用户名: 密码: 验证码:
乌江上游梯级开发对浮游植物分布的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展,人类为了满足发电、灌溉、防洪等需要在河流上大规模的筑坝建库。大坝拦截蓄水形成水库后,原有的水生生态体系随生境变化经自然选择、演替,由以底栖附着生物为主的“河流型”异养体系向以浮游生物为主的“湖沼型”自养体系演化。本文拟通过对乌江上游各水库浮游植物群落分布现状及其与营养元素相关性的研究,探究河流梯级开发对浮游植物分布的影响,以此丰富我国水库生态学的研究内容并积累基础数据资料,为以后的科学研究及水资源的合理利用提供科学依据。
     本研究于2007年枯水期、丰水期和平水期对乌江上游的红枫湖水库、百花湖水库、修文水库、窄巷口水库、红岩水库、乌江渡水库、索风营水库、东风水库、洪家渡水库、引子渡水库和普定水库共计24个采样点或断面进行了采样调查。主要调查的指标有:水温、透明度、pH值、溶解氧、总氮、亚硝酸态氮、总磷、溶解性有机碳、化学耗氧量、钾、钠、钙、镁、氯离子、硫酸根离子、浮游植物的种类组成和现存量。并将浮游植物现存量与理化指标进行了相关性分析。
     乌江上游各水库浮游植细胞密度与化学耗氧量、叶绿素、pH、水温、溶解性有机碳、镁、钾、总磷、氯离子、溶解氧和亚硝酸态氮呈正相关,相关系数分别为0.786、0.741、0.423、0.396、0.377、0.345、0.261、0.207、0.184、0.176和0.138。浮游植细胞密度与钠、透明度、钙、硫酸根离子和总氮均呈负相关,相关系数分别为-0.394、-0.386、-0.221、-0.134和-0.063。浮游植细胞密度与耗氧量和叶绿素呈现较好的正相关关系。浮游植物生物量与叶绿素、pH、化学耗氧量、水温、溶解性有机碳、溶解氧、总磷、钾、亚硝酸态氮、总氮和镁,相关系数分别为0.939、0.730、0.686、0.593、0.559、0.514、0.430、0.308、0.308、0.282、0.100和0.045。浮游植物生物量与透明度、钠、硫酸根离子和钙均呈负相关,相关系数分别为-0.768、-0.557、-0.468和-0.463。浮游植物生物量与叶绿素、pH、化学耗氧量、水温、溶解性有机碳和溶解氧呈现较好的正相关关系,与透明度和钠呈现较好的负相关关系。
     乌江上游各水库共检出浮游植物216种,隶属于8门10纲24目39科73属。从浮游植物现存量水平分布看,红枫湖水库属于蓝绿藻型水体,百花湖水库属于蓝绿硅藻型水体,修文水库、窄巷口水库、红岩水库、洪家渡水库、引子渡水库和普定水库属于绿硅藻型水体,乌江渡水库属于绿蓝藻型水体,索风营水库、东风水库属于硅绿藻型水体。根据湖泊营养类型评价的浮游植物细胞密度标准并参照Margalef多样性指数分析水体富营养化程度得出:红枫湖水库处于富营养状态,百花湖水库处于中富营养状态,红岩水库和乌江渡水库处于中营养状态,修文水库、窄巷口水库、索风营水库、东风水库、洪家渡水库、普定水库和引子渡水库处于贫中营养状态。
     水电梯级开发过程中,通过水库修建前后的比较,水库修建后浮游植物细胞密度和生物量迅速增加,特别是蓝绿藻增加明显,并呈现出向富营养化方向发展的趋势。通过对不同时期修建的水库及同一水库不同时期浮游植物演变的比较得出,形成水库后,随着时间的推移,富营养化程度加重,水库由硅藻型水体向着蓝绿藻型水体演化。
With the development of society and economy, more and more dams were constructed in order to meet the needs of electricity generation, irrigation, flood control and so on. After daming, aquatic ecosystems begin to adapt the changing habitat and evolve from the riverine heterotrophic system (dominated with benthos) to the limnological autotrophic system (dominated with phytoplankton). This dissertation focuses on investigation about the distribution of phytoplankton and their relationship with nutrient elements in the upper reaches of the Wujiang River. The aim of this dissertation is to understand the impact of cascade exploitation on the phytoplankton and to provide a scientific basis for management of water resources.
     The phytoplankton communities and the water quality were investigated in three phases in 2007:Hongfeng Reservoir, Baihua Reservoir, Xiuwen Reservoir, Zhaixiangkou Reservoir, Hongyan Reservoir, Wujiangdu Reservoir,Suofengying Reservoir, Dongfeng Reservoir, Hongjiadu Reservoir, Yinzidu Reservoir, Puding Reservoir. The analysis of phytoplankton species , community structure, cell density and the mensuration of water quality indexs(WT, SD, pH, DO, TN, NO_2~--N, TP, DOC, COD, K, Na, Ca, Mg , Cl~-, SO_4~(2-).).This paper studies correlation between plankton and nutritive elements.
