [52]王国灿,张天平,梁斌等.东昆仑造山带东段昆中复合蛇绿混杂岩带及“昆中断裂带”地质涵义[J].地球科学,1999,24(2):129-133
    [53]王国灿,王青海,简平,等.东昆仑前寒武基底变质岩系的锆石SHRIMP年龄及其构造意义[J].地学前缘,2004,11(4):481-490
    [54]张建新,孟繁聪,杨经绥.柴达木盆地北缘西段榴辉岩相的变质泥质岩的确定及意义[J].地质通报,2003,22(9):655-657
    [55] Yang J S,Robinson P T,Jiang CF,et al.Ophiolites of the Kunlun Mountains,China and their tectonic implications[J].Tectonophysics,1996,258:299-305
    [56]杨经绥,刘福来,吴才来,等.中央碰撞造山带中两期超高压变质作用:来自含柯石英锆石的定年证据[J].地质学报,2003,77(4):463-477
    [57]杨经绥,王希斌,史仁灯,等.青藏高原北部东昆仑南缘德尔尼蛇绿岩:一个被肢解了的古特提斯洋壳[J].中国地质,2004,31(3):225-239
    [58]潘桂棠,丁俊,姚冬生等.青藏高原及邻区地质图说明书[M].成都:成都地图出版社,2004,1-50
    [59]李怀坤,陆松年,相振群,等.东昆仑中部缝合带清水泉麻粒岩锆石SHRIMPU-Pb年代学研究[J].地学前缘,2006,13(6):311-321
    [60]陈能松,孙敏,王勤燕,等.东昆仑造山带昆中带的独居石电子控针化学年龄:多期构造事件纪录[J].科学通报,2007,52(11):1297-1306
    [61]陈能松,孙敏,王勤燕,等.东昆仑造山带中带的锆石U-Pb定年与构造演化启示[J].中国科学(D)辑:地球科学,2008,38(6):657-666
    [62]张雪亭,杨生德,杨站君.青海省板块构造研究-1:100万青海省大地构造图说明书[M].北京:地质出版社,2007,1-221
    [63]张亚峰,裴先治,丁仨平,等.东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义[J].地质通报,2010,29(1):79-85
    [64]陈守建,李荣社,计文化,等.昆仑造山带早-中泥盆世沉积特征及盆地性质探讨[J].沉积学报,2008,26(4):541-551
    [65]陈守建,李荣社,计文化,等.东昆仑造山带二叠纪岩相古地理特征及盆山转换探讨[J].中国地质,2010,37(2):374-391
    [66]裴先治,李瑞保,刘战庆,等.东昆仑南缘布青山构造混杂带的组成特征及其大地构造意义[A].2011年岩石学与地球动力学研讨会论文集[C],西北大学,2011
    [67]冯建赟,裴先治,于书伦,等.东昆仑都兰可可沙地区镁铁-超镁铁质杂岩的发现及其LA-ICP-MS锆石U-Pb年龄[J].中国地质,2010,37(1):28-37
    [68]李瑞保,裴先治,刘战庆,等.东昆仑东段科科可特镁铁质-超镁铁质岩年代学、地球化学特征及构造意义[J].岩石学报,2012,待刊
    [69]高延林,吴向农,左国朝.东昆仑山清水泉蛇绿岩特征及其大地构造意义[J].中国地质科学院西安地质矿产研究所所刊,1988,(21):17-28
    [70]陆松年,李怀坤,王惠初,等.秦-祁-昆造山带元古宙副变质岩层碎屑锆石年龄谱研究[J].岩石学报,2009,25(9):2195-2208
    [71]裴先治,李瑞保,李佐臣,等.青海省都兰县阿拉克湖-红水川地区1:5万七幅区域地质矿产调查报告[R].长安大学地质调查研究院,2012
    [72]莫宣学,罗照华,邓晋福,等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报,2007,13(3):403-414
    [73]李瑞保,裴先治,李佐臣,等.东昆仑造山带早古生代晚期区域构造体制转变记录[R].西北大学:2011年岩石学与地球动力学研讨会,2011
    [74]裴先治,丁仨平,李佐臣,等.西秦岭北缘早古生代天水-武山构造带及其构构演化[J].地质学报,2009,83(11):1547-1563
    [75] Pei X Z,Li Z C,Liu H B,et al.Geochemical characteristics and zircon U-Pbisotopic ages of island-arc basic igneous complexes from the Tianshui area inWest Qinling. Front[J].Earth Sci China,2007,1(1):49-59
