用户名: 密码: 验证码:
南岭镁质及钙质矽卡岩型锡多金属成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南岭是世界著名的稀土、钨、锡、铌、钽、钼、铋、铅、锌多金属成矿省,其中,矽卡岩型锡多金属矿床占有重要地位。过去对此类矿床的研究取得了许多重要的成果,但也存在着问题和不足。本文选取了南岭成矿带两个新发现的大型矽卡岩型锡矿床:荷花坪、锡田作为典型进行研究。它们分别属于镁质矽卡岩型以及钙质矽卡岩型锡多金属矿床。通过野外地质调查、电子探针矿物分析、全岩主微量成分分析、流体包裹体、稳定同位素、放射性同位素年代学等方法和手段,对两类矿床的成矿岩体特征、矽卡岩特征、成矿物质来源、成矿流体来源、矿床成因、成矿作用等进行了对比研究,建立了矿床成矿模型,探讨了矽卡岩型锡矿化规律,取得的主要认识如下:
     1、荷花坪属于镁质矽卡岩型锡矿。该矿床储量为13万吨锡,5万吨铅和1万吨锌。它与侵入中泥盆统棋梓桥组白云岩及跳马涧组砂岩的侏罗纪晚期(157Ma)隐伏粗-中粒黑云母花岗岩相关。共识别出四个矽卡岩和矿化期次:1、进变质矽卡岩期2、退变质矽卡岩期3、锡石硫化物期4、碳酸盐化期。从新鲜花岗岩到未蚀变的围岩可分辨出清楚的矿物分带。镁质矽卡岩具有特征性的矿物组合:镁橄榄石、尖晶石、透辉石、透闪石、蛇纹石、滑石、金云母等等。对于各种矽卡岩矿物的地球化学研究发现在矽卡岩化过程中,都具有逐渐减少Mg端员及相应增加Fe、Mn端员(特别是Mn端员)的趋势。
     镁质矽卡岩型锡矿化从退变质矽卡岩阶段开始,形成了含锡磁铁矿矽卡岩。但是,锡石沉淀的主要阶段还是第三阶段,沿着裂隙和层间破碎带形成锡石-硫化物脉,这些脉不论是在近矽卡岩带还是在远矽卡岩都广泛存在。硫、铅同位素研究表明成矿元素主要为岩浆来源,岩浆起源于上地壳的熔融。氢氧同位素以及流体包裹体研究表明,早期无水矽卡岩阶段为的高温成矿流体主要为岩浆流体。相对的,退变质流体以相对低盐度(2-10wt.%NaCl equiv)以及低温(220-300℃)为特征,表明大气降水和岩浆流体混合。成矿阶段流体具有低温(170-24℃)和低盐度(1-6wt.%NaCl equiv)的特征。第四阶段大气降水为主体,导致流体温度(130-200℃)和盐度(0.4-1wt.%NaCl equiv)进一步降低。2、锡田为典型的钙质矽卡岩型锡钨多金属矿床,具有典型的钙质矽卡岩矿物组合,如石榴石、透辉石、绿帘石、阳起石、绿泥石等等。共识别出五个矽卡岩及矿化期次,依次为进变质矽卡岩期,退变质矽卡岩期,云英岩-氧化物期,硫化物期,以及晚期蚀变期。形成的主要矽卡岩带为石榴石-透辉石矽卡岩及透辉石矽卡岩。与矽卡岩有关的锡矿化类型共三种:锡石-绿泥石型矿化、锡石-磁铁矿型矿化、锡石-硫化物脉型矿化。
     对湘东锡田岩体进行的LA-ICP-MS定年结果表明,两个第一期中(细)粒斑状黑云母二长花岗岩样品的年龄分别为(220.9±0.6)Ma及(220.7±0.7)Ma;第二期中细粒二云母二长花岗岩的年龄为(154.44±0.7)Ma。两期花岗岩均为高钾、富碱、弱过铝质岩石。稀土总量较高,富集U,Th,亏损Ti,P等高场强元素和Ba, Sr等大离子亲石元素,具高的104Ga/Al,显示A型花岗岩特征。印支期花岗岩略富集轻稀土,Eu异常较弱;燕山期花岗岩轻重稀土分异不明显,Eu异常显著。两者Hf同位素研究显示,岩石具有较低的εHf(t)(-4.91-11.04),亏损地幔二阶段模式年龄集中在1.6-1.8Ga,与华夏地块古老的变质基底年龄一致。因此,锡田岩体是华夏地块古元古代地壳物质在伸展的构造背景下部分熔融的产物。锡田A型花岗岩复式岩体的确定,对于研究湖南东部在中生代印支、燕山两期构造事件中所处的构造背景具有重要意义。
     3、两类锡成矿矽卡岩中的石榴石多数属于(铁铝榴石+镁铝榴石+锰铝榴石)<15%的钙铁-钙铝榴石系列。荷花坪矿区石榴石核部富集钙铝榴石,边部富集钙铁榴石,而锡田矿区石榴石与之相反;荷花坪矿区石榴石重稀土富集,轻稀土亏损;锡田矿区石榴石稀土总量高,轻重稀土无明显分异。
     4、虽然两类矽卡岩型锡多金属矿床存在许多相似之处,如构造背景、成矿岩体、成矿流体、成矿物质来源等,但差异依然十分明显。根本原因是围岩地层的差异性造成了两类矽卡岩的形成。表面上体现的是矿物共生组合及蚀变期次、蚀变分带的差异性,实际上体现的是两种物理化学条件下的锡活化-运移-成矿机制。荷花坪矿区的矽卡岩型锡矿化发育于镁质矽卡岩之上,同时具有富磁铁矿型和富硫化物型两种矿化,前者较早并为后者所叠加,从而形成富矿体;锡田矿区矽卡岩型锡矿化发育于钙质矽卡岩之上,只具有富硫化物型矿化,有时与云英岩化矿体相叠加,形成富矿体。荷花坪矿区镁质矽卡岩中倾向于形成独立的含锡相-锡石,矽卡岩硅酸盐矿物中几乎不含锡;而锡田矿区钙质矽卡岩中普遍发生锡与钙铁硅酸盐相互置换,未形成大量含锡磁铁矿;荷花坪矿区在进变质阶段锡停留在流体中,直到退变质阶段才开始结晶为锡石,硫化物阶段为锡石结晶的高峰期;而锡田矿区的锡在矽卡岩化阶段不断进入硅酸盐矿物,并通过退变质矽卡岩化、云英岩化将这些锡释放出来,硫化物阶段同样为锡石结晶的高峰期。
Nanling Range is a world famous REE, Nb, Ta, W, Sn, Mo, Bi, Pb, Zn metallogenic province. Skarn type tin-polymetallic mineralization occupies an important position in Nanling Range. Though a lot of significant progresses had been achieved in former research, some problems and deficiency are still existed. This paper focuses on two lately discovered large tin deposit, Hehuaping and Xitian, which represent for magnesian and calcic skarn type tin-polymetallic mineralization, respectively. Through the methods and means as field investigation, electron microprobe analysis, major and trace elements component analysis, fluid inclusion analysis, stable isotope analysis, radiogenic isotope geochronology, etc., we mainly studied the aspects of the host rocks characterics, skarn characterics, source of ore-forming material, source of ore-forming fluid, genesis of the deposit, mineralization process, etc, established the mineralization model, preliminary discussed the rules of skarn type tin-polymetallic mineralization. The main aehievements obtained were as follows:
     1. Magnesian skarn-type tin deposits are relatively rare in nature. The Hehuaping tin deposit in southern China is identified as such a type of cassiterite-sulfide mineralization and has a total reserve of approximately130,000tons of tin,50,000tons of lead and10,000tons of zinc. It is related to the Late Jurassic (157Ma) Hehuaping buried coarse-medium-grained biotite granite, which intruded the dolomite of the Middle Devonian Qiziqiao Formation and the sandstone of the Tiaomajian Formation. Four paragenetic stages of skarn formation and ore deposition have been recognized:Ⅰ. prograde skarn, Ⅱ. retrograde skarn, Ⅲ. cassiterite-sulfides, and Ⅳ. carbonates and clays. Alteration zoning through fresh granite to unaltered country rocks can also be clearly identified. A Mg-mineral assemblage of forsterite, spinel, diopside, tremolite, serpentine, talc, phlogopite, and other minerals typifies the skarn. The geochemistry of various skarn minerals indicates a tendency of gradually decreasing of Mg end member and correspondingly increasing of Fe and Mn (especially Mn) end members with the process of skarnization.
