用户名: 密码: 验证码:
共注射RTM制备承载/隔热/防热一体化复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对高速飞行器结构的基本要求是轻质高强和防热隔热。已有的主承力与热防护结构的设计和制备方法,大多是将结构承载体与防热体分步成型与制备,不但增加工艺的难度和复杂性,增加制造成本,而且也降低了整体结构的可靠性。本文提出一种称之为“承载/隔热/防热一体化复合材料”的结构,有望将其应用于飞行器主承力/热防护复合结构。在这种一体化复合材料结构中,承载层为碳/环氧复合材料,隔热层为轻质低导热系数材料,防热层即耐烧蚀层为碳/酚醛复合材料,并将采用共注射RTM工艺进行一次整体成型。
     围绕共注射RTM工艺制备承载/隔热/防热一体化复合材料,本文对多层复合材料及带缝合热通道的一体化复合材料进行了热分析与设计;优选出了能进行共注射的防热层基体的酚醛树脂和承载层基体的环氧树脂;采用共注射RTM工艺分别制备了泡沫夹芯和气凝胶夹芯一体化复合材料,研究了共注射一体化工艺的力学性能并和分步胶接工艺的进行对比;采用缝合-共注射工艺制备了气凝胶夹芯复合材料,考察了缝合承力柱对力学性能的影响以及缝合热通道对热传导性能的影响。
     建立了多层复合材料和带缝合热通道的一体化复合材料热传导有限元分析(FEA)模型,计算了在峰值温度为912℃的600s全弹道周期内的热载荷条件下的温度分布,结果表明,PMI泡沫不适用于所确定的热载荷条件下的隔热层材料;固定承载层厚度hl-b为2mm、防热层厚度ht-p为3mm,满足给定热载荷条件下SiO_2气凝胶夹芯复合材料各层使用温度要求的最小隔热层厚度hh-i为16mm;湿法缝合热通道的材料可视为SiO_2气凝胶/苯并噁嗪,其平均孔径为3mm,固定hl-b和ht-p,当针距×行距(l×m)为8×8时,满足使用温度要求的最小隔热层厚度hh-i为24mm;干法缝合热通道材料可视为石英/苯并噁嗪复合材料,其平均孔径为0.9mm,固定hl-b和ht-p,当hh-i为17mm时,满足使用温度要求的最小l×m为10×10,当hh-i为18mm时,满足使用温度要求的最小l×m为7×7。
     研究了氨酚醛、钡酚醛、苯并噁嗪和酚醛型氰酸酯四种酚醛树脂的动态粘度和等温粘度,建立了酚醛树脂的双阿累尼乌斯粘度模型;研究了四种酚醛树脂的耐热性能和力学性能;采用外推法研究了四种酚醛树脂的特征温度,并结合树脂浇铸体的实际制备效果,确定了四种酚醛树脂的最佳固化制度;以氨酚醛、钡酚醛、苯并噁嗪为基体树脂,以碳纤维平纹布为增强材料,采用真空辅助RTM工艺制备了复合材料平板,研究了复合材料的孔隙率、力学性能和烧蚀性能。结果表明,苯并噁嗪是四种酚醛树脂中是满足RTM工艺性能且使用性能最佳的酚醛树脂,在76℃以上可满足注射要求,且低粘度保持时间较长;浇铸体力学性能最佳,1000℃时N_2气氛下的成碳率为47%;碳/苯并噁嗪复合材料的孔隙率为0.85%,质量烧蚀率为0.0435g.s~(-1),拉伸强度为445MPa。良好的界面结合和较低的空隙率是碳/苯并噁嗪复合材料的力学性能优于碳/氨酚醛复合材料和碳/钡酚醛复合材料的主要原因。
     依据和苯并噁嗪进行共注射的环氧体系的工艺要求,研究了几种基体环氧树脂的动态粘度和不同固化剂所构成环氧体系的凝胶特性及浇铸体的力学性能,确定了承载层基体树脂;采用双阿累尼乌斯模型建立所选环氧体系的化学流变模型,确定了苯并噁嗪和所选环氧体系的共注射温度;采用外推法研究了环氧体系的最佳固化温度,并依据不同固化制度下的树脂浇铸体的拉伸强度,确定了苯并噁嗪和环氧体系的最佳共固化制度。结果表明,E-44/GA327是满足和苯并噁嗪进行共注射要求的性能最佳的环氧体系,其最佳质量配比为100∶30,浇铸体的拉伸强度为80.6MPa,拉伸模量为2.98GPa,弯曲强度为138.6MPa,弯曲模量为3.11GPa,断裂延伸率为3.64%,玻璃化转变温度为164℃,拉伸断口表现为韧性断裂;苯并噁嗪和E-44/GA327体系共注射工艺窗口温度为76~90℃,最佳共固化制度85℃/4h+ 130℃/4h+140℃/2h+160℃/1h+180℃/1h。
     采用共注射RTM工艺制备了承载/PMI泡沫隔热/防热一体化复合材料,研究了主要工艺参数对制备泡沫夹芯复合材料的影响;分别研究了共注射工艺和分步胶接工艺制备的PMI泡沫夹芯复合材料的力学性能,并研究了一体化复合材料的热传导性能。结果表明,共注射工艺制备PMI泡沫夹芯复合材料的最佳工艺参数为承载层和防热层设计纤维体积分数为45%、注射压力1atm、注射温度80℃、注射时采用真空辅助,按此参数制备的泡沫夹芯复合材料制品各层厚度与设计厚度保持一致,泡沫夹芯内部也未被树脂胶液浸渗;共注射工艺的侧压、三点弯曲、界面剪切性能要优于分步胶接工艺的,且数据离散系数也明显减小,两种工艺的平压性能基本一致,各层之间良好的界面结合是共注射工艺的力学性能优于分步胶接工艺的主要原因;建立的多层复合材料热传导FEA模型可以较好地模拟泡沫夹芯一体化复合材料的热传导过程,但在防热层外表面350℃热载荷条件下,PMI泡沫因无法耐受此温度而失效。
     采用共注射RTM工艺制备了承载/SiO_2气凝胶隔热/防热复合材料,研究了主要工艺参数对制备气凝胶夹芯复合材料的影响;分别研究了共注射工艺和分步胶接工艺制备的SiO_2气凝胶夹芯复合材料的力学性能和热传导性能。结果表明,设计承载层厚度hl-b为2mm、隔热层厚度hh-i为18mm、防热层厚度ht-p为3mm,以降低制品承载层、防热层的孔隙率和减小树脂胶液对夹芯的浸渗深度为目标,优化得到的共注射工艺参数为“承载层和防热层纤维预成型体的设计纤维体积分数V f为45.6%,注射压力为1atm,注射温度为80℃,注射时采用真空辅助”,按此参数制备的SiO_2气凝胶夹芯复合材料的承载层、防热层厚度与设计厚度一致,环氧侧的浸胶深度De poxy为3.4mm,苯并噁嗪侧的浸胶深度Db enzoxazine为2.5mm;共注射工艺的侧压、平压、三点弯曲和界面剪切性能都显著优于分步胶接工艺的。SiO_2气凝胶夹芯复合材料在防热层外表面施加600℃热载荷的条件下的热传导实验结果与FEA计算结果吻合良好。
     分别采用“湿法缝合-预固化”和“干法缝合-预固化”两种工艺制备缝合SiO_2气凝胶,并以此为隔热层材料,采用共注射RTM工艺制备了承载/SiO_2气凝胶隔热/防热复合材料,研究了缝合方式及l×m对SiO_2气凝胶夹芯复合材料内部结构、密度、力学性能和热传导性能的影响。结果表明,湿法缝合-共注射工艺的缝合热通道(缝合承力柱)由石英/苯并噁嗪复合材料和SiO_2气凝胶/苯并噁嗪复合材料组成,其中石英/苯并噁嗪通道的孔径为0.9mm,SiO_2气凝胶/苯并噁嗪通道孔径为3mm;干法缝合-共注射工艺的缝合热通道由石英/苯并噁嗪复合材料和石英/环氧复合材料组成,两缝合通道直径约为0.9mm,长度都约为隔热层夹芯厚度的一半;两种工艺的侧压、平压、三点弯曲和界面剪切性能都比分步胶接工艺的有了显著提高;两种工艺的力学性能随着l ? m的减小(缝合密度的增大)而提高;当l×m相同时,湿法缝合-共注射工艺的力学性能要优于干法缝合-共注射工艺的;缝合承力柱是缝合-共注射工艺的力学性能提高的主要原因;所建立的带缝合热通道的FEA模型可以较好地模拟缝合一体化复合材料的热传导过程,缝合热通道(尤其是湿法缝合热通道)显著影响着复合材料的热传导性能。
