用户名: 密码: 验证码:
舰船高精度光纤捷联惯性导航系统技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,舰船惯性导航系统处在由光学陀螺捷联惯性系统逐步替代机械陀螺平台式惯性系统的时期,对光学捷联惯性导航系统提出了更高的要求,必须具备长时间高精度的自主导航定位能力。光纤捷联惯性导航系统是一个复杂的多传感器信息融合系统,它涉及的关键技术包括诸多方面,本文从提高舰船光纤陀螺捷联惯导系统的实际需求出发,在系统标定、初始对准、系统误差抑制等方面展开研究。主要工作有:
     对光纤陀螺和加速度计两种惯性仪表进行误差建模,针对传统的基于速度误差输出的误差标定模型进行分析,指出了其局限所在。在此基础上提出一种新的系统级标定方案,将光纤陀螺和加速度计的元件误差参数分离开来,分别设计相应的滤波方程,在卡尔曼滤波器降维处理的同时,实现光纤陀螺和加速度计误差参数的解耦,提高系统的可观测性,完成相关的仿真验证。
     给出光纤捷联惯导系统罗经回路对准算法,完成罗经回路法参数设计,进行静基座误差分析。使用等效器件误差的方法深入分析了速度、加速度以及纬度误差对运动基座罗经回路对准精度的影响。提出了适用于运动基座条件下的基于器件误差补偿和基于外速度补偿的罗经网路对准方法,并进行了仿真分析和实验验证。
     对系泊状态晃动摇摆基座下的对准方法展开研究。首先对载体的摇摆和荡运动进行分析和建模。比较了解析式粗对准、“水平调平+方位估算”粗对准以及惯性基座粗对准方法,指出基座惯性系粗对准方案更适合工程应用。使用频域分析方法分析振荡性漂移对方位对准产生的影响,针对这类振荡性漂移,对方位对准系统及参数进行设计。最后,针对于晃动干扰基座条件下的卡尔曼滤波对准方法展开研究,在粗对准结束之后,对惯导的速度输出进行高通滤波,获得准确的瞬时速度信息,将其作为速度基准,进行卡尔曼滤波对准,切实有效的提高了晃动干扰基座条件下的卡尔曼滤波对准的精度。
     最后,对系统的误差抑制技术进行研究,把阻尼思想引入到捷联系统中来,对水平阻尼和方位阻尼分别进行了相应的网络结构和网络参数设计。为了抑制在状态转换过程中,由于平衡状态被破坏而产生的超调现象,对状态切换过程中的超调进行深入分析,研究产生超调现象的原理,并采用阻尼系数渐变技术来减小状态转换过程中的超调。针对于阻尼网络收敛时间慢的问题,利用捷联惯性导航系统数学平台的多样性,提出了一种快速阻尼方案,取得了不错的效果。对捷联惯性导航系统的阻尼方案进行了仿真和试验验证。
     本文通过对系统级标定技术、运动基座的罗经回路对准技术、摇摆晃动基座下的刘准技术以及惯导系统的阻尼网络等四方面进行深入研究,提高光纤捷联惯导系统的整体性能指标和动态适应能力,具有重要的理论意义和实际应用价值。
Currently, the optics gyro strapdown inertial system is taking the place of the machinery gyro platform inertial system gradually. In this period, inertial navigation system of ship has to provid highly-accurate navigation orientation independently during long time. Fiber optical strapdown inertial navigation system is a complicated system which has many sensors. Its key technology involves numerous aspects. This article engages in sympatric calibration, initial alignment, system error restrain technology which is based on the elevation of actual demands of ship fiber optic gyroscopes strapdown navigation system。The main res earches are done as follows:
     At first, we construct error models of both fiber optic gyroscope and accelerometer inertial meters. We analyse the error model and point out the localization which is based on traditional error model. On the base of this analysis, this article advances a new systematic calibration plan which separates the fiber optic gyroscope errors from accelerometer errors. It designs the filter respectively. The calculation quantity is reduced, at the same time, of kalman filter, it carries out the decoupling of fiber optic gyroscope and accelerometer error parameter which improves systemic observation.