     Tin mineralization began during the late retrograde-skarn stage, forming Sn-bearing magnetite skarn. However, the deposition of cassiterite occurred predominantly as cassiterite-sulfide veins forming along fractures and interlayer fracture zones, in both proximal and distal skarn during stage III. The S and Pb isotopic analyses suggest that the ore-forming elements have a magmatic source and the magma was derived from the upper crust. The H-O isotopic and fluid-inclusion analyses indicate that high-temperature ore-forming fluids in early anhydrous skarn formation (stage I) are of magmatic origin. In comparison, the retrograde fluids are characterized by relatively low salinity (2to10wt.%NaCl equiv) and low temperature (220to300℃), which suggests a mixed origin of meteoric waters with magmatic fluids originating from the Hehuaping granite. The major ore-forming stage Ⅲ fluids are characterized by lower temperature (170to240℃) and salinity (1to6wt.%NaCl equiv), while meteoric waters are dominant in stage IV, resulting in a further lowering of temperature (130to200℃) and salinity (0.4to1wt.%NaCl equiv).
     2. Xitian is a typical calcic skarn type tin-polymetallic deposit with typical mineral assemblages of calcic skarn such as garnet, diopside, epidote, actinolite, chlorite, etc. Five paragenetic stages of skarn formation and ore deposition have been recognized:Ⅰ. prograde skarn, Ⅱ. retrograde skarn, Ⅲ. greisen and oxides, IV sulfides, and Ⅳ. late alteration. Main skarn zones are garnet-diopside skarn and diopside skarn. There are three types of tin mineralization with related with skarnization, which are cassiterite-chlorite type, cassiterite-magnetite type and cassiterite-sulphides type, respectively.
     Zircon LA-MC-ICP-MS U-Pb analysis is carried out on the Xitian granite in east Hunan province. Two samples from the first period of medium-(fine) grained porphyritic biotite monzonitic granite show ages of (220.9±0.6) Ma and (220.7±0.7) Ma, respectively. The age of the second period of medium-fine grained two-mica monzonitic granite is (154.4±0.7) Ma. Both two periods of granite are high potassium, rich in alkali and weakly peraluminous. Their compositions are high ΣREE, rich in U and Th, depleted in HFSE such as Ti, P and LILE such as Ba, Sr, with high104Ga/Al. These characteristcs indicating they are A-type granites. The Indosinian granite is rich in LREE, with slightly Eu negative anomaly. The Yanshanian granite shows no obvious fractionation between LREE and HREE, with significant Eu negative anomaly. Hf isotopic analysis indicates that the granite has low εHf(t)(-4.91~-11.04), depleted mantletwo stage Hf model ages concentrate in1.6-1.8Ga, accordance with the old metamorphic basement. Therefore, the Xitian granite is the product from partial melting of proterozoic crust materials of cathaysian block under the extensional setting. The confirmation of Xitian A-type granite has important significance to understanding the tectonic background of east part of Hunan province during Indosinian and Yanshanian movements.
     3. Garnets in tungsten-tin skarns belong to andradite-grossularite series which have almandite+spessartine+pyrope component less than15%. Garnet from the Hehuaping deposit has a core rich in grossularite while rim rich in andradite. Garnet from the Xitian deposit has opposite variation tendency with which from the Hehuaping deposit. The REE distribution pattern of garnet from the Hehuaping deposit shows HREE enrichment characteristics while garnet from the Xitian deposit has high ΣSREE but shows no obvious differentiation between LREE and HREE.
     4. Though there are a lot of similarities of both skarn type tin-polymetallic deposits such as tectonic setting, ore-forming granite, ore-forming fluid, source of ore-forming material, etc, significant differences still hold the key position. The difference of host rocks lead to forming of two kinds of skarn. These two kinds of skarn ostensibly have diversities in mineral assemblages, alteration stages and alteration zoning. They indicates the activation, migration and mineralization of tin in two kinds of physiochemical environments. The skarn type tin mineralization in Hehuaping deposit is hosted by magnesian skarn, with both magnetite-rich and sulphide-rich type mineralization which often forming rich ore body by superposition on each other. The Xitian deposit is hosted by calcic skarn, with only sulphide-rich type mineralization which sometimes forming rich ore body by superpositioned by greisen veins. The Hehuaping deposit tends to form individual tin phase, cassiterite, while silicate skarn minerals hardly contain any tin. On contrast, silicate minerals in calcic skarn of the Xitian deposit show common occurrence of tin in the form of isomorphic replacement but with no large amounts of magnetite. In the Hehuaping deposit, Sn stay in fluid phase in prograde skarn stage and began crystallize until retrograde stage in the form of cassiterite with late sulfide veins. In the Xitian deposit, skarn minral "soaks" up considerably Sn in fluid in skarnization stage but later retrograde skarnization and greisenization released these tin, also formed cassiterite-sulfide veins.
引文
Ahmed, Z., Hariri, M.M.,2006. Formation and mineral chemistry of a calcic skam from Al-Madhiq, SW Saudi Arabia. CHemie der Erde Geochemistry,66,187-201.
    Aines, R.D. and Rossman, GR.,1984. The hydrous component in garnets, Pyraspites. Am. Mineral.,69,1116-1126.
    Aleksandrov, S.M. and Senin, V.G.,2005. Genesis, composition, and evolution of sulfide mineralization in magnesian skarns. Geochemistry International 43,559-577.
    Aleksandrov, S.M.,1975. Geochemistry of boron-tin mineralization in the magnesian skarns of eastern Chukotka. Geochemistry International 11,532-539.
    Aleksandrov, S.M.,2002. Genesis and mineralogical composition of manganese skarn of prograde and retrograde stages of metasomatism in carbonate rocks. Geochemistry International 40,649-663.
    Aleksandrov, S.M.,2010. Skarn-greisen deposits of the Lost River and Mount Ear ore field, Seward Peninsula, Alaska, United States. Geochemistry International 48,1220-1236.
    Aleksandrov, S.M. and Senin, V.G.,2002. Genesis and composition of spinellide and related mineral assemblages in greisenized magnesian skarn and dolomite at the Hsianghualing Deposit, the People's Republic of China. Geochemistry International 40,860-873.
    Andersen, T.,2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Gelolgy,192,59-79.
    Anderson, D.E. and Buckley, GR.,1973. Zoning in garnets, Diffusion models. Contributions to Mineralogy and Petrology,40,87-104.
    Audetat, A., Giinther, D., Heinrich, C.A.,1998. Formation of a magatic-hydrothermal ore deposit, insights with LA-ICP-MS analysis of fluid inclusions. Science,279, 2091-2094.
    Bartell, J.,1907. Geology of the Marysvale mining district, Montana. U.S. Geol. Survey Prof. Paper 57,116-150.
    Bea, F., Montero, P., Garuti, G, et al.1997. Pressure-depende of rare earth element distribution in amphibolite and granulite-grade garnets, A LA-ICP-MS study. Geostandard Newslett.,21,253-270.
    Bea, F., Pereira, M.D. and Stroh, A.,1994. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem. Geol.,117,291-312.
    Beaumont, E.,1884. Note sur les emanations volcaniques et metalliferes. Bull. Soc. Geol. France,4,1249-1334.
    Beran, A., Langer, K. and Andrut, M.,1993. Single crystal infrared spectra in the range of OH fundamentals of paragenetic garnet, omphacite and kyanite in aneclogitic mantle xenoliths. Mineral Petrol.,48,257-268.
    Berg, R.,1991. Tungsten skarn mineralization in a regional metamorphic terrain in northern Norway, a Possible metamorphic ore deposit. Mineral Deposits,26,281-289.
    Black, L.P. and Gulson, B.L.1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. Journal of Australian Geology and Geophysics,3,227-232.
    Blichert-Toft J and Albarede F.1997. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett.148,243-258.
    Blichert-Toft, J., Albarede, F., Kornprobst, J.,1999. Lu-Hf isotope systematics of garnet pyroxenites from Beni Bousera, Morroco, Implications for basalt origin. Science,283, 1303-1306.
    Bodnar, R.J.,1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica Et Cosmochimica Acta 57,683-684.
    Boyd, F.R., Pearson, D.G., Hoal, K.O., et al.2004. Garnet lherzolites from Louwrensia, Namibia, bulk composition and P/T relations. Lithos,77,573-592.