The primary requirements for a hypersonic aerocraft structure are low density, high mechanical performance, thermal protection and heat insulation, respectively. Traditionally, the load bearing/thermal protection structure applied in the hypersonic aerocraft was manufactured with the step by step method and then jointing them with glue. It not only makes the manufacturing process more difficulty and complication and more fabrication cost, but also less reliability of the whole structure. A new load bearing/heat insulation/thermal protection integral composite structure which is manufactured by the Co-injection RTM (CIRTM) is developed in this dissertation, which could be used as primary load bearing and thermal protection compound for the hypersonic aerocraft. In the integral composite structure, the load bearing layer materials are carbon fiber reinforced epoxy (carbon/epoxy) composites, the heat insulation layer materials are low density and low thermal conductivity materials such as PMI foams or silica aerogel materials, the thermal protection layer or ablation layer materials are carbon/phenolic composites.
     In this dissertation, heat transfer analysis and design of multi-layer composites and integral composites with stitching thermal channels are carried out based on finite element analysis (FEA) method. The optimal phenolic resin for the matrix of thermal protection layer, and the optimal epoxy resin for the matrix of load bearing layer are chosen. The multi-layer composites with foam core sandwich and aerogel core sandwich, respectively, are manufactured by CIRTM process, mechanical properties of the multi-layer composites are investigated and compared to that of multi-layer composites manufactured by bonding step by step method. The stitching-CIRTM process is used to manufacture a multi-layer composite with stitching silica aerogel core materials, effects of stitching pillars on mechanical properties and stitching thermal channels on heat transfer properties of the multi-layer composites are investigated, respectively.
     Heat transfer FEA models for the integral multi-layer composites with and without stitching thermal channels are established, respectively. Applied the thermal load in trajectory which peak temperature is 912℃to outer surface of the thermal protection layer, the temperature distribution in the multi-layer composites is obtained. The results show that PMI foam is not suitable for using as heat insulation layer materials served at the thermal loading. For load bearing layer thickness (hl-b) of 2mm and thermal protection layer thickness (ht-p) 3mm, the least heat insulation layer thickness (hl-b) of silica aerogel core is 16mm. The wet stitching channels materials can be considered as silica aerogel/benzoxazine composites, the average diameter of the stitching is 3mm. For hl-b of 2mm, ht-p 3mm, and needle-distance×row-distance ( l×m) 8×8, the least thickness hh-i of silica aerogel core is 24mm. The dry stitching channels materials can be considered as quartz/benzoxazine composite, the average diameter of the stitching is 0.9mm. For hl-b of 2mm, ht-p 3mm and hh-i 17mm, the least l×m of silica aerogel core is 10×10. For hl-b of 2mm, ht-p 3mm and hh-i 18mm, the least l×m of silica aerogel core is 7×7.