    [76]侯增谦,卢记仁,李红阳,等.中国西南特提斯构造演化—幔柱构造控制.地球学报,1996,17(4):439-453
    [77]侯增谦,杨岳清,曲晓明,等.三江地区义敦岛弧造山带演化和成矿系统[J].地质学报,2004,78(1):109-120
    [78] Wang X F, Metcalfe I, Jian P, et al. The Jinshajiang-Ailaoshan suture zone,China; tectonostratigraphy, age and evolution[J]. Journal of Asian EarthSciences,2000,18(6):675-690
    [79]张世涛,冯庆来,王义昭.甘孜—理塘构造带泥盆系的深水沉积[J].地质科技情报,2000,19(3):17-20
    [80]莫宣学,邓晋福,董方浏,等.三江造山带火山岩构造组合及其意义[J].高校地质学报,2001,7(2):121-138
    [81]姚学良,兰艳.甘孜—理塘蛇绿混杂岩带存在N型洋脊玄岩[J].四川地质学报,2001,21(3):138-140
    [82]闫全人,王宗起,刘树文,等.西南三江特提斯洋扩张与晚古生代东冈瓦纳裂解:来自甘孜蛇绿岩辉长岩的SHRIMP年代学证据[J].科学通报,2005,50(2):158-166
    [83]陈亮,孙勇,柳小明,等.青海省德尔尼蛇绿岩的地球化学特征及其大地构造意义[J].岩石学报,2000,16(1):106-110
    [84]陈亮,孙勇,裴先治.德尔尼蛇绿岩40Ar/39Ar年龄:青藏最北端古特提斯洋盆存在和延展的证据[J].科学通报,2001,46(45):424-426
    [85]陈亮,孙勇,裴先治,等.古特提斯蛇绿岩的综合对比及其动力学意义-以德尔尼蛇绿岩为例[J].中国科学(D辑):地球科学,2003,33(12):1136-1142
    [86]裴先治.勉略阿尼玛卿构造带的形成演化与动力学特征[D].西安:西北大学2001,1-167
    [87]裴先治,张国伟,赖绍聪,等.西秦岭南缘勉略构造带主要地质特征[J].地质通报,2002,21(8/9):484-494
    [88]赖绍聪,张国伟,裴先治.南秦岭勉略结合带琵琶寺洋壳蛇绿岩的厘定及其大地构造意义[J].地质通报,2002,21(8-9):465-470
    [89]赖绍聪,秦江峰.秦岭勉略缝合带蛇绿岩与火山岩[J].北京:科学出版社,2010,1-257
    [90]杨经绥,许志琴,李海兵,等.东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J].岩石矿物学杂志,2005,24(5):369-380
    [91]刘战庆,裴先治,李瑞保,等.东昆仑南缘布青山构造混杂岩带的地质特征及大地构造意义[J].地质通报,2011,30(8):1182-1195
    [92]刘战庆,裴先治,李瑞保,等.东昆仑南缘布青山构造混杂岩带早古生代白日切特中酸性岩浆活动:来自锆石U-Pb测年及岩石地球化学证据[J].中国地质,2011,38(5):1150-1167
    [93]刘战庆,裴先治,李瑞保,等.东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义[J].地质学报,2011,85(2):185-194
    [94]刘战庆.东昆仑南缘布青山构造混杂岩带地质特征及其区域构造研究
    [D].西安:长安大学,2011
    [95]罗照华,柯珊,曹永清,等.东昆仑印支晚期幔源岩浆活动[J].地质通报,2002,21(6):292-297
    [96]刘成东,周肃,莫宣学,等.东昆仑造山带后碰撞花岗岩岩石地球化学和40Ar-39Ar同位素年代学约束[J].华东地质学院学报,2003,26(4):301-305
    [97]刘成东,莫宣学,罗照华,等.东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征[J].地球学报,2003,24(6):584-588
    [98]刘成东.东昆仑造山带东段花岗岩浆混合作用[M].北京:地质出版社,2008
    [99]闫臻,边千韬,Oleg A.东昆仑南缘早三叠世洪水川组的源区特征:来自碎屑组成、重矿物和岩石地球化学的证据[J].岩石学报,2008,24(5):1068-1078
    [100]李利平,田军,张克信,等.东昆仑造山带下中三叠统沉积岩地球化学特征[J].同济大学学报,2002,30(8):938-943
