用户名: 密码: 验证码:
真实感三维地形可视化研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维地形可视化是近年来计算机图形学和地理信息系统相结合而产生的一个新的研究热点。利用地理信息系统所采集的地质数据资料,通过地形建模,纹理映射,光照模型设定,投影模式选择以及地形漫游等,可实现具有高度真实感的三维地形动态显示。
     本文在吸取了计算机图形学、现代数学、测绘学等众多领域大量先进理论成果的基础上,研究了地形建模的基本理论和方法,以地形建模算法和三维立体可视化算法为主要理论,系统的论述了三维GIS中地形三维可视化的理论,包括数字高程模型的地形表面建模技术、地形三维可视化的基本理论、三维地形动态显示技术。
     通过研究真实地学演变过程从三维地形的表现形式与建模存在的主要问题入手,以VC++为开发平台,利用OpenGL的绘图技术,实现了三维地形的快速建模以及动态显示,确立了使河道边界具有动态自适应性的搜索算法,实现了对河水泛洪的模拟显示,使用户可以多角度多侧面地了解地形地貌,为三维地形仿真和洪水演进模拟提供一个可操作分析的虚拟环境。
The three dimensional terrain visualization is a new research hot spot which the recent years computer graphics and the geographic information system unified produces. Geological data material which gathers using the geographic information system, through the terrain modelling, the texture mapping, the illumination model hypothesis, the projection pattern choice as well as terrain roaming and so on, may realize has highly the third dimension three dimensional terrain dynamic demonstration.
     This article has absorbed the computer graphics, the modern mathematics, the survey study and so on the numerous domain massive advanced theory achievement foundation, has studied the terrain modelling elementary theory and the method, take the terrain modelling algorithm and the three dimensional three-dimensional visualization algorithm as the main theory, in system's elaboration three dimensional GIS the terrain three dimensional visualization theory, including digital elevation model terrain surface modeling technology, terrain three dimensional visualization elementary theory, three dimensional terrain dynamic display technology.
     Through the research of real geoscience successional variation process from the three dimensional terrain's manifestation and the modelling existence's subject matter, as develops the platform take VC++, uses OpenGL the drawing technique, has realized the three dimensional terrain fast modelling as well as the dynamic demonstration, established has enabled the river course boundary to have dynamic auto-adapted the searching algorithm, realized conformable display to river water pan-Hong's, enabled the user to be possible the multiple perspectives multi-side understanding terrain landform, provided one for the three dimensional terrain simulation and the flood evolution simulation to be possible the operational analysis virtual environment.
引文
[1]张顺谦.遥感影像三维可视化研究.气象科技,2004,32(4):233-236。
    [2]R Pajarola. and D Christopher. Efficient implementation of real-timeview-dependent multiresolution meshing [J]. IEEE Transaction on visualization and computer graphics 2004, 10(3): 353-368.
    [3]Shi-Ming Yu; Sun-Sheng Han; Chee-Hian Chai.Modeling the value of view in high-rise apartments: a 3D GIS approach. Environment and Planning. B, Planning and Design.2007.34(1):8-9.
    [4]Gemitzi, A; Tsihrintzis, VA; Christou, O; Petalas, C. Use of GIS in siting stabilization pond facilities for domestic wastewater treatment. Journal of Environmental Management. Journal of Environmental Management.2007 .82(26): 152-156.
    [5] Gavin Fleming; Marna van der Merwe; Graeme McFerren. Fuzzy expert systems and GIS for cholera health risk prediction in southern Africa. Environmental Modelling & Software.2007.22(4):33-36.
    [6]VanLooy, JA; Cova, TJ.GIS-based indices for comparing airline flight-path vulnerability to volcanoes .The Professional Geographer.2007.59(1):4-6.
    [6]G. Quinonez-Varela; A. Cruden; C. Graham; B. Punton; L. Blair; J. Thomson. A GIS/PSS planning tool for the initial grid connection assessment of renewable generation. Renewable Energy.2007.32(5):69-72.
