用户名: 密码: 验证码:
复合材料热/力学性能的双尺度渐近分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天技术的迅猛发展,对复合材料及其结构在热力耦合条件下的性能表征和损毁机理的研究需求日趋迫切。对复合材料进行多尺度建模与计算与物质世界的基本性质相符合,可以更加准确地表征材料的性能以及预报材料在一定工况下的响应规律;而且,它为依赖于微结构的材料性能的优化提供了有利的支持,我们可以基于多尺度计算,在材料制备前进行加工工艺与微结构的设计。
     在众多跨尺度计算方法中,双尺度渐近分析方法是一种适用于周期性构造复合材料性能表征与结构分析的通用、高效、精确的方法。其基本思想是:材料性能的计算和预测沿着从细观到宏观这一过程,采用双尺度均匀化方法,由细观尺度下的单胞计算出宏观尺度下材料的均匀化性能参数;而结构物理、力学行为的计算与预测则是从宏观平均场方程出发,从宏观到细观,利用双尺度渐近展开技术,计算出细观尺度下物理、力学量的局部涨落。本文主要基于双尺度渐近分析方法对复合材料的热/力学有效性能与响应规律进行了多尺度表征与计算。
     首先,从热力耦合问题的基本方程出发,建立了复合材料温度场和力学场的双尺度渐近表达式;得到了复合材料宏观均匀化热传导系数、刚度系数和热膨胀系数的表达式;并且将该方法与有限元方法相结合,给出了数值实现双尺度计算的计算步骤。
     其次,通过数值试验验证了双尺度分析方法预报复合材料宏观性能的有效性,进而研究了夹杂百分含量、夹杂形状和夹杂之间的相互作用对复合材料宏观性能的影响;并且通过数值试验验证了双尺度分析方法描述结构场函数的有效性和高效性。
     接下来,将双尺度渐近分析方法应用于ZrB2-SiC超高温陶瓷材料体系,进行了跨越微观-细观-宏观的多尺度表征与模拟的尝试,计算了ZrB2-SiC超高温陶瓷的热响应规律,分析了SiC夹杂颗粒的尺寸和分布位置对细观结构的影响;并且建立了碳纤维增韧超高温陶瓷基复合材料的单胞模型,计算了碳纤维增韧超高温陶瓷基复合材料结构在一定工况下的响应,确定了结构内的最大应力值及其所在位置。
     然后,考虑到界面相的小尺寸对计算规模的影响,提出了二重双尺度方法。将二重双尺度方法与有限元方法相结合,计算了宏观轴向均匀拉伸载荷、横向均匀拉伸载荷和横向均匀剪切载荷条件下含界面相单向纤维增强复合材料的三维应力场分布,确定了各种载荷条件下复合材料结构内的最大应力值及其所在位置;讨论了界面相性能对应力场分布的影响,结果显示纤维—界面相—基体力学性能的等差过渡有利于缓解轴向拉伸载荷下复合材料内纤维在界面附近的应力集中。
     最后,针对单向复合材料直杆,按照组分材料的不同性质引入不同的破坏准则,提出预报单向纤维增强复合材料轴向强度的双尺度方法。在预报轴向拉伸强度时,通过引入纤维等效拉伸强度的概念,将拉伸载荷下的渐近损伤与双尺度方法联系起来。结果显示采用双尺度方法预报的复合材料宏观强度值与实验值吻合较好,说明了该方法的有效性。
With the rapid development of space technology, the investigations on macroscopic properties’characterization and broken-down mechanism of composite material structures under thermo-elasticity coupling condition are extremely desired. The multi-scale modeling and computation for composite materials is coincident with the intrinsic nature of physical world, so it can more exactly characterize properties of composites and predict the response of composites under certain loading (or working) condition. Moreover, it supplies a method to optimize microstructure of composites for the best properties. That is, based on multi-scale modeling and computation, we can design the microstructure of composites and determine the processing before preparation of composites.
     Among many multi-scale methods known, two-scale asymptotic analysis method is a general, efficient and accurate method which is suitable for properties’characterization and response analysis of composites with periodic configuration. Its main idea is that the computation for properties of composites is presented with two-scale homogenization in the process from mesoscopic to macroscopic, and then the local fluctuations of physical and mechanical fields are described with two-scale asymptotic technique in the process from macroscopic to mesoscopic. In this paper, based on two-scale asymptotic method principally, the effective thermal/mechanical properties of composites are characterized as well as the responses of composite structures in multiple scales under certain loading (or working) condition are computed.