    [101]蔡雄飞,刘德民.东昆仑三叠系下、上浊积扇体的识别及研究意义[J].海洋地质动态,2008,24(6):1-8
    [102] Chen FK,Hegner E,Todt W.Zircon ages,Nd isotopic and chemicalcompositions of orthogneisses from the Black Forest,Germany:Evidence fora Cambrian magmatic arc[J]. International Journal of Earth Sciences(GeolRundsch),2000,88:791-802
    [103] Chen FK,Siebel W,Satir M,et al.Geochronology of the Karadere basement(NW Turkey) and implications for the geological evolution of the Istanbulzone[J]. International Journal of Earth Sciences(Geol Rundsch),2002,91:469-481
    [104]宋彪,张玉海,万渝生.锆石SHRIMP样品靶样制作年龄测定及有关现象讨论[J].地质论评,2002,48(增刊):26-30
    [105] Andersen T.Correlation of common lead in U-Pb analyses that do not report204Pb[J].Chemical Geology,2002,192:59-79
    [106] Ludwig K R.ISOPLOT(rev.2.49):A plotting and regression program forradiogenic-isotope data[C].US Geological Survey Open-File Report,1991,39
    [107] Ludwig K R.Users Manual for Isoplot/Ex (ver.2.49):A GeochronologicalToolkit for Microsoft Excel[J]. Berkeley Geochronology Center SpecialPublication,2001,1a:1-55
    [108] Ludwig K R. Isoplot/Exversion2.49. A Geochronological Toolkit for MicrosoftExcel[J].Berkeley:Berkeley Geochronology Center Special Publication2003,No.1a,1-56
    [109]古风宝.东昆仑地质特征及晚古生代-中生代构造演化[J].青海地质,1994,3(1):4-14
    [110]张紫程,张绪教,高万里,等.东昆仑左行走滑韧性剪切带形成时代的锆石U-Pb年龄证据[J].地质力学学报,2010,16(1):51-58
    [111]许志琴,杨经绥,姜枚.青藏高原北部东昆仑-羌塘地区的岩石圈结构及岩石圈剪切断层[J].中国科学(D辑),2001,31(增刊):1-7
    [112] Danian Shi,Yang Shen,Wenjin Zhao,et al.Seismic evidence for a Moho offsetand south-directed thrust at the easternmost Qaidam–Kunlun boundary in theNortheast Tibetan plateau[J].Earth and Planetary Science Letters,2009,288:328-334
    [113]陈有炘,裴先治,李瑞保,等.东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄[J].现代地质,2011,25(3):510-521
    [114]解玉月.昆中断裂东段不同时代蛇绿岩特征及形成环境[J].青海地质,1998,7(1):27-36
    [115]陆松年,于海峰,赵凤清,等.青藏高原北部前寒武纪地质初探[M].北京:地质出版社,2002:1-125.
    [116]高晓峰,校培喜,谢从瑞,等.东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS定年及其地质意义[J].地质通报,2010,29(7):1001-1008
    [117]陕西省地质调查研究院.阿牙克库木湖幅1:25万区域地质调查报告
    [R].2003.