    [8] Canepa, E; D'Alberti, F; D'Amati, F; Triacchini, G. The GIS-based SafeAirView software for the concentration assessment of radioactive pollutants after an accidental release . The Science of the Total Environment.2007.373(1):3-5.
    [9] Huby, Meg; Owen, Anne; Cinderby, Steve. Reconciling socio-economic and environmental data in a GIS context: An example from rural England. Applied Geography.2007.27(1):5-7.
    [10]郝增明.几个优秀的地理软件.地理教育,2004,4:59。
    [11]牛瑞卿,田宜平,张夏林,等.建立三维数字长江模型的关键技术探讨.人民长江,2005,36(2):45-46。
    [12]高力.利用数字高程模型生成地形三维仿真图.西安工程学院学报,2000,22(3):59-62。
    [13]淮永建.虚拟场景中实时图形绘制关键技术研究.西北工业大学.博士学位论文.2002.2-5,27-33
    [14]李晓燕,三维地形实时动态显示的核心技术研究.可视化专栏,2004。
    [15]郑顺义,万幼川,谭德宝.河道三维可视化技术研究.长江科学院院报,2004,21(3):67-70。
    [16]Donald Hearn等.计算机图形学(第三版) [M ].北京:电子工业出版社, 2005.
    [17]陈卡. DirectX9 3D图形程序设计[M].上海:上海科学技术出版社,2003.
    [18]李志林,朱庆.数字高程模型.武昌:武汉大学出版社,2003
    [19]邬伦,刘瑜,张晶,马修军,韦中亚,田原.地理信息系统——原理、方法和应用[M],科学出版社,2002 P197~198.
    [20]赵耀红,史晓峰.DEM在OpenGL中的三维显示.现代情报,2003,11:70-72。
    [21]霍风霖,贾艾晨.河道的防洪预警模拟及其三维地形可视化海洋测绘.2006.26(5) 55-56
    [22]廖巍.大规模地形的建模与动态绘制技术研究.西南交通大学.硕士论文.2002.17-23
    [23]兰培真,金一丛.船舶操纵模拟器视景中的地形生成技术.集美大学学报.2001(4).345-352
    [24]姜陆,刘钊.三维大规模地形的实时显示与渲染.中国民航飞行学院学报,2005,16(4):34-38。
    [25]韩敏,陈明.洪水演进模拟的三维可视化研究.计算机应用,2005,25(8):1906-1907,1912。
    [26]牛瑞卿,田宜平,张夏林,等.建立三维数字长江模型的关键技术探讨.人民长江,2005,36(2):45-46。
    [27]方同祝,胡正国.一种紧致且简单的多分辨率网格表示[J].系统仿真学报, 2004, 16(8): 1750-1753.
    [28]韩敏,陈明.洪水演进模拟的三维可视化研究.计算机应用,2005,25(8) 1906-1907,1912。
    [29]李天文,吴琳,曹颖.基于渭河下游DEM的洪水淹没分析与模拟.水体保持通报,2005,25(4):53-56,90。
    [30]何东健,耿楠,张义宽.数字图像处理[M].西安:西安电子科技大学出版社, 2003.
    [31] Fang, T. Z., Hu Z. G., Jin, W. K.: Progressive transmission of single-resolution mesh image [J]. IEE Electronics Letters, 2004, 40.(16): 984-986.
    [32]徐志胜,冯凯,冯春莹,等.防灾减灾工程学报,2004,24(3):247-251。
    [33]严蔚敏,吴伟民.数据结构.北京:清华大学出版社,1997.167-170。
    [34]薛安,马蔼乃,李天宏,基于OpenGL实现真实感地形表现的研究,中国图像图形学报,2001.
    [35]江早.OpenGL VC/VB图形编程[M].科学出版社,2001.
    [36]乔林,费广正等.程序设计OpenGL[M].清华大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700