     Firstly, two-scale asymptotic formulae of the temperature and the mechanical fields are derived on the base of the basic equations of thermo-elasticity coupling problem, and then the expressions of effective thermal conductivities, stiffness and thermal expansion coefficients of composites are deduced. Whereafter, combining with finite element method, the numerical computing procedure of two-scale method is established.
     Secondly, the validity of two-scale method for characterizing the effective properties of composites is evaluated by numerical experiments. The changes of the effective properties of composites resulting from the variations of the volume fraction and shape of inclusion and the interaction of the inclusions are analyzed. After that, the validity and efficiency of two-scale method for describing the temperature and mechanical fields of composite structure are validated by numerical experiments.
     Thirdly, two-scale asymptotic method is employed in the field of ZrB2-SiC ultra high temperature ceramics (UHTCs) to implement multi-scale characterization and simulation which links micro-, meso- and macro-scale. The thermal response of ZrB2-SiC is computed and the influences of the size and the location of SiC inclusion on microstructure of ZrB2-SiC are analyzed. Furthermore, the unit cell of carbon fibre toughened UHTCs matrix composite is modeled, the response of the composite under certain working condition is computed, and the maximal stress in the composite and its location are determined.
     Fourthly, considering the influence of the tiny size of interphase on the computation, a dual two-scale method is proposed. 3-D stress distributions of unidirectional-fibre reinforced composites with interphase under macroscopic axial uniform tension, transversal uniform tension and transversal uniform shear are respectively calculated and the maximal stress and their locations are determined. The influence of different interphases on the distributions of stress fields is discussed. The results show that arithmetical transition of the properties of fibre, interphase and matrix is beneficial to abate stress concentration of fibre which occurs near the interphase under macroscopic axial uniform tension.
     Finally, different failure criteria are introduced according to different attributes of components of unidirectional composite to establish a two-scale method for predicting the axial strength of unidirectional-fibre reinforced composites. When applying the method to predict the axial tensile strength, the concept of fibrous effective tensile strength is defined to relate the progressive damage with the method. The calculated values have a good agreement with the experiment results which verifies the validity of this method.
引文
1王崇愚.多尺度模型及相关分析方法.复杂系统与复杂性科学.2004,1:9~19
    2吴立军.宏观尺度位移反演分析研究及其多尺度问题探讨.大连理工大学博士学位论文.2006, 6
    3 W. K. Liu, E. G..Karpov, H. S. Park. Nano Mechanics and Materials: Theory, Multiscale Methods and Applications. Wiley. 2006, 3: 223~261
    4徐芝纶.弹性力学.第三版.高等教育出版社,1990:161~192
    5 I. Harari, S. Frey, L. P. Franca. A note on a recent study of stabilized finite element computation for heat conduction. Computational Mechanics. 2002, 28(1):63~65
    6 S. Boggs, J. Kuang, H. Andoh. Electro-Thermal-Mechanical Computation in ZnO Arrester Elements. IEEE Transactions on Power Delivery. 2000, 15(1):128~134