    Boynton.,1984. Cosmochemistry of the rare earth elements, Meteorite studies, In Rare Earth Element Geochemistry (P. Henderson, ed.), (Developments in Geochemistry 2), pp. 115-1522, Amsterdam. Elsevier.
    Brown, L.R.,2006. Plan B 2.0, Rescuing a Planet Under Stress and a Civilization in Trouble. W.W. Norton, New York, pp109.
    Burt, D.M.,1978. Tin silicate-borate-oxide equilibria in skarns and greisens-the system CaO-SnO2-H2O-B2O3-CO2-F2O. Econ. Geol.,73,269-282.
    Carlin, Jr., James F.,2008. Mineral Commodity Summary 2008, Tin. United States Geological Survey.
    Carlson, W.D.,1989. The significance of intergranular diffusion to the mechanisms and kinetics of porphyroblast crystallization. Contributions to Mineralogy and Petrology,103, 1-24.
    Carter, A., Roques, D., Bristow, C., Kinny, P.,2001. Understanding Mesozoic accretion in Southeast Asia, Significance of Triassic thermotectonism (Indosinian Orogeny) in Vietnam. Geology,29,211-214.
    Cepedal, A., Martin-Izard, A., Reguilon, R., et al.,2000. Origin and evolution of the calcic and magnesian skarns hosting the El Valle-Boinas copper-gold deposit, Asturias (Spain). Journal of Geochemical Exploration 71,119-151.
    Chamberlain, C.P. and Conrad, M.E.,1993. Oxygen-isotope zoning in garnet, A record of volatile transport. Geochimica et Cosmochimica Acta,57,2613-2629.
    Chappell, B.W., White, A.J.R.,1974. Two contrasting granite types. Pacific. Geol.,8, 173-174.
    Chappell, B.W., White, A.J.R.,2001. Two contrasting granite types,25 years later. Australian Journal of Earth Sciences 48,489-499.
    Chen, J.F. and Jahn, B.M.,1998. Crustal evolution of southeastern China, Nd and Sr isotopic evidence. Tectonophysics,284,101-133.
    Chen, J., Halls, C., Stanley, C.J.,1992a. Tin-bearing skarns of South China-geological setting and mineralogy. Ore Geology Reviews 7,225-248.
    Chen, J., Halls, C., Stanley, C.J.,1992b. Rare-earth element contents and patterens in major skarn minerals from Shizhuyuan W, Sn, Bi and Mo deposit, South China. Geochemical Journal 26,147-158.
    Chowdhury, S. and Lentz, D.R.,2011. Mineralogical and geochemical characteristics of scheelite-bearing skarns, and genetic relations between skarn mineralization and petrogenesis of the associated granitoid pluton at Sargipali, Sundergarh District, Eastern India. Journal of Geochemical Exploration,108,39-61.
    Chu, N.C., Taylor, R.N., Chavagnac, V., et al.,2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry, An evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry,17(12), 1567-1574.
    Clark, A.H., Farrer, E., Caelles, J.C., et al.,1976. Longitudinal variations in the metallogenetic evolution of the Central Andes, a progress report. Geological Association of Canada, Special Paper Number 14, pp58.
    Clayton, R.N., O'Neil, J.R., Mayeda, T.K.,1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research 77,3057-3067.
    Collins, W.J., Beams, S.D., White, A.J.R., et al., Nature and origin of A-type granites with particular reference to southeastern Australia. Contribution to Mineralogy and Petrology, 80(2),189-200.
    Cygan, R.T. and Lasaga, A.,1982. Crystal growth and the formation of chemical zoning in garnets. Contributions to Mineralogy and Petrology,79,187-200.
    Deer, W.A., Howie, R.A., Zussman, J.,1992. An introduction to the rock forming minerals. Prentice Hall, England, p.1-696
    Deng, J.F., Mo, X.X., Zhao, H.L., Wu, Z.X., Luo, Z.H., Su, S.G.,2004. A new model for the dynamic evolution of Chinese lithosphere,'continental roots-plume tectonics'. Earth-Science Reviews,65,223-275.
    Dick, L.A., Hodgson, C.J.,1982. The MacTung W-Cu(Zn) contact metasomatic and related deposits of the northeastern Canadian Cordillera. Economic Geology 77,845-867.
    Dobson, D.C.,1982. Geology and alteration of the Lost River tin-tungsten-fluorine deposit, Alaska. Economic Geology,77,1033-1052.
    Duchene, S., Blichert-Toft, J., Luais, B., et al.,1997. The Lu-Hf dating of garnets and ages of the Alpine high pressure metamorphism. Nature,387,586-589.
    Eadington, P.J., Kinealy, K.,1983. Some aspects of the hydrothermal reactions of tin during skarn formation. Journal of the Geological Society of Australia 30,461-471.
    Eby, G.N.,1990. The A-type granitoids, A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos,26,115-134.
    Einaudi, M.T., Burt, D.M.,1982. Introduction; terminology, classification, and composition of skarn deposits. Economic Geology 77,745-754.
    Einaudi, M.T., Meinert, L.D., Newberry, R.J.,1981. Skarn deposits. Economic Geology,75th Anniversary Volume,317-391.
    Emmons, W.H.,1936. Hypogene zoning in metalliferous lodes. Internat. Geol. Congr.,16th 1, 417-432.
    Emsley, J.,2001. "Tin". Nature's Building Blocks, An A-Z Guide to the Elements. Oxford, England, UK, Oxford University Press. pp.445-450.
    Erambert, M. and Austrheim, H.,1993. The effect of fluid and deformation on zoning and inclusion patterns in poly-metamorphic garnets. Contributions to Mineralogy and Petrology,115,204-214.
    Foster, M.D.,1962. Interpretation of the composition and a classification of the chlorites. US Geological Survey Professional Paper, A1-A33.
    Franzini, M., Leoni, L., Saitta, M.,1972. A simple method to valuate the matrix effect in X-ray fluorescence analysis. X-ray Spectrom,1,151-154.
    Frisch, C.J., Helgeson, H.C.,1984. Metasomatic phase relations in dolomites of the Adamello Alps. Am J Sci.284,121-185.
    Frost, C.D. and Frost, B.R.,1997. Reduced rapakivi-type granites, The tholeiite connection. Geology,25,647-650.
    Frost, C.D., Frost, B.R., Chamberlain, K.R., et al.,1999. Petrogenesis of the 1.43Ga Sherman batholith, SE Wyoming, USA, A reduced, rapakivi-type anorogenic granite. J Petrol,40, 1771-1802.
    Fu, M., Changkakoti, A., Krouse, H.R., et al.,1991. An oxygen, hydrogen, sulfur, and carbon isotope study of carbonate-replacement (skarn) tin deposits of the Dachang tin field, China. Econ. Geol.,86,1683-1703.
    Fu, M., Kwak, T.A.P., Mernagh, T.P.,1993. Fluid inclusion studies of zoning in the Dachang tin-polymetallic ore field, People's Republic of China. Econ. Geol.,88,283-300.
    Garson, M.S., Mitchell, A.H.G.,1977. Mineralization at destructive plate boundaries, a brief review. In, Volcanic Processes in Ore Genesis. Geological Society, London, Special Publications,7(1),81-97.
    Gaspar, M., Knaack, C., Meinert, L.D., et al.2008. REE in skarn systems, A LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochimica Et Cosmochimica Acta., 72,185-205.
    Gaspar, L.M., Inverno, C.M.C.,2000. Mineralogy and metasomatic evolution of distal strata-bound seheelite skams in the Riba de Alva Mine, Northeastern Portugal. Eeon. Geol.95,1259-1275.
    Gilder, S.A., Gill, J., Coe, R.S., et al.,1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China. J. Geophys. Res.,101,16137-16154.
    Gilg, H.A., Lima, A., Somma, et al.,2001. Isotope geoehemistry and fluid inclusion study of skarns from Vesuvius. Mineralogy and Petrology,73,145-176.
    Goldschmidt, V. M.,1911. Die Kontakmetamorphose im Kristianagebiet. Oslo Videnskapssel-Skapets Skrifter. I. Mat.-Naturv. Klasse,1,1-488.
    Grant, J.N., Halls, C., Avila, W., et al.,1977. Igneous geology and evolution of hydrothermal systems in some sub-volcanic tin deposits of Bolivia. In, Volcanic processes in ore genesis special publication No.7, Geological Society of London in conjunction with the Institution of Mining and Metallurgy,117-126.