     Thermal properties, mechanical properties and process parameters of ammonia-phenolic, barium-phenolic, benzoxazine, novolac cyanate ester resins were investigated systematically by experimental and mathematic model, and rheological models based on the dual-Arrhenius equation for the four phenolic resins are established. The curing characteristic temperatures for the four phenolic resins are studied by differential scanning calorimeter (DSC) technique at different heating rates. According to quality of the cured resins, as well as the curing characteristic temperatures, the optimal curing programmes were determined. Using carbon fiber plain cloth as reinforcement, the composite laminates with matrix of ammonia-phenolic, barium-phenolic, benzoxazine, respectively, were manufactured by VARTM process. Porosities, mechanical properties and ablation properties of the composite laminates are investigated. The results show that the benzoxazine matrix composite laminates have better performance which satisfied RTM requirement. Benzoxazine resin maintains the viscosity less than 800mPa·s above 76℃, and has a wide low-viscosity temperature range and a long low-viscosity keeping time. Cured benzoxazine resin has the best mechanical properties among four cured phenolic resin, char yield at 1000℃in nitrogen atmosphere reaches 47%. The features of the carbon/benzoxazine composite laminates can be summarized as following: porosity is 0.85%, tensile strength is 445MPa, mass ablation is 0.0435g.s~(-1).
     According to the co-injection requirements for epoxy resin and benzoxazine, gel characters of the epoxy systems containing different curing agents are studied, and the mechanical properties of the cured products are also investigated. The rheological model based on the dual-Arrhenius equation for the chosen epoxy resin was established, co-injection temperature was determined combined with rheological model of benzoxazine. The curing characteristic temperature for the epoxy resin was studied by differential scanning calorimeter (DSC) technique at different heating rates. The tensile strength of the cured epoxy resin and cured benzoxazine manufactured by different curing programmes was measured, herewith, the optimal co-curing programmes were determined. The results show that E-44/GA327 has the best mechanical properties and thermal properties which is suitable for co-injection with benzoxazine. The weight ratio of E-44 to GA327 is 100:30. The mechanical properties are as follows: tensile strength is 80.6MPa, tensile modulus 2.98GPa, flexural strength 138.6MPa, flexural modulus 3.11GPa, elongation to fracture 3.64%. Glass transition temperature (Tg) is 164℃. The co-injection temperature of benzoxazine and E-44/GA327 system is 76~90℃, the optimal co-curing programme is 85℃/4h+130℃/4h+140℃/2h+160℃/1h+180℃/1h.
     Load bearing/PMI foam heat insulation/thermal protection multi-layer integral composites was manufactured by the CIRTM, the primary process parameters were investigated. Mechanical properties of the multi-layer composites with PMI foam core manufactured by CIRTM and bonding step by step, respectively, were investigated. The results show that the optimal process parameters for the CIRTM are as follows: fiber volume fraction of load bearing layer and thermal protection layer is about 45%, injection pressure is 1atm, injection temperature is 80℃, with vacuum assisted. Measured thickness of each layer of the multi-layer composites manufactured by CIRTM with the optimal process parameters is agree with designed thickness, and PMI foam wasn’t infiltrated by epoxy resin or benzoxazine. The edgewise compressive,three point flexural and interfacial shear strength of multi-layer composites manufactured by CIRTM is better than that manufactured by bonding step by step, and that, coefficient of variance decreased significantly. The flatwise compressive properties of the multi-layer composites manufactured by two processes are identical. The multi-layer composites have better interface between each layer manufactured by CIRTM than by bonding step by step. The heat transfer experimental result agrees well with that of the FEA calculation. PMI foam is disabled under the thermal load of 350℃on the outer surface of thermal protection layer.
     Primary process parameters for load bearing/silica aerogel heat insulation/thermal protection multi-layer integral composites manufactured by CIRTM, were investigated. Mechanical properties and thermal properties of the multi-layer integral composites with silica aerogel core manufactured by the CIRTM and by the bonding step by step are studied, respectively. The results show that when the designed thickness of load bearing layer, heat insulation layer and thermal protection layer is 2mm, 18mm and 3mm, aimed at reducing the porosities of load bearing layer, thermal protection and the thickness of the resin layer infiltrated to the aerogel, the optimized process parameters for the CIRTM are as follows: fiber volume fractions of load bearing layer and thermal protection layer are about 45%, injection pressure is 1atm, injection temperature is 80℃, with vacuum assisted. The final thicknesses of load bearing layer and thermal protection layer of the multi-layer composites with silica aerogel core manufactured by the CIRTM are agree with the designed thickness, exception of the thickness of the heat insulation layer. The depth of the epoxy resin infiltrated to the aerogel core ( De poxy) is 3.4mm, and the depth of benzoxazine resin infiltrated to the aerogel core ( Db enzoxazine) is 2.5mm. The edgewise compressive, flatwise compressive, three point flexural and interfacial shear properties of the multi-layer composites with silica aerogel core manufactured by the CIRTM is better than that manufactured by bonding step by step. The multi-layer composites with silica aerogel core manufactured by the CIRTM has better interface than the one manufactured by bonding step by step. The heat transfer experimental results for of the multi-layer somposites with silica aerogel core under the thermal loading of 600℃on the outer surface of the thermal protection layer agrees well with FEA calculation.
     Wet stitching-pre-curing process and dry stitching-pre-curing process were used to manufacture stitched silica aerogel core, respectively, and then used as heat insulation layer materials, load bearing/stitched silica aerogel heat insulation/thermal protection multi-layer integral composites were manufactured by the CIRTM. The effects of stitching methods and l×m on inner configuration, densities, mechanical properties and thermal properties were investigated. The stitching thermal channels (stitching pillars) by wet stitching-CIRTM process include quartz/benzoxazine composites and silica aerogel/benzoxazine composites, the diameters of the channels are 0.9mm and 3mm, respectively. The stitching thermal channels by dry stitching-CIRTM process include quartz/benzoxazine composites and quartz/epoxy composites, the diameters of the channels are all 0.9mm. The edgewise compressive, flatwise compressive, three point flexural and interfacial shear properties of the sandwich composites manufactured by wet stitching-CIRTM process and dry stitching-CIRTM process increased significantly, compared to the composites by bonding step by step and CIRTM. However, mechanical properties of the sandwich composites by two processes increased with the decrease of l×m (the increase of stitching density). For the same l ? m, the mechanical properties of sandwich composite by wet stitching-CIRTM is much higher than those of the sandwich composite by dry stitching-CIRTM. The improvements of mechanical properties of the sandwich composites by stitching-CIRTM are due to the stitching pillars. The calculated results by FEA model show that the stitching thermal channels have significant effects of the heat transfer of, the multi-layer composites with stitched core, especially to the wet stitching channels.