    7薛强,梁冰,孙可明等.填埋气体迁移气-热-力耦合动力学模型的研究.应用力学学报.2003,20(2):54~59
    8 P. Sharifi, D. N. Yates. Nonlinear Thermo-Elastic-Plastic and Creep Analysis by the Finite-Element Method. AIAA Journal. 1974,12(9):1210~1215
    9于建国,叶庆泰,陈超.热冲击下机械结构非线性热力耦合模型的建立.应用力学学报.2004,21(4):43~46
    10宋玉华,张凯锋,王仲仁.塑料板材热成形过程三维温度场的有限元分析.塑形工程学报.1998,5(4):33~41
    11左德峰,朱金福,黄再兴.数值及复合材料固化过程中温度场的数值模拟.南京航空航天大学学报.1999,31(6):701~705
    12龙士国,周益春,段祝平.激光热-力耦合作用引起颗粒增强金属基复合材料的损伤与断裂.固体力学学报.2000,21(3):277~281
    13陈浩然,高鹏,白瑞祥.含损伤复合材料夹层板的热-机械力耦合屈曲性态.宁夏大学学报(自然科学版).2001,22(4):382~385
    14张洪武,张盛,郭旭,毕金英.周期性材料非经典热传导时空间多尺度分析方法.复合材料学报.2004,21(6):143~148
    15 D.罗伯.计算材料学.项金钟,吴兴惠译.第二版.化学工业出版社.2003,4
    16 R. W. Smith. A kinetic Monte Carlo simulation of fiber texture formation duringthin-film deposition. Journal of Applied Physics. 1997, 81(3): 1196~1203
    17 A. Pierracci. Some useful formulae for Monte Carlo simulations relating to the Weibull and to the exponential probability distribution functions. Fatigue & Fracture of Engineering Materials & Structures. 1997, 20(1): 109~117
    18 L. Gámez, E. Martínez et al. Kinetic Monte Carlo modelling of neutron irradiation damage in iron. Fusion Engineering and Design. 2007, 82: 2666~2670
    19 V. K. Noussiou, A. Provata. Surface reconstruction in reactive dynamics: A kinetic Monte Carlo approach. Surface Science. 2007, 601: 2941~2951
    20 B. J. Adler, T. E. Wainwright. Phase transition for a hard sphere system. Journal of Chemical Physics. 1957, 27: 1208~1209
    21 P. Gumbsch, S. J. Zhou, B. L. Holian. Molecular dynamics investigation of dynamic crack stability. Physical Review B. 1997, 55(6): 3445~3455
    22 D. H. Robertson, D. W. Brenner, C. T. White. Temperature-dependent Fusion of Colliding C-60 Fullerenes from Molecular-Dynamics Simulations. Journal of Physical Chemistry. 1995, 99(43): 15721~15724
    23 R. D. Menezes, J. F. Justo, L. V. C. Assali. Energetics of silicon nanowires: a molecular dynamics investigation. Physica status solidi A- Applications and Materials Science. 2007, 204(4): 951~955
    24 R. J. Stevens, L. V. Zhigilei, P. M. Norris. Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: Nonequilibrium molecular dynamics simulations. International Journal of Heat and Mass Transfer. 2007, 50: 3977~3989
    25 Cui Zhiwei, Sun Yi, Li Jun. Combination method for the calculation of elastic constants. Physical Review B. 2007, 75: 1~6
    26 G. E. Norman, V. V. Stegailov, A. V. Yanilkin. The modeling of high-rate tension of crystalline iron by the method of molecular dynamics. High Temperature. 2007, 45(2): 164~172
    27 D. Raabe. On the consideration of climb in discrete dislocation dynamics. Philosophical Magazine A- Physics of condensed matter structure defects and mechanical properties. 1998, 77(3): 751~759
    28杨继红,李勇等. Cu单晶中疲劳早期位错花样演化的观察与模拟.金属学报.2000,36(10):1015~1020
    29杨继红,马常祥,李兰杰,李守新.计算机模拟循环形变铜单晶体的自组织位错结构.东北大学学报.2001,22(2):229~231
    30黄国君,段祝平,王文标.单晶易滑移阶段位错结构形成的动力学分析.力学学报.1998,30(1):65~75
    31许庆彦,熊守美,柳百成.铸造合金的微观组织模拟研究进展.材料导报.2002,16(1):11~14
    32 J. A. Spittle, S. G. R. Brown. A 3D cellular-automaton model of coupled growth in
    2-componet systems. Acta Metallurgica et Materialia. 1994, 42(6): 1811~1815
    33谭云亮,周辉,王泳嘉,马志涛.模拟细观非均质材料破坏演化的物理元胞自动机理论.物理学报.2001,50(4):704~710
    34张林,张彩碚等.低碳钢奥氏体转变为铁素体的元胞自动机模型.材料研究学报.2002,16(2):200~204
    35 T. Mura. Micromechanics of defects in solids. La Hague, Martinus Nijhoff.. 2nd ed. 1987