    Griffin, W.L., Powell, W.J., Pearson, N.J., et al.2008. GLITTER, data reduction software for laser ablation ICP-MS. In, Sylvester P (Ed.), Laser Ablation-ICP-MS in the Earth Sciences, Current Practices and Outstanding Issues, Mineralogical Association of Canada Short Course,40,308-311.
    Griffin, W.L., Wang, X., Jackson, S.E., et al.,2002. Zircon chemistry and magma mixing, SE China, in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61,237-269.
    Groves, D.I.,1972. The geochemical evolution of tin bearing granites in the Blue Tier Batholith, Tasmania. Econ. Geol.,67,445-457.
    Groves, D.I., McCarthy, T.S.,1978. Fractional crystallization and the origin of tin deposits in granitoids. Mineral Deposit.,13,11-26.
    Gu, L.X., Zaw, K., Hu, W.X., et al.,2007. Distinctive features of Late Palaeozoic massive sulphide deposits in South China. Ore Geology Reviews 31,107-138.
    Harris, N.B.W., Gravestock, P. and Inger, S.,1992. Ion-microprobe determinations of trace-element concentrations in garnets from anatectic assemblages. Chem. Geol.,100, 41-49.
    He, Z.Y., Xu, X.S., Yu, Y, et al.,2009. Oigin of the Late Cretaceous syenite from Yandangshan, SE China, constrained by zircon U-Pb and Hf isotopes and geochemical data. International Geology Review,51(6),556-582.
    Heinrich, C.A.,1990. The chemistry of hydrothermal tin(-tungsten) ore deposition. Economic Geology and the Bulletin of the Society of Economic Geologists 85,457-481.
    Heinrich, C.A.,1995. Geochemical evolution and hydrothermal mineral deposition in Sn (-W-base metal) and other granite-related ore systems, some conclusions from Australian examples. In, Magmas, Fluids, and Ore Deposits (J.F.H. Thompson, eds.), Mineralogical Association of Canada, Short course series, Victoria, British Columbia, 203-220.
    Hickmott, D.D. and Shimuzu, N.,1990. Trace element zoning in garnet from the Kwoiek area, British Columbia, Disequilibrium partitioning during garnet growth. Contrib. Mineral. Petrol.104,619-630.
    Hickmott, D.D. and Spear, F.S.,1992. Major-and trace-element zoning in garnets from calcareous pelites in the NW Shelburne Falls Quadrangle, Massachusetts, garnet growth histories in retrograded rocks. J. Petrol.,33,965-1005.
    Hickmott, D.D., Shimizu, N., Spear, F.S., et al.1987. Trace-element zoning in a metamorphic garnet. Geology,15,573-576.
    Hoal, K.O., Hoal, B.G., Erlank, A.J., et al.1994. Metasomatism of the mantle lithosphere recorded by rare earth elements in garnets. Earth Planet. Sci. Lett.,126,303-313.
    Hoare, W.E.,1969. Developments in tin consumption and the role of research. A Second Technical Conference on Tin, Bangkok, International Tin Council III,835-857.
    Hofmeister, A.M. and Chopelas, A.,1991. Vibrational Spectroscopy of End-Member Silicate Garnets. Phys. Chem. Minerals,17,503-526.
    Hollister, L.S.,1966. Garnet zoning, An interpretation based on the Rayleigh fractionation model. Science,154,1647-1651.
    Hoskin, P.W.O. and Black, L.P.,2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology,18(4), 423-439.
    Hosking, K.F.G.,1974. The search for deposits from which tin can be profitably recovered now and in the foreseeable future, Fourth World Tin Congress, Kuala Lumpur, Preprint.
    Hua, R.M., Chen, P.R., Zhang, W.L., Lu, J.J.,2005. Three large-scale metallogenic events related to the Yanshanian Period in Southern China Mineral Deposit Research. In, Mao, J., Bierlein, F.P., editors. Meeting the Global Challenge. Springer Berlin Heidelberg pp. 401-404.
    Humboldt, A.,1823. Geognostischer Versuch uber die Lagerung der Gebirgsarten in beiden Erdhalften. Deutsch bearbeitet von Karl Casar Ritter vom Leonhard. Levrault, Strabburg, 383pp.
    Hutcheson, C.S., Chakraborty, K.R.,1978. Tin, A mantle or crustal source? Preprint Geology of Tin Deposits. Proceeding of International Symposium. Geological Society of Malaysia Special Bulletin.
    Irving, A.,1978. A review of experimental studies of crystal/liquid trace element partitioning. Geochimica et Cosmochimica Acta,42(6),743-770.
    Ishihara, S.,1977. The magnetite-series and ilmenite-series granitic rocks. Min. Geol.,27, 293-305.
    Jackson, S.E., Pearson, N.J., Griffin, W.L., et al.,2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol,211,47-69.
    Jamtveit, B, Ragnarsdottir, K.V., Wood, B.J.,1995. On the origin of zoned grossular-andradite garnets in hydrothermal systems. Eur. J. Mineral.,7,1399-1410.
    Jamtveit, B. and Hervig, R.L.,1994. Constraints on transport and kinetics in hydrothermal systems from zoned garnet crystals. Science,263,505-508.
    Jamtveit, B., Wogelius, R.A., Fraser, D.G.,1993. Zonation patterns of skarn garnets, Records of hydrothermal system evolution. Geology,21,113-116.
    Jiang, Y.H., Jiang, S.Y., Dai, B.Z.,2009. Middle to Late Jurassic felsic and mafic magmatism in southern Hunan Province, Southeast China, implications for a continental arc to rifting. Lithos,107(3-4),185-204.
    Jiang, Y.H., Jiang, S.Y., Zhao, K.D., Ling, H.F.,2006. Petrogenesis of Late Jurassic Qianlishan granites and mafic dykes, Southeast China, implications for a back-arc extension setting. Geological Magazine 143,457-474.
    Karimzadeh, S.A.,2004. Garnet composition as an indicator of Cu mineralization, evidence from skarn deposits of NW Iran. Journal of Geochemical Exploration,81,47-57.
    Kesler, S.E.,1997. Metallogenic evolution of convergent margins, selected ore deposit models. Ore Geology Rev.,12,153-171.
    King, P.L., White, A.J.R., Chappel,l B.W., et al.,1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. Journal of Petrology,38(3),371-391.
    Knopf, A.,1933. Pyrometasomatic deposits, in Ore deposits of the western States (Lindgren vol.), New York, Am. Inst. Mining Metall. Engineers,537-557.
    Kwak, T.A.P.,1987. W-Sn skarn deposits and related metamorphic skarns and granitoids. Developments in Economic Geology 24. Elsevier Science Ltd.
    Kwak, T.A.P., Askin, P.W.,1981. Geology and genesis of the F-Sn-W-(Be-Zn) skarn (wrigglite) at Moina, Tasmania. Economic Geology,76,439-467.
    Kwak, T.A.P., Nicholson, M.,1988. Szaibelyite and fluoborite from the st-dizier sn-borate skarn deposit, Northwest Tasmania, Australia. Mineralogical Magazine 52,713-716.
    Leake, B.E., Wolley, A.R., Arcps, C.E.S.,1997. Nomenclature of amphiboles. Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on new mineral and mineral names. American Mineralogist,82,1019-1037.
    Leake, B.E., Wolley, A.R., Birch, W.D., et al.,2004. Nomenclature of Amphiboles. Additions and revisions to the International Mineralogical Association's amphibole nomenclature. Mineralogical Magazine,68(1),209-215.
    Lee, C.H., Lee, H.K., Kim, S.J.,1998. Geochemistry and mineralization age of magnesian skarn-type iron deposits of the Janggun mine, Republic of Korea. Mineralium Deposita 33,379-390.
    Lehmann, B.,1990. Metallogeny of Tin. Springer-Verlag, Berlin Heidelberg, pp211.
    Li, X.H., Chung, S.L., Zhou, H.W., et al.,2004. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi,40Ar/39Ar dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China. Geol. Soc. Spec. Pub.,226,193-215.
    Li, X.H., Liu, D.Y., Sun, M., et al.,2004. Precise Sm-Nd and U-Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China. Geological Magazine 141,225-231.
    Li, Z.L., Hu, R.Z., Yang, J.S., et al.,2007. He, Pb and S isotopic constraints on the relationship between the A-type Qitianling granite and the Furong tin deposit, Hunan Province, China. Lithos 97,161-173.