    [118]郝杰,刘小汉,桑海清.新疆东昆仑阿牙克岩体地球化学与年代学研究及其大地构造意义[J].岩石学报,2003,19(3):517-522
    [119]李曙光,孙卫东,张国伟,等.南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学-古生代洋盆及其闭合时代证据[J].中国科学(D辑):地球科学,1996,26(3):223-230
    [120]李曙光,候振辉,杨永成,等.南秦岭勉略构造带三岔子古岩浆弧的地球化学特征及形成年代[J].中国科学(D辑):地球科学,2003,33(12):1163-1173
    [121]郭安林,张国伟,孙延贵,等.阿尼玛卿蛇绿岩带OIB和MORB的地球化学及空间分布特征:玛积雪山古洋脊热点构造证据[J].中国科学(D辑):地球科学,2006,36(7):618-629
    [122]郭安林,张国伟,孙延贵,等.共和盆地周缘晚古生代镁铁质火山岩地球化学及空间分布-玛积雪山三联点以及东古特提斯多岛洋启示[J].中国科学(D辑):地球科学,2007,37(增刊):249-261
    [123]郭安林,张国伟,强娟等.青藏高原东北缘印支期宗务隆造山带[J].岩石学报,2009,25(1):1-12
    [124] Yunpeng Dong,Guowei Zhang,Franz Neubauer,et al.Tectonic evolution ofthe Qinling orogen,China:Review and synthesis[J].Journal of Asian EarthSciences,2011,41:213-237
    [125]李卫东,彭湘萍,康正文,等.东昆仑木孜塔格地区畅流沟蛇绿岩岩石地球化学特征及其构造意义[J].新疆地质,2003,21(3):263-268
    [126]吴峻,兰朝利,李继亮.东昆仑山木孜塔格蛇绿混杂岩中火山岩的地球化学特征及构造环境[J].地质通报,2005,24(12):1154-1161
    [127]王秉璋,张智勇,张森琦,等.东昆仑东端苦海-赛什塘地区晚古生代蛇绿岩的地质特征[J].地球科学,2000,25(6):592-598
    [128]孙延贵,张国伟,王谨,等.秦昆结合区两期基性岩墙群40Ar-39Ar定年及其构造意义[J].地质学报,2004,78(1):65-71
    [129]孙延贵,张国伟,郭安林,等.秦-昆三向联结构造及其构造过程的同位素年代学证据[J].中国地质,2004,31(4):372-378
    [130]张智勇,王秉璋,王瑾,等.昆秦接合部海西期苦海-赛什塘分支洋的存在及其证据[J].地球科学,2004,29(6):691-696
    [131]许志琴,杨经绥,李海兵,等.造山的高原-青藏高原的地体拼合、碰撞造山及隆升机制[M].北京:地质出版社,2007:1-458
    [132]王永标,黄继春,骆满生.海西一印支早期东昆仑造山带南侧古海洋盆地的演化[J].地球科学,1997,22(4):369-372
    [133]王永标,杨浩.东昆仑—阿尼玛卿-巴颜喀拉地区早二叠世的生物古地理特征[J].中国科学(D辑):地球科学,2003,33(8):775-780
    [134]王永标.巴颜喀拉及邻区中二叠世古海山的结构与演化[J].中国科学(D辑):地球科学,2005,35(12):1140-1149
    [135]边千韬,罗小全,陈海泓,等.阿尼玛卿蛇绿岩带花岗-英云闪长岩锆石U-Pb同位素定年及大地构造意义[J].1999,34(4):420-426
    [136]边千韬,IgorI.Pospelo,李惠民,等.青海省布青山早古生代末期埃达克岩的发现及其构造意义[J].岩石学报,2007,23(5):925-934
    [137]中国地质大学(武汉).阿拉克湖幅1:25万区域地质图.2004.
    [138]陈国超.东昆仑南缘印支期花岗岩岩石成因及其地质意义[D].西安:长安大学,2011
    [139]中国地质大学(武汉).冬给措纳湖幅1:25万区域地质图.2000.