     Secondly, this article demonstrates the compass loop alignment algorithm of fibre optical strapdown inertial navigation system. It accomplishes the design of compass loop parameter and the analysis of the error on onstatic base. It analyses deeply the influence to compass loop calibration precision on moving base by speed, acceleration and latitude error. Using the method of equivalent device error, it advances compass loop alignment methods based on apparatus error compensation and external speed compensation. Besides, it carries out the simulate analysis and experiment test which shows that it is suitable on moving base..
     Thirdly, alignment methods are studied when the base is interfered by swaying in moorage. This article analyses and constructs a modeling to swing and suring of the carrier. Then comparison is done of the analytic coarse alignment, "leveling and direction estimate" coarse alignment and inertial frame coarse alignment methods which points out that inertial frame coarse alignment plan is more suitable for engineering. Besides, it apllies frequency domain analytic method to analysis the influence of oscillatory drift, and then t and parameters of he alignment system are designed. Finally, Kalman filter alignment method in disturbing condition is studied. When the coarse alignment is finished, taking high pass fliter to speed output of inertial navigation system, we get the accurate instantaneous speed information and take kalman alignment using the speed error as the observation value. It truly heightens the precision of kalman fliter alignment in disturbing condition.
     Finally, damp algorithm is introduced to restain the surging errors of the inertial navigation system, and then the network frameworks and parameters are designed for level damp and azimuth damp respectively. In order to restrain the overshoot phenomenon caused by destroying balance condition in the conversion process, we analysis the overshoot deeply, and we study the theory of overshoot phenomenon and decrease the overshoot in the conversion process by damping coefficient gradually. Making use of the diversity of SINS's mathematics platform, it advances a rapid damp plan to deal with the problem of damp network's convergent time which gets an effective result. The SINS's damp plan is simulated and tested.
     This article carries on a deeply research through four aspects as follows:systematic calibration, compass loop alignment on moving base, alignment in swing and suring condition and SINS's damp network. It Heightens SINS's entire precision and ability of dynamic adaption. This article makes important academic significance and it has pracaticality.
引文
[1]J.Broelmarm. The development of the gyroeompass. Inventor Sasna VigatorS, Journal Navigation,1998,51(2):267-273P.
    [2]张树侠,孙静.捷联式惯性导航系统.国防工业出版社,1992.10:55-68页
    [3]D.H.Titterton and J.L.Weston. Strapdown Inertial Navigation Technology:Peter Peregrinus Ltd.London.United Kingdom,1997:88-95P
    [4]D.H.Titterton and J.L.Weston. Strapdown Inertial Navigation Technology.Seeond Edition, MIT Lineoln Laboratory, Lexington, Massaehusetts,2004:224-235P
    [5]秦永元.惯性导航.北京:科学出版社,2006:112-124页.
    [6]宋丽君,张英敏,付强文.光纤陀螺标度因数的精确标定与补偿.机械与电子,2006(12):27-30页
    [7]张志鑫,夏金桥,蔡春龙.光纤陀螺标度因数分段标定的工程实现.中国惯性技术学报,2008,16(1):99-203页
    [8]太松月.光纤陀螺捷联惯性导航系统标定测试技术研究.哈尔滨工程大学硕士学位论文,2007:65-69页.
    [9]孙平,肖凯,刘昆.光纤陀螺组件标定测试系统设计.传感器与微系统,2008.27(5):97-98页.
    [10].曹华,刘建业,祝燕华,赖际舟.光纤陀螺组件误差标定ARLS算法.光电工程,2008,35(6):48-53页.
    [11]张树侠,危志英.光学陀螺仪测试、标定方法探讨与实现.光电惯性技术论文集2002:119-125页.
    [12]袁信,倪永锡.晃动基座上捷联式惯导系统的对准与标定.航空学报,1988,9(8).338-345页.
    [13]刘建业,华冰,赖际舟,王松.基于安装方式激励的捷联惯导在线标定算法研究及仿真分析.仪器仪表学报,2008,29(12):2515-2520页.
    [14]顾冬晴,秦永元,严恭敏,徐景硕.基于多元回归模型的捷联惯性测量组件标定技术.测控技术,2005,24(3):59-61页.