    Lindgren, W.,1902. The character and genesis of certain contact deposits. Am. Inst. Mining Engineers Trans.,81,226-244.
    Lindgren, W.,1913. Mineral deposits. McGraw-Hill Book Company.883pp.
    Linnen, R.L. and Williams, J.,1993. Mineralogical constraints on magmatic and hydrothermal Sn-W-Ta-Nb mineralization at the Nong Sua aplite-pegmatite, Thailand. Eur. J. Mineral., 5,721-736.
    Loiselle, M.C., Wones, D.R.,1979. Characteristics and origin of anorogenic granites. Geological Society of America, Abstracts with Programs,1,468.
    Lu, H.Z., Liu, Y.M., Wang, C.L., et al.,2003. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China. Economic Geology and the Bulletin of the Society of Economic Geologists 98,955-974.
    Ludwig, K.R.,1991. ISOPLOT, A plotting and regression program for radiogenic-isotope data. U. S. Geological Survey Open-file Report, pp.39.
    Magak'yan, I.G,1968. Ore deposits, tin. Int. Geol. Rev.,10,108-121
    Maniar, P.D. and Piccoli, P.M.,1989. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull.,101,635-643.
    Mao, J.W., Chen, Y.C., Bi, C.S. et al.,1995. Geology of tin deposits in China. Scientia Geologica Sinica,4(2),121-177.
    Mao, J.W., Li, H.Y.,1995. Evolution of the Qianlishan granite stock and its relation to the Shizhuyuan polymetallic tungsten deposit. International Geology Review 37,63-80.
    Mao, J.W., Li, H.Y., Shimazaki, H., et al.,1996. Geology and metallogeny of the Shizhuyuan skarn-greisen deposit, Hunan Province, China. International Geology Review 38, 1020-1039.
    Mao, J.W., Xie, GQ., Li, X.F., et al.,2006. Mesozoic Large-scale Mineralization and Multiple Lithospheric Extensions in South China. Acta Geologica Sinica 80(3),420-431.
    McCarthy, T.S., Hasty, R.A.,1976. Trace element distribution patterns and their relationship to the crystallization of granitic melts. Geochimica et Cosmochimica Acta,40(11), 1351-1358.
    McDonough, W.F. and Sun, S.S.,1995. The composition of the Earth. Chemical Geology,120, 223-253.
    Meinert, L.D.,1997. Application of skarn deposit zonation models to mineral exploration. Exploration and Mining Geology,6,185-208.
    Meinert, L.D.,1992. Skarns and skarn deposits. Geoseience Canada,19(4),145-162.
    Meinert, L.D.,1993. Igneous Petrogenesis and skarn deposits. Geol. Assoe. Canada Spec. Pap.,40,569-583.
    Meinert, L.D., Dipple, GM., Nicolescu, S.,2005.World skarn deposits. Economic Geology, 100th Anniversary Volume,299-236.
    Meissner, W., Ochsenfeld, R.,1933. Ein neuer Effekt bei Eintritt der Supraleitfahigkeit. Naturwissenschaften,21(44),787-788.
    Mezger K, Essene E J and Halliday A N.1992. Closure temperatures of the Sm-Nd system in metamorphic garnets. Earth. Planet. Sci. Lett.,113,397-409.
    Misra, K.C.,2000. Understanding mineral deposits. Kluwer Aeademie Publishers, Dordreeht, The Netherlands.
    Mitchell, A.H.G.,1974. Southwest England granites, magmatism and tin mineralization in a post-collision tectonic setting. Trans. Instn Min. Metall.83, B95-97.
    Mitchell, A.H.G,1977. Tectonic settings for emplacement of Southeast Asia tin granites. Bull. Geol. Soc. Malaysia,9,123-140.
    Mitchell, A.H.G., Garson, M.S.,1976. Mineralization at plate boundaries. Mineral Science and Engineering,8,129-169.
    Moretti, R. and Ottonello, G.,1998. An appraisal of endmember energy and mixing properties of the rare earth garnets. Geochim. Cosmochim., Acta 62,1147-1173.
    Mulligan, R.,1975. Geology of Canadian tin occurrences. Canada Geology Survey, Economic Geology Reports,28,155.
    Newberry, R.J.,1982. Tungsten-bearing skarns of the Sierra Nevada; I, The Pine Creek Mine, California. Economic Geology 77,823-844.
    Nakano, T., Yoshino, T., Shimazaki, H., et al.1991. Pyroxene composition as an indicator in the classification of skarn deposits. Econ. Geol.,89,1567-1580.
    Nicolescu, S., Cornell, D.H., Sodervall, U., et al.1998. Secondary ion mass spectrometry analysis of rare earth elements in grandite garnet and other skarn related silicates. Eur. J. Mineral.,10,251-259.
    Nekrasov, I.Ya.,1971. Features of tin mineralization in carbonate deposits as in Eastern Siberia. Int. Geol. Rev.,13,1532-1542.
    Ohmoto, H. and Goldhaber, M.,1997. Sulfur and carbon isotopes In, Barnes, H.L. ed. Geochemistry of Hydrothermal Ore Deposits, V.Ⅲ. John Wiley & Sons, New York, 517-611.
    Ohmoto, H. and Rye, R.O.,1979. Isotopes of sulfur and carbon. New York, John Wiley & Sons.
    Oen, I.S., De Maessehalek, A.A., Lustenhouwer, W.J.,1986. Mid Proterozoic exhalative sedimentary Mn skarns containing possible microbial fossil, Grythyttan, Bergslangen, Sweden. Econ. Geol.,81,1533-1543.
    Patterson, D.J., Ohmoto, H., Solomon, M.,1981. Geologic setting and genesis of cassiterite-sulfide mineralization at Renison Bell, western Tasmania. Econ Geol.76, 393-438.
    Peng, J.T., Zhou, M.F., Hu, R.Z., et al.,2006. Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Mineralium Deposita 41,661-669.
    Pitcher, W.S.,1982. Granite type and tectonic environment. London, Acad. Press.
    Pawlak, D., Wozniak, K., Frukacz, Z.,1999. Correlation between structural parameters of garnet and garnet-like structures. Acta Crystallaogr., B55,736-744.
    Pride, C. and Muecke, GK.,1981. Rare earth element distributions among coexisting granulite facies minerals, Scourian Complex, NW Scotland. Contrib. Mineral. Petrol,76, 463-471.
    Prince, C.I., Kosler, J., Vance, D., et al.,2000. Comparison of laser ablation ICP-MS and isotope dilution REE analyses-implications for Sm-Nd garnet geochronology. Chem. Geol.,168,255-274.
    Qi, L., Hu, J., Gregoire, D.C.,2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta,51,507-513.
    Rose, A.W., Burt, D.M.,1979. Hydrothermal alteration. In. H.L.Barnes (Editor), Geochemistry of hydrothermal ore deposits. Wiley, New York, pp173-235.
    Roedder, E.,1984. Fluid inclusions, Mineralogical Society of America Reviews in Mineralogy, v.12, pp.1-644.
    Reilly, M.,2007. How Long Will it Last? New Scientist,194 (2605),38-39.
    Rossman, G.R. and Aines, R.D.,1991. The hydrous components in garnets, grossular hydrogrossular. Am. Mineral.,76,1153-1164.
    Rajesh, H.M.,2000. Characterization and origin of a compositionally zoned aluminous A-type granite from South India. Geological Magazine,137(3),291-318.
    Robler, B.,1700. Speculum metallurgiae politissimum. Order, Hell-polierter Berg-Bau-Spiegel. Johann Jacob Winckler Dresden,168pp.
    Saez, R., Pascual, Toscano, M., et al.,1999. The Iberian type of volcano-sedimentary massive sulphide deposits. Mineral. Deposita.,34,549-570.
    Sainsbury, C.L., Mulligan, R., Smith, W.,1969. The Circum-pacific "tin Belt" in North America. International Tin Council. Thailand. Krom Sapphayakon Thorani. London, International Tin Council; Bangkok, Dept. of Mineral Resources.
    Scherba, G.N.,1970. Greisens. International Geology Review,12,114-150,230-255.
    Scherer, E.E., Cameron, K.L., Johnson, C.M., et al.1997. Lu-Hf geochronology applied to dating Cenozoic events affecting lower crustal xenoliths from Kilbourne Hole, New Mexico. Chem. Geol.,142,63-78.