    36曾竟成,罗青,唐羽章.复合材料理化性能.国防科技大学出版社.1998:17~62
    37 J. D. Eshelby. The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems. Proc. Roy. Soc. 1957, A240:367~396
    38 J. D. Eshelby. The Elastic Field Outside an Ellipsoidal Inclusion. Proc. Roy. Soc. 1959, A252: 561~569
    39梁军,易法军.防热材料高温烧蚀-相变特性的细观研究.复合材料学报.2002,19(2):108~112
    40梁军,杜善义.防热复合材料高温力学性能.复合材料学报.2004,21(1):73~77
    41 M. Taya. T. Mura. On Stiffness and Strength of an Aligend Short-Fiber Reinforced Composite Containing Fiber-End Cracks Under Uniaxial Applied Stress. J. Appl. Mech. 1981, 48:361~367
    42 M. Taya. On Stiffness and Strength of an Aligened Short-Fiber Reinforced Composite Containing Penny-Shaped Cracks in the Matrix. J. Comp. Mater. 1981,15:198~210
    43 C. T. Sun, R. S. Vaidya. Prediction of Composite Properties from a Representative Volume Element. Composites Science and Technology. 1996, 56: 171~179
    44雷有锋,魏德明,高德平.细观力学有限元法预测复合材料宏观有效弹性模量.燃气涡轮试验与研究.2003,16:11~15
    45 I. Babuska. Homogenization approach in engineering, in: J. Lions, R. Glowinski (Eds.), Computing Methods in Applied Sciences and Engineering, Lecture Note in Economics and Mathematical Systems. 1976, 134: 137~153
    46 O. A. Oleinik. A. S. Shamaev. G. A. Yosifian. Mathematical problems in Elasticity and Homogenization. North Holland. 1992
    47 S. Kesavan. Homogenization of elliptic eigenvalue problems, Part I. Appl. Math. Optim. 1979, 5: 153~167
    48 S. Kesavan. Homogenization of elliptic eigenvalue problems, Part II. Appl. Math. Optim. 1979, 5: 197~216
    49曹礼群,崔俊芝,王崇愚.非均质材料多尺度物理问题与数学方法.王崇愚,顾秉林.物性多尺度耦合与相关算法第三次学术报告会,珠海中山大学.2002,10:69~80
    50刘书田,程耿东.复合材料应力分析的均匀化方法.力学学报.1997,29(3):306~313
    51刘书田,程耿东.基于均匀化理论的复合材料热膨胀系数预测方法.大连理工大学学报.1995,35(5):451~457
    52程耿东,刘书田.单向纤维复合材料导热性预测.复合材料学报.1996,13(1):78~85
    53冯淼林,吴长春,孙慧玉.基于三维均匀化理论预测编织复合材料等效弹性模量.材料科学与工程.2001,19(3):34~37
    54冯淼林,吴长春.基于三维均匀化理论的复合材料本构数值模拟.中国科学技术大学学报.2000,30(6):693-699
    55 Feng Miaolin, Wu Changchun. Study on 3-dimensional 4-step braided piezo-ceramic composites by homogenization method. Composites Science and Technology. 2001,65(5): 1889~1898
    56潘燕环,嵇醒,薛松涛.单向复合材料损伤刚度的双重均匀化方法.同济大学学报.1997, 25(6): 623~628
    57 M. P. Bends?e, N Kikuchi. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering. 1988, 71: 197~224
    58 A. R. Diaz, N. Kikuchi. Solutions to shape and topology eigenvalue optimization problems using a homogenization method. International Journal for NumericalMethods in Engineering. 1992, 35: 1487~1502
    59 A. V. Cherkaev, R. Palais. Optimal design of three dimensional axisymmetric elastic structures. Stuctural Optimization. 1996, 12: 35~45
    60 B. Hassani, E. Hinton. A review of homogenization and topology optimization, Part I: Homogenization theory for media with periodic structure. Computers & Structures. 1998, 71(6): 707~718
    61 B. Hassani, E. Hinton. A review of homogenization and topology optimization, Part II: Analytical and numerical solution of homogenization equations. Computers & Structures. 1998, 71(6): 719~738
    62 B. Hassani, E. Hinton. A review of homogenization and topology optimization, Part III: Topology optimization using optimality creteria. Computers & Structures. 1998, 71(6): 739~756
    63 N. Kikuchi, S. Nishiwaki, J. S. O. Fonseca, E. C. N. Silva. Design optimization method for compliant mechanisms and material Microstructure. Computer Methods in Applied Mechanics and Engineering. 1998, 151: 401~417