引文
[1]刘桐林.美国高超声速技术的发展与展望[J].航天控制, 2004, 22(4): 36-41.
    [2]流火.高超声速飞行器的发展现状[J].现代军事, 2004(12): 20-23.
    [3]徐闻.德国的高超声速导弹[J].飞航导弹, 2004(1): 1-4.
    [4]周新红.高超声速武器的发展与应用[J].飞航导弹, 2007(2): 9-11.
    [5]沈剑,王伟.国外高超声速飞行器研制计划[J].飞航导弹, 2006(8): 1-9.
    [6]孙平.空射高超声速巡航导弹对地作战效能分析[D].西北工业大学硕士学位论文, 2006.
    [7]丛敏.高超声速导弹的使用要求和性能比较研究[J].飞航导弹, 2002(5): 23-29.
    [8] J B Davis, D B Marshall, K S Oka, et al. Ceramic composites for thermal protection systems[J]. Composites:Part A, 1999(30): 483-488.
    [9]张纯学,晗旭.可负担的远程精确打击高超声速导弹[J].飞航导弹, 2006(12): 6-12.
    [10]王希季,林华宝,李颐黎等.航天器进入与返回技术(下册)[M].北京:宇航出版社, 1991.
    [11]范绪箕.气动加热与热防护系统[M].北京:科学出版社, 2004.
    [12]杨炳渊.超高速防空导弹结构防热技术[J].上海航天, 2002(4): 41-45.
    [13]张志成.高超声速气动热和热防护[M].北京:国防工业出版社, 2003.
    [14]王希季,林华宝,李颐黎.航天器进入与返回技术[M].北京:宇航出版社, 1991.
    [15]黄志澄,程永鑫.航天空气动力学[M].北京:宇航出版社, 1994.
    [16]袁海根,曾金芳,杨杰等.防热抗烧蚀复合材料研究进展[J].化学推进剂与高分子材料, 2006, 4(1): 21-25.
    [17]姜贵庆,刘连元.高速气流传热与烧蚀热防护[M].北京:国防工业出版社, 2003.
    [18]杜善义.先进复合材料与航空航天[J].复合材料学报, 2007, 24(1): 1-12.
    [19] J Pora. Composite materials in the Airbus from history to future[C]. ICCM-13, 2001.
    [20]赵渠森.先进复合材料及其应用[J].航空制造技术, 2002(10): 22-27.
    [21]何东晓.先进复合材料在航空航天的应用综述[J].高科技纤维与应用, 2006, 31(2): 9-11.
    [22]才满端.重复使用运载器的近期发展[J].导弹与航天运载技术, 1999(2): 1-5.
    [23] G Austin. X-33 status & implications for future spaceports[C]. Technology 2009 National Conference, 1999.
    [24]肖少伯.碳纤维及其复合材料在卫星上的应用[J].高科技纤维与应用, 1999(2): 1-7.
    [25] D K Darooka, D W Jensen. Advanced Space structure concepts and their development[R]. AIAA-2001-1257, 2001.
    [26]王显峰,富宏亚,韩振宇等.复杂形体面片缠绕成型方法的分析与实现[J].宇航材料工艺, 2006(6): 39-41.
    [27]刘良森,谢霞,邱冠雄.多向纤维缠绕机缠绕线型及其控制系统的设计[J].玻璃钢/复合材料, 2006(3): 36-38.
    [28]李勇,肖军.复合材料纤维铺放技术及其应用[J].纤维复合材料, 2002(3): 39-41.
    [29]艾涛,王汝敏.低成本、高性能复合材料的成型技术[J].纤维复合材料, 2004(2): 42-44.
    [30]张彦飞,刘亚青,杜瑞奎等.复合材料液体模塑成型技术(LCM)的研究进展[J].塑料, 2005, 34(2): 31-35.
    [31] S W Beckwith, C R Hyand. Resin transfer molding:a decade of technology advances[J]. SAMPE Journal, 1998, 34(6): 7-19.
    [32] B Qi, J Raju, T Kruckenberg, et al. A resin Film infusion process for manufacture of advanced composite structures[J]. Composite Structure, 1999, 47: 471-476.
    [33] N C Correia, F Robitaille, A C Long, et al. Analysis of the vacuum infusion molding processⅠ:Analytical formulation[J]. Composites Part A, 2005, 36(12): 1645-1656.
    [34] D Modi, N Correia, M Johnson, et al. Active control of the vacuum infusion process[J]. Composites Part A, 2007, 38(5): 1271-1287.
    [35] P J Blanchard, C D Rudd. Cycle time reduction in resin transfer molding by phased catalyst injection[J]. Composites Science and Technology, 1996, 56(2):123-133.
    [36]仲伟虹,梁志勇,张佐光等. RTM工艺及其在我国航空工业的应用前景[J].材料工程, 1995(1): 9-11.
    [37]刘钧.固体火箭发动机全复合材料连接裙RTM整体制备技术[D].国防科学技术大学博士学位论文, 2007.
    [38] K N Kendall, C D Rudd, M J Owen, et al. Characterization of the resin transfer molding process[J]. Composites Manufacturing, 1992, 3(4): 235-249.