    [140]陆露,吴珍汉,胡道功,等.东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义[J].岩石学报,2010,26(4):115-1158
    [141] Massari F, Colella A. Evolution and types of fan-delta systems in some majortectonic settings[A]. In: W. Nemec and R. J. Steel, Fan Deltas: Sedimentologyand Tectonic Settings[M]. Blacki and Son,1988,103-122
    [142] Leggett JK. The sedimentological evolution of a Lower Paleozoic accretionaryforearc in the Southern Upland of Scotland[J]. Sedimentology,1980,27:401-417
    [143] Kocyigit A. An example of an accretionary forearc basin from northern centralAnatolia and its implications for the history of subduction of Neo-Tethys inTurkey[J]. Geol. Soc. Am. Bull.,1991,103:22-36
    [144]蔡雄飞.造山带区域相对海平面变化与全球海平面变化的不一致性[J].海洋地质动态,2005,21(2):5-7
    [145]杜远生,颜佳新,韩欣.造山带沉积地质学研究的新进展[J].地质科技情报,1995,14(1):29-34
    [146]杜远生.关于造山带动力沉积学若干问题的思考[J].地学前缘,1998,(5)增刊:135-140
    [147] Li R B, Pei X Z, Li Z C.Regional Tectonic Transformation in East KunlunOrogenic Belt in Early Paleozoic:Constraints from the Geochronology andGeochemistry.of.Helegangnaren.Alkali-feldspar.Granite[J].ACTA.GEOLOGICA SINICA,2012(In press)
    [148] Whalen J B,Currie K,Chappell B W.A-type Granite:geochemicalcharacteristics,discrimination and petrogenesis[J].Contrib Mineral Petrol,1987,95:407-419
    [149] Streckeisen AL. Plutonic rocks:Classification and nomenclature recommendedby the IUGS subcommission on the systematics of igneous rocks[J]. Geotimes,1973,18(7):26-30
    [150] Lameyre, J., Bowden, P.,. Plutonic rock types series: discrimination of variousgranitoid series and related rocks[J]. Journal of Volcanology and GeothermalResearch.1982,14,169-186
    [151]赵振华,熊小林,王强,等.铌与钽的某些地球化学问题[J].地球化学,2008,37(4):304-315
    [152]赵振华.副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J].地学前缘,2010,17(1):268-285
    [153] Salters V J M and Hart S R.The mantle sources of ocean ridges, island arcs:theHf-isotope connection[J].Earth Planet. Sci. Lett,1991,104:364-380
    [154] Boynton W V. Geochemistry of the rare earth elements: meteoritestudies[M].Henderson P.Rare earth element geochemistry.Elservier,1984:63-114
    [155]杨学明,杨晓勇,陈双喜.岩石地球化学[M].合肥,中国科学技术大学出版社,2000,
    [156] Sun S S,McDonough W F.Chemical and isotopic systematics of oceanicbasalts:Implications for mantle composition and processes In: Saunders ADand Norry MJ[M]. Magmatism in the Ocean Basins. London: GeologicalSociety of London,1989,313-345
    [157] Compston W,Williams I S,Kirschvink J L,et al.Zircon U-Pb ages for theEarly Cambrian time scale[J].Journal of the Geological Society,London,1992,149:171-184
    [158] Willianm I S, Claesson S. Isotopic evidence for the Precambrian provenanceand Caledonian metamorphism of high grade paragneisses from the SeveNappes,ScandinavianCaledonides:Ⅱ.IonmicroprobezirconU-Th-Pb[J].Contri-butions to Mineralogy and Petrology,1987,97:205-217
    [159]吴元保,郑永飞.锆石成因矿物学研究及其对年龄解释的制约[J].科学通报,2004,49(16):1589-1604
    [160]孙雨,裴先治,丁仨平,等.东昆仑哈拉尕吐岩浆混合花岗岩-来自锆石U-Pb年代学的证据[J].地质学报,2009,83(7):1000-1010
    [161]熊富浩,马昌前,张金阳,等.东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石定年,元素和Sr-Nd-Pb同位素地球化学[J].岩石学报,2010,27(11):3350-3364
    [162]莫宣学,罗照华,肖庆辉,等.花岗岩类岩石中岩浆混合作用的识别与研究方法.见:肖庆辉,邓晋福等主编.花岗岩研究思维与方法[M].北京:地质出版社,2002.53-70
    [163] Yang J H,Wu FY,Wilde SA,et al.Tracing magma mixing in granite genesis:In situ U-Pb dating and Hf isotope analysis of zircons[J].Contributions toMineralogy and Petrology,2007,153:177-190
    [164] Vernon R H.Microgranitoid enclaves in granites globules of hybrid magmaquenched in a plutonic environment[J].Nature,1984,309:438-439
    [165] Piccoli P M,Candela P A.Apatite in igneous system.In:Kohn M J,RakovanJ,Hughes J M,eds.Reviews in Mineralogy and Geochemistry[J].MineralogicalSociety of America,2002,48:255-292
    [166] Xiong F H, Ma C Q, Zhang J Y, et al. The origin of mafic microgranularenclaves and their host granodiorites from East Kunlun, Northern Qinghai-TibetPlateau: implications for magma mixing during subduction of Paleo-Tethyanlithosphere[J].Miner Petrol,2011
    [167]余能,金巍,葛文春,等.东昆仑金水口过铝花岗岩的地球化学研究[J].地球科学,2005,24(2):123-128.