    Scherer, E., Munker, C., Mezge,r K..2001. Calibration of the Lutetium-Hafnium clock. Science,293,683-687.
    Schrader, G.F., Elshennawy, A.K.,2000. Manufacturing Processes & Materials.4th edition. Society of Manufacturing Engineers.
    Schwandt, C.S., Cygan, R.T., Westrich, H.R.,1996. Ca self-diffusion in grossular garnet. American Mineralogist,81,448-451.
    Schwandt, C.S., Papike, J.J., Shearer, C.K., et al.1993. A SIMS investigation of REE chemistry of garnet in garnetite associated with the Broken Hill Pb-Zn-Ag orebodies, Australia. Can. Mineral.,31,371-379.
    Schwartz, M., Surjono,1990. The strata-bound tin deposit Nam Salu, Kelapa Kampit, Indonesia. Econ. Geol.,85,76-98.
    Shimazaki, H.,1977. Grossular-spessartine-almandine garnets from some Japanese scheelite skarns. Can Mineral.15,74-80.
    Shimizu, N. and Sobolev, N.V.,1995. Young peridotitic diamonds from the Mir kimberlite pipe. Nature,375,394-397.
    Shu, F.H.,1982. The physical universe, An introduction to astronomy. University Science Books. pp.119-121.
    Shu, X.J., Wang, X.L., Sun, T., et al.,2011. Trace elements, U-Pb ages and Hf isotopes of zircons from Mesozoic granites in the western Nanling Range, South China, Implications for petrogenesis and W-Sn mineralization. Lithos 127,468-482.
    Sillitoe, R.H.,1972. Relation of metal provinces in western America to subduction of oceanic lithosphere. Bull. Geol. Soc. Am.,83,813-817.
    Sillitoe, R.H.,1974. Tin mineralization above mantle hot spots. Nature,248,497-499.
    Skublov, S.G. and Drugova, G.M.,2000. REE distribution in metamorphic garnets. Herald DGGGMS RAS,2,60-61.
    Smith, M.P., Henderson, P., Jeffries, T.E.R., et al.,2004. The rare earth elements and uranium in garnets from the Beinn and Dubhaich Aureole, Skye, Scotland, UK, constraints on processes in a dynamic hydrothermal system. J. Petrol.,45,457-484.
    Song, Y.X., Li, F.L., Yang, Z.F., et al.2011. Diffuse reflectance spectroscopy for monitoring potentially toxic elements in the agricultural soils of Changjiang River Delta, China. Applied Clay Science. (in press)
    Stanton, R.L.,1987. Constitutional features and some exploration implieations of three zine-bearing stratiform skarns of eastern Australia. Trans. lnstn. Min. Metall. (Sect.B, APP1. Earth sci.),96,37-57.
    Stemprok, M.,1963. Distribution of Sn-W-Mo formation deposits around granites. In, Stemprok, M. (Editor) Symposium, Problem of post magmatic ore deposition volume 1, Geological Survey of Czechoslovakia, Prague,69-72.
    Sterner, S.M., Bodnar, R.J.,1984. Synthetic fluid inclusions in natural quartz; 1, Compositional types synthesized and applications to experimental geochemistry. Geochimica Et Cosmochimica Acta.48,2659-2668.
    Su, W., You, Z.D., Cong, B.L., et al.2002. Cluster of water molecules in garnet from ultrahigh pres sure eclogite. Geology,30,611-614.
    Summerer, K., Schneider, R., Faestermann, T., et al.,1997. Identification and decay spectroscopy of 100Sn at the GSI projectile fragment separator FRS. Nuclear Physics A, 616,341-345.
    Sun, S.S., McDonough, W.F.,1989. Chemical and isotopic systematics of oceanic basalts, implications for mantle composition and processes (in Magmatism in the ocean basins). Geological Society Special Publications,42,313-345.
    Sutphin, D.M., Sabin, A.E., Reed, B.L.,1992. Tin-International Strategic Minerals Inventory Summary Report. DIANE Publishing, Darby.
    Taylor, H.P.,1997. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. New York, John Wiley & Sons
    Taylor, R.G., 1979. Geology of tin deposits. Elsevier Scientific Publishing Company, Amsterdam,543pp.
    Thompson, M. and Walsh, J.N.,1984. Handbook of inductively coupled plasma atomic emission spectrometry. Surrey, Viridian Publishing.
    Timon, S.M., Moro, M.C., Cembranos, M.L., Fernandez, A., Crespo, J.L.,2007. Contact metamorphism in the Los Santos W skarn (NW Spain). Mineralogy and Petrology 90, 109-140.
    Tornebohm, A.E.,1875. Geognostisk beskrifning ofver Persbergets Grufvefalt, Sveriges Geologiska Undersokning, P.A. Norstedt and Sons, Stockholm,21 p.
    Turner, S.P., Foden, J.D., Morrison, R.S.,1992. Derivation of some A-type magmas by fractionation of basaltic magma, An example from the Pathaway Ridge, South Australia. Lithos,28,151-179.
    Umpleby, J.B.,1916. The occurrence of ore on the limestone side of garnet zones. Univ. California Dept. Geology Bull.,10,25-37.
    van Westrenen, W., Blundy, J.D., Wood, B.J.,1999. Crystal-chemistry controls on trace element partitioning between garnet and anhydrous melt. Am. Mineral.,84,838-847.
    van Westrenen, W., Allan, N.L., Blundy, J.D., et al.,2000. Atomistic simulation of trace element incorporation into garnets-comparison with experimental garnet-melt partitioning data. Geochim. Cosmochim. Acta,64,1629-1639.
    van Westrenen, W., Wood, B.J. Blundy, J.D.,2001. A predictive thermodynamic model of garnet-melt trace element partitioning. Contrib. Mineral. Petrol.,142,219-234.
    Wang, F.Y., Ling, M.X., Ding, X., Hu, Y.H., Zhou, J.B., Yang, X.Y., et al.,2010. Mesozoic large magmatic events and mineralization in SE China, oblique subduction of the Pacific plate. International Geology Review 53,704-726.
    Wang, R.C., Fontan, F., Chen, X.M., Hu, H., Liu, C.S., Xu, S.J., et al.,2003. Accessory minerals in the xihuashan Y-enriched granitic complex, Southern China, a record of magmatic and hydrothermal stages of evolution. Can Mineral.41,727-748.
    Wang, Y.J., Fan, W.M., Sun, M., et al.,2007. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block, A case study in the Hunan Province. Lithos,96,475-502.
    Wang, Y.J., Fan, W.M., Cawood, P.A., Li, S.,2008. Sr-Nd-Pb isotopic constraints on multiple mantle domains for Mesozoic mafic rocks beneath the South China Block hinterland. Lithos.106,297-308.
    Watson, E.B.,1996. Surface enrichment and trace-element uptake during crystal growth. Geochim. Cosmochim. Acta,60,5013-5020.
    Watson, E.B. and Harrison, T.M.,1983. Zircon saturation revisited-temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett,64, 295-304.
    Wei, D.F., Bao, Z.Y., Fu, J.M., Cai, M.H.,2007. Diagenetic and mineralization age of the Hehuaping tin-polymetallic orefield, Hunan Province. Acta Geologica Sinica-English Edition 81,244-252.
    Whalen, J.B., Currie, K.L., Chappell, B.W.,1987. A-Type granites, Geochemical characteristics discrimination and petrogenesis. Contributions to Mineralogy and Petrology,95(4),407-419.
    Whitney, P.R. and Olmsted, J.F.1998. Rare earth element metasomatism in hydrothermal systems, the Willsboro-Lewis wollastonite ores, New York, USA. Geochim. Cosmochim. Acta,62,2965-2977.
    Winchell, H.,1958. The Composition and Physical Properties of Garnet. The American Mineralogist,43,595-600.
    Wu, F.Y., Sun, D.Y., Li, X.H., et al.,2002. A-type granites in Northeastern China, Age and geochemical constraints on their petrogenesis. Chem Geol,187,143-173.
    Wu, F.Y., Yang, Y.H., Xie, L.W., et al.2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol,234,105-126.
    Wu, J., Liang, H.Y., Huang, W.T., et al.,2012. Indosinian isotope ages of plutons and deposits in southwestern Miaoershan-Yuechengling, northeastern Guangxi and implications on Indosinian mineralization in South China. Chin Sci Bull, (in press)
    Xie, L., Wang, R.C., Chen, J., et al.2010. Mineralogical evidence formagmatic and hydrothermal processes in the Qitianling oxidized tin-bearing granite (Hunan, South China), EMP and (MC)-LA-ICPMS investigations of three types of titanite. Chem. Geol.,276,53-68.