     The results on the analysis of correlations between cell density and environment factors, the Correlation coefficient are COD (0.786),Chlorophyll-a (0.741),pH (0.423),WT (0.396), DOC (0.377), Mg(0.345),K (0.261),TP (0.207), Cl~-(0.184), DO(0.176), NO_2~--N (0.138). Na (-0.394), SD (-0.386) ,Ca (-0.221), SO_4~(2-) (-0.134) ,TN (-0.063). COD and Chlorophyll-a is batter remarkable. The results on the analysis of correlations between the biomass and environment factors, The Correlation coefficient are Chlorophyll-a (0.939), pH (0.730) ,COD (0.686), WT (0.593),DOC (0.559),DO(0.514),TP (0.430), Cl~- (0.308), K (0.308), NO_2~--N (0.282), TN (0.100), Mg(0.045), SD (-0.768), Na (-0.557), SO_4~(2-)(-0.468), Ca (-0.463). The batter remarkable are Chlorophyll-a, pH, COD, WT, DOC, DO, SD, Na.
     There are 216 species of phytoplankton were identified. They belong to 73 genera 39 families 24 orders 10 classes and 8divisions.Cyanophyta-chlorophyta genre demonstrated in Hongfeng Reservoir. Cyanophyta–chlorophyta–bacillariophyta genre demonstrated in Baihua Reservoir.chlorophyta-Bacillariophyta genre demonstrated in Xiuwen Reservoir, Zaixiangkou Reservoir, Hongyan Reservoir, Hongjiadu Reservoir, Yinzidu Reservoir,Puding Reservoir. Chlorophyta-cyanophyta genre demonstrated in Wujiangdu Reservoir. Bacillariophyta-chlorophyta genre demonstrated in Suofengying Reservoir, Dongfeng Reservoir. To estimate the water quality of reservoir by taking use of phytoplankton cell density and Margalef diversity indices that Hongfeng Reservoir is eutrophic Baihua Reservoir is mesotrophic to light eutrophic.Hongyan Reservoir and Hongjiadu Reservoir are mesotrophic. Light mesotrophic demonstrated in Xiuwen Reservoir, Zaixiangkou Reservoir, Suofengying Reservoir, Dongfeng Reservoir, Hongjiadu Reservoir, Yinzidu Reservoir, Puding Reservoir .
     Process of cascade exploitation is the rapid increase in phytoplankton, especially Cyanophyta and chlorophyta. The trend of pollution was to eutrophic. Through evolution of different stages of the construction of the reservoir and Reservoir phytoplankton evolution, the trend of pollution was to eutrophic, Bacillariophyta-chlorophyta genre to Cyanophyta and chlorophyta genre in the reservoir.
引文
1. 曹文钟,余政哲,张宏波,等.红旗水库的浮游植物及其水质评价[J],东北林业大学学报,2004,32(4):36-37
    2. 陈椽,胡晓红,刘美珊,等.红枫湖浮游植物分布(1995~1996)与水质污染评价初步研究[J]. 贵州师范大学学报(自然科学版),1998,16(2):5-10
    3. 陈宇炜,秦伯强,高锡云.太湖梅梁湾藻类及相关环境因子逐步回归统计和蓝藻水华的初步预测[J].湖泊研究,2001,13(1):63-71
    4. 陈作州,陈椽,晏妮,等. 红枫湖水库浮游植物演变(1980—2006 年)和富营养化趋势研究 [J]. 贵州师范大学学报(自然科学版),2007,25(3):5-10
    5. 崔毅,陈碧鹃,马绍赛.乳山湾浮游植物与环境因子的相关关系研究[J].应用生态学报,2000,11〔61 ):935 一 938
    6. 廣瀨弘幸,山岸高旺,秋山優,等.日本淡水藻図鑑[M].东京:内田老鹤圃新社,1977.