    [15]杜红松,刘晓庆,刘兴章.基于小波分析法的光纤陀螺系统标定方法.中国惯性技术学报,2007,15(6):734-737页.
    [16]周琪,秦永元,严恭敏,杨鹏翔.激光捷联惯性组件精确标定方法研究.测控技术,2008,27(9):95-98页.
    [17]严恭敏,秦永元.激光捷联惯组的双轴位置转台标定仿真.中国惯性技术学报,2007,15(1):123-127页.
    [18]张开东.激光陀螺捷联惯导系统连续自动标定技术.国防科学技术大学硕士学位论文,2002.42-46页
    [19]林玉荣,邓正隆.激光陀螺捷联惯导系统中惯性器件误差的系统级标定.哈尔滨工业大学学报,2001,33(1):112-115页
    [20]郭永刚.减振器变形条件下机抖激光陀螺捷联惯导系统标定方法的优化研究.国防科学技术大学硕士学位论文,2006:36-39页
    [21]尚捷,顾启泰.捷联惯导现场最优标定方法研究.中国惯性技术学报,2005,13(4):18-21页
    [22]李海强,詹丽娟,卿立.捷联惯性测量装置在整弹上的标定方法研究.战术导弹控制技术,2006,(53):32-36页
    [23]袁彦红,耿云海,陈雪芹.利用高精度陀螺对星敏感器在轨标定算法研究.系统工程与电子技术,2008,30(1):120-123页
    [24]谢元平,宋章启,姚琼.全数字开环光纤陀螺标定技术.半导体光电,2006,27(5):608-610页
    [25]杨金显,袁赣南,徐良臣.微机械陀螺测试与标定技术研究.传感技术学报,2006,19(5):2264-2267页
    [26]任大海,顾启泰,毛刚,尤政,刘学斌.微型惯性测量组合标定技术.清华大学学报(自然科学版),2004,41(8):21-24页
    [27]陈杰春,丁振良,袁峰,宋建辉,佟庆彬.一种标定陀螺仪的新方法.哈尔滨工程大学学报,2007,28(4):407-412页
    [28]袁保伦,饶谷音.一种新的激光陀螺惯性测量组合标定方法.中国惯性技术学报,2007,15(1):31-34页
    [29]刘永红,杨孟兴,吴一.一种新的激光陀螺捷联惯导系统的误差参数标定方法.战术导弹控制技术,2005,(50):64-68页
    [30]罗超.FO G捷联惯导系统标定和误差补偿技术研究.哈尔滨工程大学硕士学位论文,2006.:21-25页
    [31]黄苹,李绪友.捷联惯导系统标定技术研究.哈尔滨工程大学硕士学位论文,2005:25-29页
    [32]张小跃,张春熹,宋凝芳.基于组合导航技术的光纤捷联系统在线标定.航空学报,2008,29(6):1657-1660页
    [33].李杰,洪惠惠,张文栋.MEMS微惯性测量组合标定技术研究.传感技术学报,2008,21(7):1169-1173页
    [34].张卫东,刘恒春.捷联惯性测量组合标定的仿真研究.中国惯性技术学报,2000,6(2):10-15页
    [35]祝燕华,刘建业,孙永荣.导弹射前惯测组件误差在线标定方案研究.系统工程与电子,2007,4:618-621页
    [36]张树侠.激光陀螺捷联系统安装误差的标定.中国惯性技术学报,2003,8(1):47-50页
    [37]颜苗,翁海娜,谢英.系统参数标定以及惯性元件安装误差测试与补偿技术研究中国惯性技术学报,2006,14(1):27-30页
    [38]高伟,陆强,曹洁,孙枫.水下潜器捷联惯导系统初始对准技术研究.中国航海.vol.23,2003:63-69页
    [39]周丽弦,崔中兴.系泊状态下舰载导弹自主式初始对准研究.北京航空航天大学学报,vol.25,2002:116-128页
    [40]杨剑宏,施红兵,陆恺,舰载弹用捷联系统初始对准时陀螺误差的估计.中国惯性技术学报,vol.7,1999.46-53页
    [41]郭振西,缪玲娟,沈军.里程计组合的捷联惯导系统运动基座对准研究.北京理工大学学报,vol.25,2005.66-75页
    [42]杨亚非,谭久彬,邓正隆.惯导系统初始对准技术综述.中国惯性技术学报,vol.10,2002:6-13页
    [43]经张俊,程向红,王宇.捷联罗经的动基座自对准技术.《中国惯性技术学报》.2009,8(15):8-14页
    [44]徐晓苏.舰载捷联式航向姿态基准系统的研究与设计.南京东南大学,1991:25-36页
    [45]M-J.Yu, J.G.Lee. and C.G.Park, Nonlinear robust observer design for strap-down INS in-flight alignment.IEEE Transaetions on Aerospace and Electronic Systems.vol.40, 2004:797P