    Yang, J.H., Wu, F.Y., Chung, S.L., et al.,2006. A hybrid origin for the Qianshan A-type granite, northeast China, Geochemical and Sr-Nd-Hf isotopic evidence. Lithos,89, 89-106.
    Yang, J.H., Wu, F.Y., Wilde, S.A., et al.,2007.Tracing magma mixing in granite genesis, in situ U-Pb dating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology,153(2),177-190.
    Young, E.D. and Rumble, D. Ⅲ.1993. The origin of correlated variations in in-situ 18O/16O and elemental concentrations in metamorphic garnet from southeastern Vermont, USA. Geochimica et Cosmochimica Acta,57,2585-2597.
    Yuan, H.L., Gao, S., Dai, M.N., et al.,2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadruple and multiple-collector ICP-MS. Chem Geol,247,100-118.
    Zartman, R.E., Doe, B.R.,1981. Plumbotectonics, the model. Tectonophysics 75,135-162.
    Zaw, K., Singoyi, B.,2000. Fomation of magnetite-scheelite skarn mineralization at Kara, Northwestern Tasmania, evidence from mineral chemistry and stable isotopes. Econ. Geol.,95,1212-1230.
    Zhang, H., Menzies, M.A., Lu, F., et al.2000. Major and trace element studies on garnets from Paleozoic kimberlite-borne mantle xenoliths and megacrysts from the North China craton. Sci. China D.,43,423-430.
    Zhao, Y.M., Dong, Y.G., Li, D.X, et al.,2003. Geology, mineralogy, geochemistry, and zonation of the Bajiazi dolostone-hosted Zn-Pb-Ag skarn deposit, Liaoning Province, China. Ore Geology Reviews 23,153-182.
    Zhao, Y.M. and Li, D.X.,2004. Pb-Zn-Ag-bearing Manganoan Skarns of China. Acta Geologica Sinica,78(2),524-528.
    Zharikov, V. A.,1968 (translated 1970). Skarns. Internat. Geol. Rev.,12,541-559,619-647, 760-775.
    Zhou, X.M., Sun, T., Shen, W.Z., et al.,2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China, A response to tectonic evolution. Episodes,29(1), 26-33.
    柏道远,陈建超,马铁球,等,2005.湘东南骑田岭岩体A型花岗岩的地球化学特征及其构造环境.岩石矿物学杂志,24(4),255-272.
    蔡明海,陈开旭,屈文俊,等,2006.湘南荷花坪锡多金属矿床地质特征及辉钼矿Re-Os测年.矿床地质,25(3),263-268.
    蔡明海,韩凤彬,何龙清,等,2008.湘南新田岭白钨矿床He, Ar同位素特征及Rb-Sr测年.地球学报,29(2),167-173.
    蔡新华,贾宝华,2006.湖南锡田锡矿的发现及找矿潜力分析.中国地质,33(5),1100-1108.
    陈江峰,郭新生,汤加富,等,1999.中国东南地壳增长与Nd同位素模式年龄.南京大学学报(自然科学),35(6),649-658.
    陈骏,1988.论华南层控锡矿的地质特征与形成机制.地质论评,34(6),524-532.
    陈骏,王汝成,Zhou, J.P.,2000.锡的地球化学.南京,南京大学出版社,1-320.
    陈毓川,黄民智,1993.大厂锡矿地质.地质出版社,北京.
    程裕淇,陈毓川,赵一鸣,等.1983.再论矿床的成矿系列问题.中国地质科学院院报,6,1-64
    程裕淇,陈毓川,赵一鸣.1979.初论矿床的成矿系列问题.地球学报,1(1),32-58.
    丁兴,陈培荣,陈卫锋,等,2005.湖南沩山花岗岩中锆石LA-ICPMS U-Pb定年:成岩启示及意义.中国科学(D辑),37,606-616.
    冯佳睿,毛景文,裴荣富,等,2011.滇东南老君山地区印支期成矿事件初探.矿床地质,30(1),57-73.
    付建明,2011.南岭锡矿.武汉,中国地质大学出版社,22-38.
    付建明,马昌前,谢才富,等,2005.湖南金鸡岭铝质A型花岗岩的厘定及构造环境分析.地球化学,34(3),215-226.
    付建明,伍式崇,徐德明,等,2009.湘东锡田钨锡多金属矿区成岩成矿时代的再厘定.华南地质与矿产,3,1-7.
    高剑峰,陆建军,赖鸣远,等,2003.岩石样品中微量元素的高分辨率等离子质谱分析.南京大学学报(自然科学版),39,844-850.
    龚庆杰,於崇文,张荣华,2004.柿竹园钨多金属矿床形成机制的物理化学分析.地学前缘,11,617-625.
    郭春丽,陈毓川,蔺志永,等,2011.赣南印支期柯树岭花岗岩体SHRIMP锆石U-Pb年龄、地球化学、锆石Hf同位素特征及成因探讨.岩石矿物学杂志,40(4),567-580.
    郭峰,范蔚茗,林舸,等,1997.湘南道县辉长岩包体的年代学研究及成因探讨.科学通报,42(15),1661-1663.
    郭立鹤,韩景仪.2006.红外反射光谱方法的矿物学应用.岩石矿物学杂志,25(3),250-256
    郭新生,陈江峰,张巽,等,2001.桂东南富钾岩浆杂岩的Nd同位素组成,华南中生代地 幔物质上涌事件.岩石学报,17(1),19-27.
    韩发,赵汝松,沈建忠等,1997.大厂锡多金属矿床地质及成因.北京,地质出版社.
    洪大卫,谢锡林,张季生.2002.试析杭州-诸广山-花山高εNd值花岗岩带的地质意义.地质通报,21(6),348-354.
    华仁民,陈培荣,张文兰,等,2005a.论华南地区中生代3次大规模成矿作用.矿床地质,24(2),99-107.
    华仁民,陈培荣,张文兰,等,2005b.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景.高校地质学报,11(3),291-304.
    华仁民,李光来,张文兰,等,2010.华南钨和锡大规模成矿作用的差异及其原因初探.矿床地质,29(1),9-23.
    黄卉,2012.湘东邓阜仙复式花岗岩的岩相学和地球化学特征及其与成矿关系.南京大学硕士论文.
    蒋少涌,赵葵东,姜耀辉,等,2008.十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论.高校地质学报,14(4),496-509.
    蒋喜桥等,2009.湖南郴州荷花坪-香花岭锡多金属矿评价成果报告.湖南省有色地质勘查局一总队.中国地质调查局发展研究中心(全国地质资料馆)
    李万友,马昌前,刘园园,等,2012.浙江印支期铝质A型花岗岩的发现及其地质意义.中国科学,42(2),164-177.
    李希勣,杨庄,施琳,等.1994.中国锡矿床.地质出版社,北京.
    李小伟,莫宣学,赵志丹,等,2010.关于A型花岗岩判别过程中若干问题的讨论.地质通报,29(2-3),278-285.
    李幼琴,1978.矽卡岩中石榴子石的红外吸收光谱.科学通报,6,467-469.
    刘昌实,陈小明,陈培荣,等,2003.A型岩套的分类、判别标志和成因.高校地质学报,9(4),573-591.
    刘国庆,伍式崇,杜安道,等,2008.湘东锡田钨锡矿区成岩成矿时代研究.大地构造与成矿学,32(1),63-71.
    刘善宝,王登红,陈毓川,等,2008.赣南崇义-大余-上犹矿集区不同类型含矿石英中白云母40Ar/39Ar年龄及其地质意义.地质学报,82(7),932-940.
    刘悟辉,徐文忻,戴塔根,等.2006.湖南柿竹园钨锡多金属矿田野鸡尾矿床同位素地球化学研究.岩石学报22,2517-2524.
    龙宝林,伍式崇,徐辉煌,2009.湖南锡田钨锡多金属矿床地质特征及找矿方向.地质与勘探,45(3),229-234.
    罗洪文,姜端午,2005.茶陵锡田地区锡矿成矿条件及找矿远景.湖南地质,22(1),38-42.
    马丽艳,付建明,伍式崇,等,2008.湘东锡田垄上锡多金属矿床40Ar/39Ar同位素定年研究.中国地质,35(4),706-713.