    [168]陈宣华,尹安,George Gehrels,等.柴达木盆地东部基底花岗岩类岩浆活动的化学地球动力学[J].地质学报,2011,85(2):157-171
    [169] Abdullah Kaygusuza,Cüneyt Senb.Calc-alkaline I-type plutons in the easternPontides,NE Turkey:U-Pb zircon ages,geochemical and Sr-Nd isotopiccompositions[J].Chemieder Erde,2010,11:59-75
    [170] Soesoo A. Fractional crystallization of mantle derivedmelts as a mechanism forsome I2type granite petrogenesis:An example from Lachlan Fold Belt,Australia[J].Geol Soc,London,2000,157:135-149
    [171] Ma C Q,Li Z C,Ehlers C,et al.A post-collisionalmagmatic plumbing system:Mesozoic granitoid plutons from the Dabieshan high-pressure andultrahigh-pressure metamorphic zone,east-central China[J].Lithos,1998,45:431-456
    [172]王德滋,周新民.中国东南部晚中生代花岗质火山—侵入杂岩成因与地壳演化[M].北京:科学出版社,2002
    [173] Collins W J.S2and I2type granitoids of the eastern Lachlan fold belt:Productsof three-component mixing[J].Trans. Royal Soc. Edinburgh:Earth Sci.,1996,88:171-179
    [174] Johannes W, Holtz F. Petrogenesis and experiment petrology of graniticrock[M]. Berlin: Springer-Verlag.1996
    [175] Patino Dounce AE, Harris N. Experimental constraints on Himalayananatexis[J]. Journal of Petrology,1998,39(4):689-710
    [176] Patino Dounce AE, McCarty TC. Melting of crustal rocks during continetalcollision and subduction. In: Hacker BR, Liu JG, eds. When continents collide:geodynamics of ultrahigh pressure rocks[M]. Netherlands: Kluwer AcademicPublisher,1998,27-55
    [177] Wolf MB, Wyllie PJ. The formation of tonalitic liquids during the vapor-absentpartial melting of amphibolite at10kbar[J]. Eos,1989,70:506-518
    [178] Beard JS, Lofgren GE. Dehydration melting and water-saturated melting ofbasaltic and andesitic greenstones and amphibolites at1.3and6.9kbar[J].Journal of Petrology,1991,32:365-402
    [179] Sisson TW, Ratajeski K, Hankins WB, Glazner AF. Voluminous graniticmagmas from common basaltic sources[J]. Contrib Mineral Petril,2005,148(5):635-661
    [180] Pati o Douce, AE, What do experiments tell us about the relative contributionsof crust and mantle to the origin of granitic magmas? In: Castro, A., Fernandez,C.,Vigneresse, J.L.(Eds.), Understanding granites: integrating new and classicaltechniques[M]. Geological Society of London Special Publication,1999,168:55-75
    [181] Castillo PR. An overview of adakites petrigenesis[J]. Chinese Science Bulletin,2006,51:257-268
    [182] Frost B R,Barnes C,Collins W J,et al.A geochemical classification for graniticrocks[J].J Petrol,2001,42:2033-2048
    [183] Floyd P A,Winchester J A. Magma type and tectonic setting discriminationusing immobile elements[J].Earth Planet Sci Lett,1975,27:211-218
    [184] Rogers G,Hawkesworth C J.A geochemical traverse across the North ChileanAndes:evidence for crust generation from the mantle-wedge[J]. Earth PlanetSci Lett,1989,91:271-285
    [185] Pearce J A,Harris N B W,Tindle A G. Trace element discrimination diagramfor the tectonic interpretation of granitic rocks[J].J Petrol,1984,25:956-983
    [186] Pearce, J.A.,.Source and setting of granitic rocks[J]. Episodes,1996,19:120–125.