    64 L. Z. Yin, W. Yang. Optimality criteria method for topology optimization under multiple constraints. Computers & Structures. 2001, 79: 1839~1850
    65 H. A. Eschenauer, N, Olhoff. Topology optimization of continuum structures: A review. ASME Applied Mechanics Reviews. 2001, 54(4): 331~390
    66 B. L. Kalidindi, M. Houskanp, B. L. Adams. Microstructure engineering in design. AIAA 2002-5567: 1509~1518
    67 O. Sigmund, S. Torquato. Design of materials with extreme thermal expansion using a three-phase topology optimization method. Journal of the Mechanics and Physics of Solids. 1997, 45(6): 1037~1067
    68刘书田,郑新广,程耿东.特定弹性性能材料的细观结构设计优化.复合材料学报.2001, 18(2): 124~127
    69刘书田,曹先凡.零膨胀材料设计与模拟验证.复合材料学报.2005, 22(1): 126~132
    70袁振,吴长春.复合材料周期性线弹性微结构的拓扑优化设计.固体力学学报.2003,35(1):39~41
    71袁振,吴长春.复合材料扭转轴截面微结构拓扑优化设计.力学学报.2003, 24(1): 40~45
    72张卫红,汪雷,孙士平.基于导热性能的复合材料微结构拓扑优化设计.航空学报.2006, 27(6):1229~1233
    73孙士平.材料和结构的拓扑优化关键理论与方法研究.西北工业大学博士学位论文.2006,6
    74阎君.超轻金属结构与材料性能多尺度分析与协同优化设计.大连理工大学博士学位论文.2007,4
    75樊学军.均匀化理论及其在生物力学中的应用.力学进展.1996, 26(2):187~197
    76 J. M. Crolet, B. Aoubiza, A. Meunier. Compact Bone: Numerical Simulation of Mechanical Characteristics. Journal of Biomechanics. 1993, 26: 677~687
    77 S. J. Hollister, D. P. Fyhrie, K. J. Jepsen, S. A. Goldstein. Application of homogenization theory to the study of trabecular bone mechanics. Journal of Biomechanics. 1991, 24(9): 825~839
    78 C. C. Ko, D. H. Kohn, S. J. Hollister. Micromechanics of implant/tissue interfaces. The Journal of oral implantology. 1992, 18(3): 220~230.
    79 Z. Yuan, J. Fish. Multiple scale eigendeformation-based reduced order homogenization. Comput. Methods Appl. Mech. Engrg. 2009, 198: 2016~2038
    80 T. Y. Hou, X. H. Wu. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media. Journal of Computional Physics. 1997, 134: 169~189
    81曹礼群,崔俊芝.一类具有小周期系数的椭圆型编织问题的双尺度渐近分析方法.计算数学.1999,21(1):19~28
    82曹礼群,崔俊芝.整周期复合材料弹性结构的双尺度渐近分析.应用数学学报.1999,22(1):38~46
    83 Cao Liqun, Cui Junzhi, Luo Jianlian. Multiscale asymptotic expansion and a post-processing algorithm for second-order elliptic problems with highly oscillatory coefficients over general convex domains. Journal of Computational and Applied Mathematics. 2003, 157: 1~29
    84 J. T. Oden, T. I. Zohdi. Analysis and adaptive modeling of highly heterogeneous elastic structures. Computer Method in Applied Mechanics and Engineering. 1997, 148(3-4): 367~391
    85 P. W. Chung, K. K. Tamma, R. R. Namburu. A finite element thermo-voscoelasticcreep approach for heterogeneous structures with dissipative correctors. Finite Elements in Analysis and Design. 2000, 36: 279~313
    86 P. W. Chung, K. K. Tamma, R. R. Namburu. A micro/macro homogenization approach for viscoelastic creep analysis with dissipative correctors for heterogeneous woven-fabric layered media. Composite Science and Technology. 2000, 60: 2233~2253
    87 N. Takano, M. Zako. Three-dimensional microstructural design of woven fabric composite material by homogenization method. Proceeding ASME/JSME Pressure Vessels and Piping Conference. ASME-PVP. 1995, 302: 141~146
    88 J. Fish, Q. Yu. Two-scale damage modeling of brittle composites. Composites Science and Technology. 2001,61: 2215~2222
    89 N. Aravas, C. Cheng, C. P. Ponte. Steady-state creep of fiber-reinforced composites: constitutive equations and computational issues. International Journal of Solids and Structures. 1995, 32:2219~2244