    [39] N A Warrior, T A Turner, F Robitaille, et al. Effect of resin properties and processing parameters on crash energy absorbing composite structures made by RTM[J]. Composites Part A, 2003, 34(6): 543-550.
    [40] J R Weitzenbock, R A Shenoi, P A Wilson. Radial flow permeability measurement. Part A:Theory[J]. Composites Part A, 1999, 30(6): 781-796.
    [41] H W Yu, W B Young. Optimal design of process parameters for resin transfer molding[J]. Journal of Composite Materials, 1997, 31(11): 1113-1140.
    [42] P J Schubel, A J Parsons, E H Lester, et al. Characterization of thermoset laminates for cosmetic automotive application:PartⅡ-Cure and residual volatile assessment[J]. Composites Part A, 2006, 37(10): 1747-1756.
    [43] P J Schubel, A J Parsons, E H Lester, et al. Characterization of thermoset laminates for cosmetic automotive application:PartⅢ-Shrinkage control via nanoscale reinforcement[J]. Composites Part A, 2006, 37(10): 1757-1772.
    [44]卢嘉德.固体火箭发动机复合材料技术的进展及其应用前景[J].固体火箭技术, 2001, 24(1): 46-52.
    [45]李萍,陈祥宝. RTM技术的发展及其在航空工业的应用[J].材料工程, 1998(1): 46-48.
    [46]蓝天.采用树脂传递模塑法制造襟翼整流罩[J].航空制造技术, 2002(3): 43.
    [47]段宝,杨亚文,王雅杰.先进复合材料结构RTM技术现状及发展[J].沈阳航空工业学院学报, 2000, 17(3): 18-21.
    [48] A Carfield, R G Clinton. Improved ablative materials for the ASRM nozzle[R]. AIAA-92-3057, 1992.
    [49]姜卫陵,郦江涛,赵云峰等.玻璃纤维/酚醛复合材料的烧蚀性能研究[J].导弹与航天运载技术, 2003(5): 47-50.
    [50]李崇俊,张延玲,苏红等.炭/炭-酚醛双基体烧蚀防热材料研究[J].固体火箭技术, 2004, 27(2): 136-140.
    [51] A R Carfield, J R Mathis, H S Starrett. Materials property definition and genertion for carbon-carbon and carbon phenolic material[R]. AIAA-87-1825, 1987.
    [52]黄家康,岳红军,董永琪.复合材料成型技术[M].北京:化学工业出版社, 1999.
    [53]宋学智.酚醛树脂烧蚀性能研究进展[J].工程塑料应用, 2003, 31(7): 69-71.
    [54]白侠,李辅安,李崇俊等.耐烧蚀复合材料用改性酚醛树脂研究进展[J].玻璃钢/复合材料, 2006(6): 50-55.
    [55]黄发荣,焦杨声.酚醛树脂及其应用[M].北京:化学工业出版社, 2003.
    [56]胡平,刘锦霞,张鸿雁等.酚醛树脂及其复合材料成型工艺的研究进展[J].热固性树脂, 2006, 21(1): 36-41.
    [57]李卫方,石松,余瑞莲等. RTM酚醛树脂研究进展[J].宇航材料工艺, 2004(2): 8-13.
    [58] S Das. Cyanato group containing phenolic resin, phenolic triazines derived thereform[P]. US Patent 4831086, 1989.
    [59] S Das, D C Prevorsek, B T Debona. Phenolic-triazine resins yield high-performance thermoset composites[J]. Modern Plastics, 1990(2): 72.
    [60] M L Ramirez, R Walters, R E Lyon, et al. Thermal decomposition of cyanate ester resins[J]. Polymer Degradation and Stability, 2002(78): 73.
    [61] A F Grand, L C A Wilkie. Fire retardancy of polymeric materials[M]. New York: Marcel Dekker Inc., 2000.
    [62]王晓洁,梁国正,张炜等.氰酸酯树脂在航空航天领域应用研究进展[J].材料导报, 2005, 19(5): 70-72.
    [63]李文峰,陈淳,王国建.酚醛型氰酸酯树脂的研究与应用[J].材料导报, 2006, 20(6): 44-48.
    [64] J K Hyum, B Zdenka, H Ishida. Molecular characterization of the polymerization of acetylene-functional benzoxazine resins[J]. Polymer, 1999, 40(7): 1815-1822.
    [65] H J Kim, Z Brumovska, H Ishida. Synthesis and thermal characterization of polybenzoxazine based on acetylene-functional monoomers[J]. Polymer, 1999, 40(23): 6565-6573.
    [66]顾宜,钟赤峰,谢美丽.用于RTM成型工艺的苯并噁嗪树脂及其复合材料[J].复合材料学报, 2000, 17(4): 32-37.
    [67] H Ishida. Cationic ring-opening polymerization of benzoxazines[J]. Polymer, 1999(40): 4563-4570.
    [68]顾宜,谢美丽,刘新华.开环聚合酚醛树脂研究进展[J].化工进展, 1998, 17(2): 43.
    [69] H Ishida, Y Rodriguez. Curing kinetics of a new benzoxazine-based phenolic resin by differential scanningc alorimetry[J]. Polymer, 1995(36): 3151-3158.
    [70]向海,顾宜.新型酚醛树脂-苯并噁嗪树脂的研究进展[J].高分子材料科学与工程, 2004, 20(3): 1-5.
    [71]田巧,赵锦成,朱蓉琪等.适用于RTM成型的新型耐烧蚀苯并噁嗪树脂的研究[J].宇航材料工艺, 2006(5): 27-29.
    [72]阎业海,刘金阁,赵彤等.一种适用于树脂传递模塑工艺的双马来酰亚胺改性酚醛树脂[J].高技术通讯, 2002(5): 56-59.
    [73]宋学智.新型热防护材料-聚芳基乙炔树脂[J].工程塑料应用, 2000, 28(9): 44-45.