    [46]M-J.Yu, Equivalent nonlinear error models of strap-down inertial navigation system Presented at AIAA conference Proceedings, Guidance, navigation and control,1997: 133-146P
    [47]N.Asaoka, M.Ooiwa, M.Tanikawara, T.N.t, Y.Kubo, and S.Sugimoto, Nonlinear Filtering Methods for INS/DGPS In-Motion Alignment.Presented at IONGPS/GNSS 2003, Portland, OR,2003:58-64P
    [48]X.Kong, E.M.Nebot, and H.Durrant-Whyte. Development of anon-linear Psi-angle model for large misalignment errors and its application in INS alignment and calibration.Presented at Proceedings-IEEE International Conference on Robotics and Automation. Detroit, Ml, USA,1999:153-168P
    [49]刘慧,迟焕德,王丰乐.潜艇惯导水平阻尼误差分析的方法.青岛海军潜艇学院舰 船科学技术,2001,6:55-59页
    [50]黄勇,方海斌.三种平台式惯导系统方案的性能分析.《现代电子技术》,2009,11(298):156-169页
    [51]赵汪洋,杨功流,谢英.双惯导改善导航性能的组合数据研究.舰船科学技术,2006,28(4):67-70页
    [52]赵汪洋,杨功流,庄良杰,吴俊杰.双惯导系统水平阻尼技术研究.系统仿真学报,2007,19(3):1109-1111页
    [53]杜亚玲,刘建业,姜涌.一种面向捷联航姿系统的模糊全阻尼算法.应用科学报,2006,24(3):283-287页
    [54]王岩.一种星敏感器与捷联惯导高精度安装误差标定方法.战术弹控制技术2009,26(3):17-20页
    [55]程建华,赵琳,宋君才.自动补偿技术在平台惯导系统状态切换中的应用研究.哈尔滨工程大学学报,2005,26(6):744-749页
    [56]刘玉祝,郑辛,李群.阻尼状态下捷联惯导系统组合导航方法探讨.战术导弹控制技术,2009,26(3):13-16页
    [57]张志鑫,夏金桥,蔡春龙.光纤陀螺标度因数分段标定的工程实现.中国惯性技术学报,2008,16(1):99-103页[58]杨晓霞,黄一.激光捷联惯导系统的一种系统级标定方法.中国惯性技术学报,2008,16(1):1-5页
    [59]高钟毓.惯性导航系统初始对准与标定最优化方法.中国惯性技术学报,2009,17(1):1-7页
    [60]李绪友,黄苹.捷联惯性测量组件陀螺系统标定研究.应用科技,2005,32(12):24-26页
    [61]王金林,翟有新,王芳.机载惯导跑道滑行对准研究,中国惯性技术学报,2001:5-13页
    [62]缪玲娟,田海.车载激光捷联惯导系统的快速初始对准及误差分析.北京理工大学学报,2000,20(3):142-152页
    [63]J.L.Westonand D.H.Titterton, In-flight alignment and calibration of a tactical missile INS, Stuttgart, Ger,1990:44-52P
    [64]万德钧,房建成.惯性导航初始对准.南京:东南大学出版社,1998:78-86页
    [65]孙昌跃,王司,邓正隆.舰载武器惯导系统对准综述.中国惯性技术学报,vol.13,2005:6-10页
    [66]肖龙旭,孙文胜.惯测组合快速高精度标定方法研究.宇航学报,2008,29(1):171-176页
    [67]B.Poratandl.Y.Bar-Itzhaek. Effect of Acceleration Switching During INS In-Fligh): Alignment. AIAA Journal of Guidance and Control, vol.4,1981:385P.