    [187] Batchelor R A and Bowden P.Petrogenetic interpretation of granitoid rockusing multinational parameters[J].Chemical Geology,1985,48:43-55
    [188] Brown G C,Thorpe R S,Webb P C.The geochemical characteristics ofgranitoids in contrasting arcs and comments on magma sources[J].Geol. Soc.,1984,141:413-426
    [189] Parampreet Kaur,Naveen Chaudhri,I. Raczek,et al. Record of1.82GaAndean-type continental arc magmatism in NE Rajasthan, India: Insights fromzircon and Sm-Nd ages, combined with Nd-Sr isotope geochemistry. GondwanaResearch,2009,16:56-71
    [190] Whalen, J.B., Syme, E.C., Stern, R.A., Geochemical and Nd isotopic evolutionof Paleoproterozoic arc-type granitoidmagmatism in the Flin Flon Belt,Trans-Hudson orogen, Canada[J]. Canadian Journal of Earth Sciences.1999,36,227-250
    [191]刘云华,莫宣学,喻学惠,等.东昆仑野马泉地区景忍花岗岩锆石SHRIMPU-Pb定年及其地质意义[J].岩石学报,2006,22(10):2457-2463
    [192]丁烁,黄慧,牛耀岭.东昆仑高Nb-Ta流纹岩的年代学、地球化学及成因.岩石学报,2011,27(12):3603-3614
    [193] Vernon R H. Restite, xenoliths and microgranitoid enclaves in granites[M].Journal and Proceedings of the Royal Society of Nes South Wales,1983,116:77-103
    [194] Piccoli P M,Candela P A.Apatite in igneous system.In:Kohn M J,RakovanJ,Hughes J M,eds.Reviews in Mineralogy and Geochemistry.MineralogicalSociety of America,2002,48:255-292
    [195]袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520.
    [196] Yuan H L,Wu F Y,Gao S,et al. Determination of U-Pb age and rare earthelement concentration of zircons from Cenozoic intrusions in northeasternChina by laser ablation ICP-MS[J].Chinese Science Bulletin,2003,48(32):2411-2421
    [197] Yuan H L,Gao S,Liu X M,et al.Accurate U-Pb age and trace elementdeterminations of zircon by laser ablation-inductively coupled plasma-massspectrometry[J].Geostandards and Geoanalytical Research,2004,28(3):353-370
    [198]简平,程裕淇,刘敦一.变质锆石成因的岩相学研究—高级变质岩U-Pb年龄解释的依据[J].地学前缘,2001,8(3):183-191
    [199] Rapp R P and Watson E B.Dehydration melting of metabasalt at8-32kbar:Implications for continental growth and crust-mantle recycling[J].Journal ofPetrology,1995,36:891-931
    [200] Wong A,Ton S Y M,Wortel M J R.Slab detachment in continental collisionzones:an analysis of controlling parameters[J].Geophys Res Lett,1997,24:2095-2098
    [201] Gerya T V,Yuen D A.,Maresch W V.Thermomechanical modeling of slabdetachment[J].Earth planet Sci Lett,2004,226:101-116
    [202] Lin D,Kapp P,Da L Z,et al.Cenozoic volcanism in Tibet:Evidence for atransition from oceanic to continental subduction [J].Journal of Petrology,2003,44(10):1833-1865
    [203] Rollison H R.Using Geochemical Data:Evaluation,Presentation,Interpretation
    [M].London.Longman Group U K Ltd,1993
    [204] Whalen J B,Mcnicoll V J,Van Staal C R,et al.Spatial, temporal andgeochemical characteristics of Silurian collision zone magmatism,Newfoundland Appalachians:an example of a rapidly evolving magmaticsystem related to slab break-off[J].Lit hos,2006,89.377-404.
    [205] Harris N.B.W.,Pearce J.A.,Tindle A.G.Geochemical characteristics ofcollision-zone magmatism. In: Coward, M.P., Reis, A.S.(Eds.), CollisionTectonics[M]: Geological Society of London, Special Publication,1986,19:67–81
    [206] Van H J and Allen M B.Continental collision and slab breakoff: A comparisonof3-D numerical models with observations[J].Earth and Planetary ScienceLetters,2011,302:27-37
    [207]李三忠.秦岭造山带勉略缝合带构造演化及其变质动力学[R].博士后研究工作报告,西北大学,1998
    [208]常有英,李建放,张军,等.青海那陵郭勒河东晚三叠世侵入岩形成环境及年代学研究[J].西北地质,2009,42(1):57-65
    [209]刘智刚.东昆仑阿拉克湖—红水川地区晚古生代—早中生代地层构造特征及其构造演化[D].西安:长安大学,2011
    [210]郭正府,邓晋福,许志琴,等.青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程[J].现代地质,1998,12(3):344-352

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700