    [74] R E Shalin. Polymer matrix composites[M]. London: Chapman & hall, 1995.
    [75]吴晓青,李嘉禄,杨彩云.聚芳基乙炔在RTM工艺中的应用探索[J].航空制造技术, 2004(7): 65-67.
    [76] H A Katzman, J J Mallon, W T Barry. Polyarylacetylene - matrix composites for solid rocket motor components[J]. Journal of Advanced Materials, 1995, 26(3): 21-27.
    [77]汪明,余瑞莲,李卫芳等.改性聚芳基乙炔树脂性能研究[J].宇航材料工艺, 2003, 33(4): 43-48.
    [78] N Bilow, A L Landis, W B Austin. Arylacetylenes as high char forming matrix resins[J]. SAMPE Journal, 1982, 18(3): 19-23.
    [79]闫联生,姚冬梅,闫桂沈等.碳布增强聚芳基乙炔新型防热材料[J].玻璃钢/复合材料, 1999(5): 20-23.
    [80]刘丽,傅宏俊,黄玉东等.碳纤维表面处理及其对碳纤维/聚芳基乙炔复合材料力学性能的影响[J].航空材料学报, 2005, 25(2): 59-62.
    [81]佘平江,张志斌,赵珂等.高强度耐烧蚀复合材料的RTM成型工艺[J].航天制造技术, 2002(4): 18-21.
    [82]路遥,段跃新,梁志勇等.钡酚醛体系化学流变特性研究[J].复合材料学报, 2002, 19(5): 33-37.
    [83]石东,石凤,段跃新等. RTM工艺用酚醛树脂体系化学流变行为研究[J].宇航材料工艺, 2002(2): 52-56.
    [84]张传鑫.纳米孔超级隔热材料Al2O3气凝胶的制备与热学性能分析[D].哈尔滨工业大学硕士学位论文, 2005.
    [85]楚晖娟,朱宝库,徐又一.聚酰亚胺泡沫材料在航空航天飞行器中应用进展[J].宇航材料工艺, 2006(3): 1-3.
    [86] E S Weiser, T F Johnson, T L St Clair, et al. Polyimide foams for aerospace vehicles[J]. High Performance Polymer, 2000, 12(1): 1-12.
    [87] M K Williams, E S Weiser, J E Fesmire, et al. Efects of cell structure and density on the properties of high performance polyimide foams[J]. Polymer Advanced Technology, 2005, 16: 167-174.
    [88]赵飞明,徐永祥.聚酰亚胺泡沫材料研究进展[J].宇航材料工艺, 2002(3): 6-10.
    [89]赵飞明,安思彤,穆晗.聚甲基丙烯酰亚胺(PMI)泡沫研制现状[J].宇航材料工艺, 2008(1): 1-9.
    [90]胡培. PMI泡沫:夹层结构的芯材[J].玻璃钢, 2003(2): 9-17.
    [91]沈军,周斌,吴广明等.纳米孔超级绝热材料气凝胶的制备与热学特性[J].工程学报, 2002, 2(4): 341-345.
    [92]张娜,张玉军,于廷军等. SiO2气凝胶制备方法及隔热性能的研究进展[J].陶瓷, 2006(1): 24-26.
    [93]沈军,王钰,吴翔.气凝胶-一种结构可控的新型功能材料[J].材料科学与工程, 1994, 12(3): 1-5.
    [94]王钰.轻质纳米多孔材料-气凝胶[J].材料导报, 1993, 72(2): 36-39.
    [95]董志军,涂红兵,李轩科等.莫来石纤维增强SiO2气凝胶隔热材料的制备[J].当代化工, 2006, 35(3): 166-168.
    [96] W H Lawrence. Aerogel Applications[J]. Journal of Non-Crystalline Solids, 1998, 225: 335-342.
    [97]倪星元,张志华,黄耀东等.纳米多孔SiO2气凝胶的常压制备及应用[J].功能材料, 2004, 35: 2761-2763.
    [98]李文翠.新型纳米材料炭气凝胶的制备、表征及应用研究[D].大连理工大学博士学位论文, 2002.
    [99]高庆福,张长瑞,冯坚等.氧化铝气凝胶复合材料的制备与隔热性能[J].国防科技大学学报, 2008, 30(4): 39-42.
    [100]秦国彤,门薇薇,魏微等.气凝胶研究进展[J].材料科学与工程, 2005, 23(2): 293-296.
    [101]刘朝辉,苏勋家,侯根良等.超级绝热材料SiO2气凝胶的制备及应用[J].化工新型材料, 2005, 33(12): 21-23.
    [102]董志军,颜家保,涂红兵等.二氧化硅气凝胶隔热复合材料的制备与应用[J].化工新型材料, 2005, 33(3): 46-48.
    [103] S M Walsh. Improvements in vacuum assisted resin infusion[J]. Materials Technology, 2001, 16(3): 179-181.
    [104] E F Gillio, J W Gillespie Jr., R F Eduljee, et al. Manufacturing of composites with the co-injection process[C]. Proceedings of the 1997 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1997.
    [105] E F Gillio, S G Advani, J W Gillespie Jr., et al. Investigation of the role of transverse flow in co-injection resin transfer molding[J]. Polymer Composites, 1998, 19(6): 738-746.
    [106] E F Gillio, G P Mcknight, J W Gillespie Jr., et al. Processing and properties of Co-Injected Resin Transfer Molded vinyl ester and phenolic composites[J]. Polymer Composites, 1999, 20(6): 780-788.
    [107] A Harkare, J W Gillespie Jr. In situ barrier layer formation for coinjection resin transfer molding[J]. Journal of Thermoplastic Composite Materials, 2004, 17(5): 387-409.
    [108] K R Bernetich, G P Mcknight, J W Gillespie Jr., et al. Co-injection resin transfer molding of vinyl ester and phenolic composites[C]. 43rd International SAMPE Symposium and Exhibition, 1998.