    [68]I.Y.Bar-Itzhaek. Minimal Order Time Sharing Filters for INS In-flight Alignment, AIAA Journal of Guidance and Control, vol.5,1982:396P.
    [69]赵睿.捷联惯性系统初始对准研究.东南大学硕士学位论文.2006:99-112页
    [70]赵文芳.旋转方位和大失准角下的捷联惯导初始对准算法研究.南京航空航天大学硕士论文.2008:58-75页
    [71]D.GMeskinand I.Y.Bar-Itzhaek. Observability Analysis of piece Wise Constam System-Part I:Theory. IEEE Transactions on Aerospace and Electronic Systems, vol.28,1992:1056-1067P.
    [72]D.Meskin.Gandl.Y.Bar-Itzhaek, Observability Analysis of Piece-Wise Constant System Part Ⅱ:Application to inertial navigation in-flight alignment, IEEE Transactions or Aerospace and Electronic Systems, vol.28.1992:1068-1075P.
    [73]K.R.Britting. Inertial navigation systems analysis:Wiley-Interscience,1971:10-15P
    [74]D.Chung, J.G.Lee, C.Gpark. and H.W.park. Strap-down INS error model fo multiposition alignment, IEEE Transactions on Aerospace and Electronic Systems, vol.32.1996:1362P.
    [75]Y.F.Jiang. Error analysis of analytic coarse alignment methods, IEEE Transactions on Aerospace and Electronic Systems, vol.34,1998:334P.
    [76]J.Robert H.Cannon. Alignment of Inertial Guidance Systems by Gyrocompassing-Linear Theory, Journal of the Aerospace Sciences, vol.November,1961,1961:885P.
    [77]H.W.park, J.G.Lee. and C.Gpark. Covariance Analysis of Strap-down INS Considering Gyrocompass Characteristics, IEEEAES,1995,31:10-19P
    [78]Z-M.Ge, Y-C.Lue, and F-N.Ku. Dynamic Analysis of a Gyrocompass. Japanese Journ of Applied Physics.Part I,1996,35:4864-4872P。
    [79]C.Hua. Gyrocompass Alignment with Base Motions Results for a lnmil/h INS/GPS System, Journal of The Institute of Navigation,2000,47:65P.
    [80]J.Shulman. Compensation Algorithms for the Pendulous Gyrocompass, Navigation: Journal of ION(in USA),2001,48.
    [81]G.E.Sandoval-Romero, Fiber optic Gyrocompass Super luminescent Fiber Source, IEEF Aerospace and electronic Systems Magazine, vol.20,2005:25-36P
    [82]黄德鸣,张树侠,孙枫.平台罗经.北京:国防工业出版社,1990.
    [83]A.A.G, E.V.C., M.M.B., K.V.I., and R.C.V. High latitude Trials of Modem Russian Marine Compasses, Presented at IEEE/PLANS,2006:35-48P
    [84]任茂东.船用陀螺罗经,第一版.大连:大连海运学院出版社,1993:68-74页
    [85]孙平,肖凯,刘昆.光纤陀螺组件标定测试系统设计.传感器与微系统,2008,27(5):79-81页
    [86]F.M.Ham and R.G.Brown, Observability. Eigenvalues and Kalman Filtering, IEEE Transactions on Aerospace and Electronic Systems, vol.19,1983:269-273P.
    [87]M.5.Grewal, V.D.Henderson, Miyasako. Application of Kalman filtering to the calibration and alignment of inertial navigation systems, IEEE Transactions on Automatic Control, vol.36,1991:3P.
    [88]Y.F.Jiang, Y.P.Lin. Error estimation of INS ground alignment through observability analysis, IEEE Transactions on Aerospace and Electronic Systems, vol.28,199:292P.
    [89]J.Aranda, J.M.DeLa Cruz, S.Dormido, P.RuiPerez, R.Hernandez. Reduced-order Kalman filter for alignment, Cybernetics and Systems, vol.25,1994:1P.
    [90]S.P.Dmitriyev, O.A.StePanov, S.V.ShePel. Nonlinear filtering method application in INS alignment, IEEE Transaetions on Aerospace and Electron Systems, vol.33,1997: 260P.