    7. 贵州省“九.五”重点攻关课题《红枫湖、百花湖水环境污染防治研究》[黔科合计字(1996)1029 号]
    8. 胡鸿均,李尧英,魏印心,等.中国淡水藻类[M].上海:科技出版社,1979
    9. 胡鸿均,魏印心.中国淡水藻类[M]. 北京:科学出版社,2006
    10. 韩博平,李铁,林旭钿.广东省大中型水库富营养化现状与防治对策研究[M].北京科学出版社,2003
    11. 韩博平,石秋池,陈文祥.中国水库生态学与水质管理研究[M]. 北京科学出版社,2006
    12. 胡晓红,陈椽,李银燕,等.以浮游植物评价百花湖水质污染及富营养化[J].贵州师范大学学报(自然科学版),1999,17(4) :1-7
    13. 蒋因梅,詹苏,程宁生.阿哈水库浮游植物与富营养.贵州环保科技,2004,10(2):41-45
    14. 金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社,1990
    15. 况琪军.太平湖水库的浮游藻类与营养型评价[J],应用生态学报.1992,3(2):165-168
    16. 林桂花.鹤地水库浮游生物与富营养化特征分析[J].生态科学,2002,21:208-212
    17. 林秋奇,胡韧,段舜山,等.广东省大中型水库水质现状及其浮游生物的响应[J].生态学报,2003,23(6):1101-1108
    18. 中科院青藏高原综合科学考察队.西藏藻类[M].北京:科学出版社,1992
    19. 李杰.贵阳主要饮用水水库浮游植物分布特征及对饮用水健康安全影响的研究 [D].贵州师范大学,2007
    20. 刘丛强,等 生物地球化学过程与地表物质循环[M]. 北京:科学出版社,2007
    21. 刘建康. 东湖生态学研究(一)[M].北京:科学出版社,1990
    22. 刘尉秋, 陈桂珠 , 李金泉,等.广东省枫树坝水库浮游植物研究及其富营养化评价[J].中山大学学报(自然科学版),2002,41(1):113-115
    23. 刘霞, 杜桂森 , 张会,等.密云水库的浮游植物及水体营养程度.环境科学研究,2003,16(1):27-29
    24. 刘振业,等.贵州主要淡水藻[J].贵州农学院丛刊,1992(2)
    25. 齐雨藻,等.中国淡水藻类志(第四卷),硅藻门中心纲[M].北京:中国科学出版社,1995
    26. 曲克明,陈碧鹃,袁有宪,等.氮磷营养盐影响海水浮游硅藻种群组成的初步研究[J].应用生态学报,2000,11〔3) , 445-448
    27. 饶钦止.武汉东胡浮游植物的演变(1956—1975)和富营养化问题[J].水生生物学报,1980
    28. 山岸高旺,秋山優.淡水藻类写真集(第一卷)[M].东京:内田老鹤圃新社,1984.
    29. 孙嘉龙,刘永霞,钟晓.红枫湖夏季浮游植物初步研究[J].贵州农业科学,2005,33(3):73
    30. 王汉奎,董俊德,张偲,等.三亚湾氮磷比值分布及其对浮游植物生长的限制[J].热带海洋学报,2002, 21 (1) , 33-38
    31. 邬红娟,郭生练.水库浮游植物群落与环境多因子分析[J],武汉大学学报(工学版),2001,34(1):18-21
    32. 吴沿友,李萍萍,王宝利,等. 红枫湖百花湖水质及浮游植物的变化[J].农业环境科学学报,2004,23(4):745-747
    33. 吴一凡.武汉东胡浮游藻类的演变与富营养化相关性研究[J].中国环境科学,1991
    34. 晏妮.贵州两种类型喀斯特水库浮游植物分布与富营养化特征比较研究[D].贵州师范大学,2006
    35. 晏 妮,王洋,潘鸿,等.理由浮游植物结构特征评价乌江沙陀水电站库区水质状况.贵州科学 2006,24(1):67-72
    36. 尹魁浩,阮娅,李金龙 ,等.水库水体生态系统数值模拟模型及应用[J].水科学进展,2001,2(12):166-172
    37. 詹玉涛.釜溪河浮游植物分布及其与水质污染相关性研究[J].中国环境科学,1991,12(3):29-33
    38. 张维等.红枫湖、百花湖环,境特征及富营养化[M].贵阳:贵州科技出版社,1999
    39. 张义科,张翠君,张雪松.西大洋水库浮游植物及其对水质的评价.河北大学学报,1999,19(1):45-49
    40. 章宗涉,黄祥飞.淡水浮游生物研究方法[M].北京:科学出版社,1991
    41. 朱浩然.蓝藻类的标本采集、保存及微物制片法[J].南京大学学报(藻类专缉),1982
    42. 朱浩然,朱婉嘉,李尧英等.中国淡水藻类志(第二卷),色球藻纲[M].北京:中国科学出版社,1991
    43. Palmer C M Sharon Adams,Algae and water pollution.U.S.Government Printing Office,Washingon.D.C.1977
    44. Gophen M,Serruya. S Spataru P Zooplankton community changes in lake Kinnrret(Israel) during 1965-1985. Hydrobiologia 1990,191:39-46
    45. Hanazata T,Yasuno M. Zooplankton community structure driven by vetebrate and invertebrdte predators. Oecologie 1989,81:450-458
    46. Harris G P. Pattern,process and prediction in aquatic ecology-a limnological view of some general ecological problems. Freshwater Biology 1994,32:143-160
    47. Hooper R P ,Aulenbach B T ,Kelly V J ,The National Stream Quality Accounting Network: a flux-based approach to monitoring the water quality of large rivers.Hydrological Processes 2001,15:1250-1272
    48. James E B,Jerrold H Z.Field and Laboratory Methods for General Ecology [M].Washington DC:American Public Health Association,1977.136-145
    49. Naimen R J,Melillo J M,Lock M A et al. Longitudinal patterns of ecosystem processes and community structure in a subarctic river continuum. Ecology 1987,36: 1 139-1156
    50. Petts G. Impounded rivers: Perspectives for ecological management. New York :John Wiley &Sons 1984,326
    51. Saito L,Johnson B M,Bartholow J et al. Assessing ecosystem effects of reservoir operations using food web-energy transfer and water quality models 2001,4:105-125
    52. Thornton K W, Kimmel B L Payne F E. Reservoir Limnology:Ecological Perspectives. A Wiley-interscience Publication, New York 1990
    53. Wetzel R G. Limnology.CBS College Publishing Co. 2000,860

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700