    90 X. Wu, N. Ohno. A homogenization theory for time-dependent nonlinear of composites with periodic internal structures. International Journal of Solids and Structures. 1999, 36: 4991~5012
    91 S. Ghosh, K. Lee, S. Moorthly. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model. Computer Method in Applied Mechanics and Engineering. 1996, 132: 63~116
    92谢桂兰.聚合物基复合材料多尺度方法的研究.湘潭大学博士学位论文.2006,8
    93刘晓奇.多孔复合材料周期结构的多尺度模型与高精度算法.湖南师范大学博士学位论文.2006,3
    94董纪伟.基于均匀化理论的三维编织复合材料宏细观力学性能的数值模拟.南京航空航天大学博士学位论文.2007,3
    95 Feng Yongping, Cui Junzhi. Multi-scale analysis for the structure of composite materials with small period configuration under condition of coupled thermoelasticity. Acta Mechanica Sinica. 2003, 19(6): 585~592
    96 Feng Yongping, Cui Junzhi. Multi-scale FE computation for the structure of composite materials with small period configuration under condition of coupled thermoelasticity. Acta Mechanica Sinica. 2004, 20(1): 54~63
    97余新刚.复合材料强度参数预测的多尺度分析方法.中国科学院研究生院博士学位论文.2006,5
    98 E. Weinan, Z. Y. Huang. A Dynamic Atomistic-Continuum Method for the Simulation of Crystalline Materials. Journal of Computational Physics. 2002, 182: 234~261
    99 E. Weinan, Z. Y. Huang. Matching Conditions in Atomistic-Continuum Modeling of Materials. Physical Review Letters. 2001, 87(13): 135501,1~4
    100 E. Weinan. Analysis of the heterogeneous multiscale method for ordinary differential equations. Comm. Math. Sci. 2003, 1(3): 423~436
    101 S. Kohlhoff, P. Gumbsch, H. F. Fischmeister. Crack Propagation in BCC Crystals Studied With a Combined Finite-Element and Atomistic Model. Philosophical Magazine A (UK). 1991, 64(4): 851~878
    102 E. B. Tadmor, R. Phillips, M. Ortiz. Mixed atomistic and continuum models of deformation in solids. Langmuir. 1996, 12(19): 4529~4534
    103 E. B. Tadmor, R. Phillips, M. Ortiz. Hierarchical modeling in the mechanics of materials. International Journal of Solids and Structures. 2000, 37(1-2): 379~389
    104 S. Hao, W. K. Liu et al. Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels. Computer methods in applied mechanics and engineering. 2004, 193: 1865~1908
    105杨卫,孙庆平,黄克智,余寿文.固体的宏细观本构理论与断裂.自然科学进展—国家重点实验室通讯.1993,3(6):515~524
    106马新玲,杨卫.并行MD优化算法与纳米晶体力学模拟.清华大学学报(自然科学版).2004,44(5):661~665
    107 W. A. Curtin, R. E. Miller. Atomistic/continuum coupling in computational materials science. Modelling Simul. Mater. Sci. Eng. 2003, 11: 33~68
    108 J. D. Thornburg, C. D. Pears. Prediction of the thermal conductivity of filled and reinforced plastics. ASME Paper 65-WA/HT-4. 1965
    109杜善义,王彪.复合材料细观力学.科学出版社,1998:5~55
    110 S. W. Tsai. Structural behavior of composite materials. NASA CR-71. 1964
    111 N. Sato, T. Sakai, E. Kuze. Sen-I Gakkaishi. 1975, 31(8): 323
    112 Z. Hashin. Analysis of composite materials: A survey. Journal of Applied Mechanics. 1983, 50: 481~505
    113 W. G. Fahrenholtz, G. E. Hilmas. Refractory Diborides of Zirconium and Hafnium. Journal of the American Ceramic Society. 2007, 90(5): 1347~1364
    114 G. J. Zhang, Z. Y. Deng, N. Kondo, J. F. Yang, T. Ohji. Reactive Hot Pressing of ZrB2-SiC Composites. Journal of the American Ceramic Society. 2007, 83(9): 2330~2332
    115 S. R. Levine, E. J. Opila, M. C. Halbig, J. D. Kiser, M. Singh, J.A. Salem. Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use. Journal of the European Ceramic Society. 2002, 22: 2757~2767