    [91]M.E.Pittelkau. Kalman Filtering for Spacecraft System Alignment Calibration, AIAA Journal of Guidance and Control, vol.24,2001:1187P.
    [92]T-G.Lee. Centralized Kalman filter with adaptive measurement fusion:Its application to a GPS/SDINS integration system with an additional sensor.International Journal of Control, Automation and Systems, vol.1,2003:444P.
    [93]S. Hong, M.H.Lee, H-h.Chun, S-H.Kwon, J.L.Speyer. Observability of Error States in GPS/INS Integration, IEEE Transaetions on Vehicular Technology, vol.54,2005:56-68P
    [94]H-5.Ahn, C-h.WonFast. Alignment using Rotation Vector and Adaptive Kalman Filter, IEEE Aerospace and Electronic Systems Transactions on, vol.42,2006:70P.
    [95]D.Choukroun, I.Y.Bar-Itzhaek, Y.OShnlan. Novel Quaternion Kalman Filter.IEEE Aerospace and Electronic Systems Transactions on, vol.42,2006:48-62P
    [96]秦永元,张洪钺,汪淑华.卡尔曼滤波与组合导航原理.西安:西北工业大学出版社,1998:75-86页
    [97]程向红.捷联惯性导航系统动基座初始对准研究.东南大学博士学位论文,1998:52-68页
    [98]D.Wan, Y.Huang, T.Ren. Study on new Kalman filter mechanization for initial alignment of INS in random rocking vehicles, Stuttgart, West Ger,1989:16-22P
    [99]N.EI-Sheimy, S.Nassar, and A.Noureldin. Waveletde-noising for IMU alignment, IEEE Aerospace and Electronic Systems Magazine, vol.19,2004:32P.
    [100]Z.Chuanbin, T.Weifeng, and J.Zhihua. A novel method improving the alignmen accuracy of a strap-down inertial navigation system on a stationary base, Measuremen Science and Technology, vol.15,2004:765P.
    [101]J.C.Fangand D.J.Wan. Fast initial alignment method for strap-down inertial navigation system on stationary base, IEEE Transaetions on Aerospace and Electronic Systems, vol.32,1996:1501P.
    [102]吴磊,孙枫.光纤陀螺捷联系统振动误差补偿研究.传感器与微生物系统,2009,28(2):43-46页
    [103]A.A.Fomitehev, A.B.Koltehev, K.Yu.Schastlyvets, and V.B.Uspensky. Estimation o Gyrocompassing Accuracy and Techniques of Course and Gyro Drift Correction Integrated Navigation System,9th Saint Petersburg International Conference o Integrated Navigation Systems, Saint Petersburg, Russia,2002:31-41P
    [104]T.Morimoto.H.Kumagai, T.Yashiro, and K.Ohtsu. Initial rapid alignment calibration of a marine inertial navigation system, Presented at IEEE Conference of PLANS, La Vegas, NV, USA,1994:16-29P
    [105]魏春岭,张洪钺,郝曙光.捷联惯导系统大方位失准角下的非线性对准,航天控制,2007,20(1):23页.
    [106]魏春岭,张洪钺.捷联惯导系统粗对准方法比较.航天控制,2006,17(1):28页.
    [107]刘晓庆.捷联式惯导系统误差标定方法研究.哈尔滨工程大学硕士学位论文2008:21-36页
    [108]王岩.机抖激光陀螺捷联惯导系统的标定方法研究.国防科学技术大学硕士学位论文.2004:62-74页
    [109]H.S.Hong, J.G.Lee. and C.G.Park. In-flight Alignment of SDINS under Large Initial Heading Error, Presented at AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal Canada.2001:45-60P
    [110]H.5.Hong.J.G.Lee, and C.G.Park. Performance improvement of in-flight alignment for autonomous vehicle under large initial heading error, IEEE proceedings:Radar, Sona and Navigation.vol.151,2004:57P.
