用户名: 密码: 验证码:
全氟辛烷磺酸(PFOS)对小鼠免疫毒性效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     全氟辛烷磺酸(Perfluorooctane sulfonate,PFOS)是近年来引起科学家们关注的一种新型持久性有机化合物,该有机物被广泛用于机械润滑剂、涂料、农药和医药品、表面活性剂、纺织品和皮革制品表面防污剂、泡沫灭火剂等数百种工业和日用品生产领域。由于PFOS在自然界中的难降解性和生物体内的高蓄积性,其已经在生态系统中得到广泛的传播,并且正在通过食物链途径的生物浓缩和生物放大进行生物种群间的转移,最终高浓度地蓄积在食物链高位生物包括食肉动物和人体内。2004年杜邦公司“不粘锅事件”进一步引起了国内专家对PFOS的关注。
     PFOS分子是由17个氟原子和8个碳原子组成的烃链,烃链末端碳原子上连接一个磺酰基。这种化学结构特点使分子中烃链碳原子间的共价键不容易受到外界作用而产生断裂。研究资料表明,PFOS即使在浓硫酸或浓硝酸溶液中煮沸1小时也不分解,或在98%硫酸中经过28天PFOS浓度也未见任何降低。与以往持久性有机污染物不同,PFOS具有疏水、疏油脂特性,虽然同属于持久性有机污染物,但是不蓄积在脂肪组织中,大部分与血浆蛋白结合存在于血液中,其余分布在动物肝脏、少量分布于肌肉和脑等其它组织中。研究表明,生物体内的PFOS主要来自食物、饮水、含PFOS泡沫灭火剂气溶胶吸入或体内含PFOS系列产品的降解。有研究表明,一个70kg体重的成年人通过饮食每天摄入PFOS的量约为62.5~74.2 ng。人群血清流行病学调查显示,各国各族人群血清中均检测出不同浓度的PFOS污染,其中职业暴露人群血清中PFOS浓度高达12.83mg/L;甚至新生儿血清中也存在PFOS污染。最近研究结果显示,人类血清中PFOS生物半衰期平均为8.67年(范围为2.29~21.3年,SD=6.12),最高达21.3年。而更值得关注的是,人体内PFOS负荷呈逐年增高趋势。日本学者的调查结果显示,在1983~1999年期间,人群血清中PFOS浓度以每年0.49 ug/L速度递增。我国沈阳地区人群血清PFOS浓度从1987年的0.03ug/L增加到2002年的22.4ug/L,15年间人群血清中PFOS浓度增加了747倍。
     PFOS的大鼠一次经口半数致死剂量(LD_(50))为251mg/kg,按照WHO定义标准,PFOS应属于中等毒性物质。人群流行病学调查显示,PFOS可降低新生儿体重,并使职业人群患膀胱癌和前列腺癌的危险性增高。毒理学研究表明,PFOS可对机体的神经系统、生殖系统和内分泌系统产生损伤,并具有胚胎发育毒性和遗传毒性,表明PFOS可能为一种全身毒性物质。免疫系统是对外源性化合物最为敏感的系统之一,但是,目前对于PFOS材料引起的免疫毒性研究刚刚起步,资料甚少,现有的为数不多的研究主要集中在PFOS对某些有限的免疫指标的毒性效应上,而关于PFOS免疫毒性的系统研究未见报道。所以,全面研究PFOS的免疫毒性,了解PFOS对免疫系统的危害,阐明PFOS免疫毒性剂量—效应关系和毒作用机制,可使人们深入了解PFOS危害性,在PFOS环境安全性评价中提供科学依据。因此,本研究在观察PFOS短期染毒、亚慢性染毒和体外染毒对小鼠免疫系统毒性的基础上,应用ELISA、流式细胞分析等方法进一步探讨PFOS对小鼠细胞免疫、体液免疫、非特异性免疫等的影响,从分子水平上评价PFOS对小鼠免疫系统毒性效应。
     材料与方法
     一、试验动物染毒方式和样品制备
     1、PFOS配制方法:
     试验组配制:配制2%Tween 80溶液,按照设计剂量加入全氟辛烷磺酸钾盐(PFOS-K)配制PFOS溶液。对照组配制:配制2%Tween 80溶液。
     2、短期染毒