    116 R. Loehman, D. Zschiesche, R. E. Loehman. Ultrahigh-Temperature Ceramics for Hypersonic Vehicle Applications. Sandia National Laboratories. Ceramic Materials Depth Albuquerque, N. Mex. 2004
    117 A. Bellosi, F. Monteverde. Microstructure and Properties of Titanium Nitride and Titanium Diboride-Based Composites. Key Engineering Materials. 2003, 175: 139~141
    118 F. Monteverde, A. Bellosi, L. Guicciardi. Processing and Properties of Zirconium Diboride-Based Composites. Journal of the European Ceramic Society. 2003, 22(3): 279~288
    119 T. Tani, S. Wada. SiC Matrix Composites Reinforced with Internally Synthesized TiB2. Journal of Materials Science. 1990, 25: 157~160
    120 S. J. Schneider. Card Number 89-3651, Powder Diffraction File, International Centre for Diffraction Data. ASM International, Materials Park, OH, 1991(4): 945~963
    121 A. Rezaie, W. G. Fahrenholtz, G. E. Hilmas. Effect of Hot Pressing Time and Temperature on the Microstructure and Mechanical Properties of ZrB2-SiC. Journal of Materials Science. 2007, 42(8): 2735~2752
    122 J. R. Fenter. Refractory Diborides as Engineering Materials. SAMPE Quarter. 1971, 2: 1~15
    123聂耀庄,谢佑卿,李小波,彭红建.金属Zr热力学性质的第一原理研究.金属学报.2007,43(7):693~698
    124 D. E. Wiley, W. R. Manning, O. Hunter. Elastic Properties of Polycrystalline TiB2, ZrB2 and HfB2 from Room Temperature to 1300K. Journal of the Less-Common Metals. 1969, 18: 149~157
    125 J. R. Hellmann, D. J. Green, M. F. Modest. Physical Property Measurements of High Temperature Composites. Projects within the Center for Advanced Materials. Edited by J. R. Hellmann and B. K. Kennedy, published by Center for AdvancedMaterials, Pennsylvania State University. 1990:71~114
    126宋杰光,罗红梅,杜大明等.二硼化锆陶瓷材料的研究及展望.材料导报.2009,23(3):43~46
    127 D. M. Liu, B. W. Lin. Thermal Conductivity in Hot-Pressed Silicon Carbide. Ceramics International. 1996, 22: 407~414
    128 G. A. Slack, S. F. Bartram. Thermal Expansion of Some Diamondlike Crystals. Journal of Applied Physics. 1975, 46 (1): 89~98
    129杨飞宇.ZrB2-SiC-Cf复合材料的制备及其在超高温环境下的性能研究.哈尔滨工业大学博士学位论文.2008,6
    130 B. Gommers, I. Verpoest, P. V. Houtte. Modeling the Elastic Properties of Kintted-fabric-reinforced Composites. Composites Science and Technology. 1996, 56: 685~694
    131赵九江,张少实,王春香.材料力学.修订版.哈尔滨工业大学出版社,2000:178~186
    132 C. Orifici, I. Herszberg, R. S. Thomson. Review of methodologies for composite material modeling incorporating failure. Composite Structures. 2008, 86: 194~210
    133 K. H. Lo, E. S. M. Chim. Compressive Strength of Unidirectional Composites. Journal of Reinforced Plastics and Composites. 1992, 11: 838~896
    134 A. Kelly, S. T. Mileiko. (eds.) Handbook of Composites, Vol. 4. Elsevier Science Publisher, B. V. 1983
    135 M. R. Piggott, B. Harris. Compression strength of carbon, glass and Kevlar-49 fibre reinforced polyester resins. Journal of Materials Science. 1980, 15: 2523~2538
    136 G. M. Martinez, M. R. Piggott, D. M. R. Bainbridge, B. Harris. The compression strength of composites with kinked, misaligned and poorly adhering fibres. Journal of Materials Science. 1981, 16: 2831~2836
    137 R. M.琼斯.复合材料力学.朱颐龄等译.上海科学技术出版社.1981
    138 Zhu Yuntian, Zhou Benlian, He Guanhu, Zheng Zongguang. A Statistical Theory of Composite Materials Strength. Journal of Composite Materials. 1989, 23: 280~287
    139曾庆敦.复合材料的细观破坏机制与强度.科学出版社.2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700