    [109] D D Coppens, D Rabeno, J W Gillespie Jr., et al. Fire-hardened composites for shipboard structures[C]. 45th International SAMPE Symposium and Exhibition,2000.
    [110]曾竟成,尹昌平,肖加余等.承载/隔热/烧蚀一体化夹芯结构复合材料及其制备方法[P].中国专利CN101417516, 2008.
    [111]张佐光,扎姆阿如娜,任骞等.复合材料热压成型过程中环氧树脂流变特性研究[J].航空学报, 2004, 25(3): 312-316.
    [112]石凤,段月新,梁志勇等. RTM专用双马来酰亚胺树脂体系化学流变特性[J].复合材料学报, 2006, 23(1): 56-62.
    [113] A Maazouz, J Dupuy, G Seytre. Polyurethane and unsaturated polyester hybrid networks:Chemorheological and dielectric study for the resin transfer molding process(RTM)[J]. Polymer Engineering and Science, 2000, 40(3): 690-701.
    [114] A Yousefi, P G Lafleur, R Gauvin. Kinetic studies of thermoset cure reaction:A review[J]. Polymer Composites, 1997, 18(2): 157-168.
    [115] N Kiuna, C J Lawrence, Q P V Fontana, et al. A model for resin viscosity during cure in the resin transfer molding process[J]. Composites Part A, 2002, 33(11): 1497-1503.
    [116] M B Roller. Rheology of curing thermosets:A review[J]. Polymer Engineering Science, 1986, 26(6): 432-440.
    [117] A V Tungare, G C Martin, J T Gotro. Chemorheological characterization of thermoset cure[J]. Polymer Engineering and Science, 1988, 28(16): 1071-1075.
    [118] K U Moon, I M Daniel, B S Hwang. A study of cure kinetics by the use of dynamic different scanning calorimetry[J]. Composites Science and Technology, 2002, 62(1): 29-40.
    [119] H E Kissinger. Reaction kinetics in differential thermal analysis[J]. Analysis Chemistry, 1957, 29(11): 1702-1706.
    [120]吴晓青,李嘉禄,康庄等. TDE-85环氧树脂固化动力学的DSC和DMA研究[J].固体火箭技术, 2007, 30(3): 264-268.
    [121] G V Assche, A V Hemelrijck, H Rahier, et al. Modulated differential scanning calorimetry:non-isothermal cure, vitrification and devitrification of thermosetting systems[J]. Thermochimica Acta, 1996, 286(2): 209-224.
    [122] R B Prime. Differential scanning calorimetry of the epoxy cure reaction[J]. Polymer Engineering and Science, 1973, 13(5): 365-371.
    [123] W B Young, K Han, L H Fong, et al. Flow simulation in molds with preplacedfiber materials[J]. Polymer Composites, 1991, 12(6): 391-403.
    [124]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社, 1999.
    [125]江顺亮. RTM加工工艺充模过程的计算机模拟[J].复合材料学报, 2002, 19(2): 13-17.
    [126] A Hammami. Analysis of the infusion molding process[J]. Polymer Composites, 2000, 21(1): 28-40.
    [127]史德军,胡福增,卢红等. RTM一维单向流动模型的理论概况及研究[J].玻璃钢/复合材料, 2004(1): 3-5.
    [128]苏大亮.高超声速飞行器热结构设计与分析[D].西北工业大学硕士学位论文, 2006.
    [129] D Kamran. Thermal analysis and design of multi-layer insulation for re-entry aerodynamic heating[R]. AIAA 2001-2834, 2001.
    [130]孔祥谦.有限单元法在传热学中的应用(第三版)[M].北京:科学出版社, 1998.
    [131] C H Yan, S J Qu, S H Meng, et al. Steady heat transfer analysis and parameter optimization for multilayer thermal insulations[J]. Tansactions of Nanjing University of Aeronautics and Astronautics, 2006, 23(4): 257-263.
    [132]陈晓霞. ANSYS7.0高级分析[M].北京:机械工业出版社, 2004.
    [133]博弈创作室. APDL参数化有限元分析及其应用实例[M].北京:中国水利水电出版社, 2005.
    [134]何飞,赫晓东,李垚.气凝胶热特性的研究现状[J].材料导报, 2005, 19(12): 20-22.
    [135] Y K Akimov. Fields of application of aerogels(Review)[J]. Instruments and Experimental Techniques, 2003, 46(3): 287-299.
    [136] J Fricke, A Emmerling. Aerogels-recent progress in production techniques and novel applications[J]. Journal of Sol-Gel Science and Technology, 1998(13): 299-303.
    [137] D O Adams, L E Stanley. Development and evaluation of stitched sandwich panels[R]. NASA CR-211025, 2001.
    [138]贾力,放肇洪,钱兴华.高等传热学[M].北京:高等教育出版社, 2003.
    [139] G D Smith. Numerical solution of partial differential equations with exercises and worked solutions[M]. London: Oxford Univeristy Press, 1965.
    [140] A P Mouritz, K H Leong, I Herszberg. A review of the effect of stitching on the in-plane mechanical properties of fiber-reinforced polymer composites[J]. Composites Part A, 1997(28A): 979-991.
    [141]尹昌平,李建伟,刘钧等.缝合/RTM复合材料层合板的力学性能研究[J].材料导报, 2007(11): 136-138.
    [142]陈祥宝.高性能树脂基体[M].北京:化学工业出版社, 1999.
    [143]刘振海.分析化学手册-热分析[M].北京:化学工业出版社, 1994.
    [144]罗文飞,王嘉图,陈淳等.高性能烧蚀材料用酚醛型氰酸酯的合成与表征[J].玻璃钢/复合材料, 2006(1): 21-23.
    [145]陈祥宝.聚合物基复合材料手册[M].北京:化学工业出版社, 2004.