    马铁球,柏道远,邝军,等,2005.湘东南茶陵地区锡田岩体锆石SHRIMP定年及其地质意义.地质通报,24(5),415-419.
    马铁球,王先辉,柏道远,2004.锡田含W,Sn花岗岩体的地球化学特征及其形成构造背景.华南地质与矿产,1,11-16.
    毛景文,陈懋弘,袁顺达等,2011.华南地区钦杭成矿带地质特征和矿床时空分布规律.地质学报,85(5),636-658.
    毛景文,李红艳,Guy B.1996湖南柿竹园矽卡岩-云英岩型W-Sn-Mo-Bi矿床地质和成矿作用.矿床地质,15(1),1-15.
    毛景文,李红艳,宋学信,等,1998.湖南柿竹园钨锡钼铋多金属矿床地质与地球化学.北京:地质出版社,pp.1-215.
    毛景文,李红艳,王平安,2004.湖南柿竹园钨多金属矿床中的锰质矽卡岩.矿床地质13(1),38-47.
    毛景文,李红艳,王平安.1994.湖南柿竹园钨多金属矿床中的锰质矽卡岩.矿床地质,13(1),38-47.
    毛景文,谢桂青,程彦博,等,2009.华南地区中生代主要金属矿床模型.地质论评,55(3),347-354.
    毛景文,谢桂青,郭春丽,等,2007.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景.岩石学报,23(10),2329-2338.
    毛景文,谢桂青,李晓峰,等,2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘,11(1),45-55.
    邱检生,王德滋,蟹泽聪史,等,2000.福建沿海铝质A型花岗岩的地球化学及岩石成因.地球化学,29(4),313-321.
    任涛,钟宏,张兴春,等.2010.浪都矽卡岩型铜矿床中石榴子石稀土元素地球化学研究.地学前缘,17(2),348-358.
    盛英明,夏群科,杨晓志.2004.大陆深俯冲过程中水分布的不均一性,大别山碧溪岭榴辉岩中石榴石的红外光谱分析.科学通报,49,390-395.
    舒良树,周新民,邓平,等.2006.南岭构造带的基本地质特征.地质论评,52(2),251-265.
    孙涛,2006.新编华南花岗岩分布图及其说明.地质通报,25,332-337.
    涂光炽,1984.中国层控矿床地球化学(第一卷).北京,科学出版社,1-69.
    王奎仁,彭捷,杨学明,等.1992.我国某些矽卡岩型矿床中石榴石的波谱学研究.安徽地质,2(4), 1-12.
    王莉娟,王京彬,王玉往,等.2002.内蒙黄岗梁矽卡岩型铁锡矿床稀土元素地球化学.岩石学报,18(4),575-584.
    王强,赵振华,熊小林.2000.桐柏-大别造山带燕山晚期A型花岗岩的厘定.岩石矿物学杂志,19(4),297-306.
    王书凤,1980.大顶锡铁矿化的主要特征.中国地质科学院院报矿床地质研究所分刊,1(1),78-88.
    吴寿宁,2006.湖南郴州荷花坪锡多金属矿床地质特征.矿产与地质,20(1),43-46.
    吴言昌,常印佛,1998.关于岩浆矽卡岩问题.地学前缘,5(4),291-301.
    伍式崇,洪庆辉,龙伟平,等,2009.湖南锡田钨锡多金属矿床成矿地质特征及成矿模式.华南地质与矿产,2,1-6.
    伍式崇,龙自强,曾桂华,等,2011.湖南锡田地区锡铅锌多金属矿勘查主要进展及找矿前景.华南地质与矿产,27(2),100-104.
    肖成东,刘学武.2002.东蒙地区矽卡岩石榴石稀土元素地球化学及其成因.中国地质,29(3),311-316.
    谢旭,2011.湘东邓阜仙复式花岗岩体的年代学和地球化学.南京大学硕士论文.
    徐辉煌,伍式崇,余阳春,等,2006.湖南锡田地区矽卡岩型钨锡矿床地质特征及控矿因素. 华南地质与矿产,2,37-42.
    徐平,吴福元,谢烈文,等,2004.U-Pb同位素定年标准锆石的Hf同位素.科学通报,49(14),1403-1410.
    阎明,刘英俊,马东升,1994.桂北四堡群地层地球化学研究.9(3),9-16.
    杨锋,李晓春,冯佐海,等,2009.栗木锡矿云英岩化花岗岩白云母40Ar/39Ar年龄及其地质意义.桂林工学院学报,29(1),21-24.
    杨明桂,黄水保,楼法生,等,2009.中国东南陆区岩石圈结构与大规模成矿作用.中国地质,36(3),528-543.
    姚鹏,李金高,顾雪祥,等.2006.从REE和硅同位素特征探讨西藏甲马矿床层状矽卡岩成因.岩石矿物学杂志,25(4),305-313.
    尹京武,李铉具,崔庆国,等.2000.湖南省柿竹园矽卡岩矿床中石榴石特征.地球科学,25(2),163-171.
    于津海,O'Reilly S Y,王丽娟,等,2007.华夏地块古老物质的发现和前寒武纪地壳的形成.科学通报,52,11-18.
    曾桂华,胡永哉,余阳春,2005.湘东锡田垄上矽卡岩型锡多金属矿床地质特征及找矿前景.华南地质与矿产,2,68-72.
    翟德高,刘家军,王建平,等.2011.矽卡岩矿床成矿热液演化,来自石榴子石韵律环带LA-ICPMs的证据.矿物学报,S1,529-531.
    张金民,曹正民,1988.河北省涉县符山铁矿石榴子石特征及其形成条件.地质找矿论丛,3(2),68-79.
    张荣清,陆建军,王汝成,等,2011.湘南荷花坪锡铅锌矿区燕山期黑云母花岗岩的厘定.高校地质学报,17(4),513-520.
    张荣清,陆建军,朱金初,等,2010.湘南荷花坪花岗斑岩锆石LA-MC-ICP-MS U-Pb年龄、Hf同位素制约及地质意义.高校地质学报,16(4),436-477.
    章军锋,金振民,Green HW,2000.大陆深俯冲带中的水,来自大别山超高压榴辉岩的证据.科学通报,45,1889-1894.
    赵斌,李统锦,李昭平,1983.矽卡岩形成的物理化学条件实验研究.地球化学,3,256-267.
    赵斌,赵劲松,刘海臣.1999.长江中下游地区若干Cu(Au)、Cu-Fe(Au)和Fe矿床中钙质矽卡岩的稀土元素地球化学.地球化学,28(2),113-125.
    赵斌和Barton,1987接触交代矽卡岩型矿床中石榴子石和辉石成分特点及其与矿化的关系.矿物学报,7(1),1-8.
    赵奎东,2005.华南两类不同成因锡矿床同位素地球化学及成矿机理研究.南京大学博士论文,pp3.
    赵蕾,于津海,王丽娟,等.2006.红山含黄玉花岗岩的形成时代及其成矿能力.矿床地质,25(6),672-682.
    赵一鸣,2002.矽卡岩矿床研究的某些重要新进展.矿床地质,21(2),113-120.
    赵一鸣,林文蔚,毕承思,等.1990.中国矽卡岩矿床.北京,地质出版社,1-354.
    周建平,徐克勤,华仁民,等,1997.滇东南锡多金属矿床成因商榷.云南地质,16(4),309-349.
    周振华,刘宏伟,常帼雄,等,2011.内蒙古黄岗锡铁矿床矽卡岩矿物学特征及其成矿指示意义.岩石矿物学杂志,30(1),97-112.
    朱金初,陈骏,王汝成,等.2008.南岭中西段燕山早期北东向含锡钨A型花岗岩带.高校地质学报,14(4),474-484.
    朱金初,张佩华,谢才富,等.2007a.骑田岭岩体.//周新民主编,南岭地区晚中生代花岗岩成因与岩石圈动力学演化.北京,科学出版社,520-533.
    朱金初,张佩华,谢才富,等.2007b.花山-姑婆山岩体.//周新民主编,南岭地区晚中生代花岗岩成因与岩石圈动力学演化.北京,科学出版社,366-382.
    朱钟秀,1988.矽卡岩型铅锌矿床石榴石和单斜辉石的红外光谱研究.长春地质学院学报,18(4),409-414.
    邹先武,崔森,屈文俊,等,2009.广西都庞岭李贵福钨锡多金属矿同位素定年研究.中国地质,36(4),837-844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700