    [111]黄苹.捷联惯导系统标定技术研究.哈尔滨工程大学工学硕士学位论文.2005:20-28页
    [112]E-H.ShinandN.EI-Sheimy. An unscented Kalman filter for in-motion alignment of low-cost IMUs, Presented at IEEEPLANS, Monterey, CA, United States.2004: 115-130P
    [113]孟祥涛,蔡春龙.罗经回路在船用航姿系统中的应用与工程实现.中国舰船研究,2008,3(6):61-65页
    [114]Y.Bar-Itzhaek and Berman.N. Control theoric approach to inertial navigation system, AIAA Journal of Guidance. Control and Dynamics, vol.11,1988:55-69P
    [115]T.Gaiffe, Y.Cottreau, N.Faussot, G.Hardy, P.SimonPietri, and H.Arditty. Highly Compact fiber optic gyroeompass for applications at depths up to 3,000 meters, Presented at IEEE/Underwater Technology, Proceedings of the2000 International Symposium on.2000:63-79P
    [116]T.Gaiffe. From R&D Brass board to Navigation Grade FOG-Based INS:the Experience of Photonetics/Ixsea, Presented at IEEE.Optical Fiber Sensors Conference Technical Digest,2002:45-58P
    [117]F.Na Politano, T.Gaiffe, Y.Cottreau, and T.Loret. PHINS:the First High Performances inertial navigation system based on Fiber optic gyroscopes, presented at 9th Saint Petersburg International Conference on Integrated Navigation systems, Saint Petersburg, Russia,2002:25-36P
    [118]秦永元,严恭敏,顾冬晴,郑吉兵.摇摆基座上基于信息的捷联惯导粗对准研究,西北工业大学学报,2005,23(2):681页.
    [119]P.G.Savage, Strap-down Inertial Navigation Integration Algorithm Design Par 1: Attitude Algorithms. AIAA Journal of Guidance, Control and Dynamics.vol.21, 1998:19-28P.
    [120]P.G.Savage, Strap-down Inertial Navigation Integration Algorithm Design Part 2: Velocity and Position Algorithms, AIAA Journal of Guidance, Control, and Dynamics, vol.21,1998:208P.
    [121]谢列托维奇,陀螺系统仪表误差的自动补偿.北京:国防工业出版社,1982:110-125页
    [122]P.S.R.Diniz, E.A.B.d.silva, and S.L.Netto. Digital signal processing:system Analysis and Design:Cambridge University Press,2002:110-120P
    [123]M-J.Yu, J.G.Lee. and H-W.Park. Comparison of SDINS in-flight alignment using equivalent error models, IEEE Transactions on Aerospace and Electronic Systems, vol.35,1999:1046P
    [124]钟秋海,付梦印.现代控制理论与应用,北京:机械工业出版社.2001:79-82页
    [125]李蓓.捷联惯导传递对准可观测性分析.哈尔滨工程大学硕士学位论文.2008:66-78页
    [126]李兵军.基于光纤捷联式罗经系统的初始对准技术.哈尔滨工程大学硕士学位论 文.2008:96-105页
    [127]王宇.机抖激光陀螺捷联惯导系统的初步探索.国防科学技术大学博士学位论文2005:101-120页
    [128]乔道鹏.机载导弹的传递对准研究.哈尔滨工业大学硕士学位论文.2008:22-40页
    [129]徐博,孙枫,高伟.舰船捷联航姿系统自主粗对准仿真与实验研究.兵工学报.2008(12):1467-1473页.
    [130]张钧.速率偏频激光捷联惯导系统初始对准方法研究.西北工业大学硕士论文2006:42-59页
    [131]黄卫权.舰船用平台式惯导系统测控技术研究.哈尔滨工程大学博士学位论文.2006:77-86页
    [132]刘星伯.基于捷联航姿系统的舰船瞬时线运动信息测量研究.哈尔滨工程大学硕士学位论文.2009:84-96页
    [133]练军想.捷联惯导动基座对准新方法及导航误差抑制技术研究.国防科技大学博士学位论文.2007:55-69页
    [134]关劲,程建华,吴磊,刘星伯,甘帅.船用平台式惯导系统状态转换技术的应用中国造船.2008(3):96-102页
    [135]刘为任,庄良杰.惯性导航系统水平阻尼网络的适应式混合智能控制.哈尔滨工业大学学报.2005(11):1586-1589页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700