    [146]闫联生,傅立坤,刘晓红.树脂基防热材料烧蚀性能表征的探讨[J].固体火箭技术, 2003, 26(2): 53-56.
    [147] L M Dane, R Brouwer. Resin transfer molding(RTM) of high performace resins[C]. 33rd International SAMPE Symposium, 1988.
    [148] E B Stark, L M Schlaudt, T A Chang, et al. Resin transfer molding (RTM) of high performance resins[C]. 32nd International SAMPE Symposium and Exhibition, 1987.
    [149] S C Hackett, P C Griebling. A high performance aerospace resin for resin transfer molding[C]. 35th International SAMPE Symposium and Exhibition, 1990.
    [150] A J Gu, G Z Liang, Z M Li. A new bismaleimide system for resin transfer molding[J]. Polymer Composites, 1997, 18(1): 151-155.
    [151] D Wilson. PMR-15 processing, properties and problems-a review[J]. British Polymer Journa1, 1988, 20(5): 405-416.
    [152]刘少琼,蹇锡高,黄河等.新型耐热树脂基复合材料的性能研究[J].高分子材料科学与工程, 2002, 18(6): 97-100.
    [153]杜刚.复合材料推力筒设计与整体制备技术研究[D].国防科学技术大学博士学位论文, 2007.
    [154]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社, 2002.
    [155]刁岩,陈一民,洪晓斌等.真空辅助RTM成型技术应用及适用树脂体系[J].高分子通报, 2006(12): 84-88.
    [156]陈祥宝.先进树脂基复合材料的发展[J].航空材料学报, 2000, 20(1): 46-54.
    [157]陈伟明,王成忠,周同悦等.高性能T800碳纤维复合材料树脂基体[J].复合材料学报, 2006, 23(4): 29-35.
    [158]郑亚萍,宁荣昌,乔生儒. TDE-85环氧树脂应用性能研究[J].宇航材料工艺, 2000(3): 30-33.
    [159]张林文,胡幼奕. RTM成型技术再认识[J].玻璃钢/复合材料, 1998(5): 7-8.
    [160]赵云峰,聂嘉阳,杨建生. CTBN改性TDE-85环氧树脂体系固化行为的研究[J].宇航材料工艺, 1991, 21(1): 26-31.
    [161]刘静,赵敏,刘广田.芳胺固化双酚S环氧树脂动态力学性质的研究[J].高分子材料科学与工程, 2001, 17(4): 98-100.
    [162] H Bansemir, O Haider. Fibre composite structures for space applications-recent and future developments[J]. Cryogenics, 1998, 38(1): 51-59.
    [163]梁志勇,段跃新,林云等.乙烯基酯树脂体系流变特性及RTM工艺窗口预报研究[J].材料工程, 2001(8): 36-40.
    [164] C D Rudd, A C Long, K N Kendall. Liquid molding technologies[M]. London: Woodhead Publishing Ltd., 1997.
    [165]代晓青,曾竟成,刘钧等. RFI用环氧树脂固化工艺研究[J].国防科技大学学报, 2007, 29(3): 22-26.
    [166]吴晓青,李嘉禄,周清. TDE-85环氧树脂RTM工艺性研究[J].中国塑料, 2003, 17(3): 44-47.
    [167]孙群辉,姜正军.环氧树脂固化剂含量对体系固化过程的影响[J].高分子材料科学与工程, 1999, 15(1): 123-127.
    [168]周定沛,范宏.环氧胶的粒状分子结构理论[J].粘接, 1996(3): 1-6.
    [169]牛国良,周文英,谷宏治.环氧胶体型缩聚理论[J].玻璃钢/复合材料, 2002(5): 13-14.
    [170]吴世臻,康庄,吴晓青等.采用差示扫描量热法(DSC)对TDE-85/70#酸酐体系固化动力学的研究[J].天津工业大学学报, 2005, 24(6): 30-33.
    [171]冼杏娟.复合材料破坏分析及微观图谱[M].北京:科学出版社, 1993.
    [172] P J Halley, M E Mackay. Chemorheology of thermoset-an overview[J]. Polymer Engineering and Science, 1996(36): 593-608.
    [173]尹昌平,肖加余,曾竟成等. E-44环氧树脂体系流变特性研究[J].宇航材料工艺, 2008(5): 67-70.
    [174]尹昌平,肖加余,曾竟成等.苯并噁嗪树脂流变特性及工艺窗口预报研究[J].材料工程, 2008(6): 5-8.
    [175] L W Crane, P J Dynes, D H Kaelble. Analysis of curing kinetics in polymer composites[J]. Journal of polymer:Polymer Letters Edition, 1973, 11(8): 533-540.
    [176]孙春方,李文晓,薛元德等.高速列车用PMI泡沫力学性能研究[J].玻璃钢/复合材料, 2006(4): 13-15.
    [177]孙春方,薛元德,胡培.复合材料泡沫夹层结构力学性能与试验方法[J].玻璃钢/复合材料, 2005(2): 3-6.
    [178]邓爱民,张佐光,李敏等. Z向增强泡沫夹芯阻燃复合材料力学性能[J].复合材料学报, 2007, 24(5): 50-54.
    [179] V L Tagarielli, N A Fleck, V S Deshpande. Collapse of clamped and simply supported composite sandwich beams in three-point bending[J]. Composites part B, 2004(35): 523-534.
    [180] V Monnard, P E Bourban, J A Manson, et al. Processing and characterization of welded bonds between thermosets and thermoplastic composites[C]. 18th International SAMPE European Conference, 1997.
    [181] P Potluri, E Kusak, T Y Reddy. Novel stitch-bonded sandwich composite[J]. Composite structures, 2003(59): 251-259.
    [182]黄涛,矫桂琼,潘文革.缝纫泡沫夹层结构弯曲性能研究[J].材料科学与工程学报, 2006, 24(4): 535-538.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700