     8-10周的雄性C57BL/6小鼠48只,实验室内适应性喂养7天后按体重随机分为4组,每天一次经口灌胃染毒,试验组每天PFOS染毒剂量分别为5、20、40mg/kg(bw),对照组给予2%Tween-80。每天一次经口灌胃染毒7天。
     3、亚慢性染毒
     将8-10周的雄性C57BL/6小鼠60只,实验室内适应性喂养10天后按体重随机分为6组,每天一次经口灌胃染毒60天,试验组60天PFOS累计染毒剂量[TotalAdministered Dose(TAD)]分别为0.5、5、25、50、125mg/kg(bw),即每天染毒剂量分别为8.33、83.33、416.67、833.33、2083.33μg PFOS/kg(bw),对照组给予2%Tween-80。
     4、体外染毒
     10周雄性C57BL/6小鼠6只,无菌取脾制备脾细胞悬液,调整脾细胞终浓度至1×10~7/mL,取200μl/孔加入24孔培养板中。将PFOS(以DMSO为溶剂)按0、1、5、10、50、200、300μM的浓度加入24孔培养板中,37℃、5%CO_2的细胞培养箱内培养48小时,提取培养上清,检测细胞因子水平。
     5、脾细胞采集
     短期染毒后第8天或亚慢性染毒第61天,摘除眼球采血并收集血清,颈椎脱位处死小鼠,75%酒精浸泡,取出各组小鼠的胸腺、肾脏、肝脏、脾脏,称量质量,并计算器官指数。常规制备脾细胞悬液,用含2%热灭活FCS的PBS将脾细胞终浓度调至1×10~7/mL。
     二、免疫指标测定方法
     1、血清中PFOS浓度测定
     0.5mL血清样品加入1.0mL 0.5mol/LTBAHS和2.5mL 0.25mol/L碳酸氢钠缓冲液,振荡混合20min后加入5.0mL MTBE进行萃取,离心后,收集上层MTBE相。沉淀物部分再次加入5.0mL MTBE,进行2次萃取。两次萃取合并液用高纯氮吹干后,准确加入1.0mL甲醇进行定容,进行HPLC/MS定量分析。
     2、CD4~+、CD8~+细胞亚群检测
     取0.1 mL脾细胞悬液,加入anti-CD3-FITC(553061)、anti-CD4-PE(557308)、anti-CD8-PERCP(553036)0.2μg,4℃下避光孵浴30min。加2mL PBS、混匀,离心5min(2000r/min),弃上清。将剩余液体转入流式管。流式细胞仪的激发波长为488nm,利用FACS CELLQUEST软件获取细胞,每个样品分析10,000个细胞;记录CD4~+T细胞、CD8~+T细胞的个数百分比。
     3、NK细胞活性检测
     以YAC-1细胞作为靶细胞,调整靶细胞浓度至1×10~5/ml备用。取脾细胞(1×10~6/ml)和靶细胞各0.1ml加入96孔细胞培养板中,每份标本设三个复孔,同时设靶细胞自然释放对照组和最大释放对照组。用酶联检测仪在490nm波长下读各孔OD值,计算NK细胞活性。
     4、MTT法检测淋巴细胞增殖
     用含10%小牛血清的RPMI-1640培养液调整脾细胞浓度为5×10~6/mL,加入96孔培养板,每孔100μl脾细胞悬液。每孔加入10μg/ml的ConA或LPS100μl,同时设只加培养液的阴性对照,每组设3复孔。在酶标仪上于570nm处测光吸收值(A),以下列公式计算淋巴细胞增殖指数(SI):SI=刺激孔A值/对照孔A值。
     5、NO测定
     取脾细胞培养上清接入96孔培养板中,100μl/孔,将100μmol/L NaNO_2在96孔培养板中进行倍比稀释。各孔中再加入0.1ml Griess试剂,室温静置10min,在550nm波长处测OD值。
     6、B细胞溶血空斑试验测定
     将绵羊红细胞(SRBC)免疫过的小鼠脾细胞制成2×10~6/ml悬液,与0.1ml SRBC和0.05ml的DEAE右旋糖酐补体在琼脂凝胶内混合,冷却凝固后放入37℃温箱1小时,加入豚鼠血清1.5ml。记录整个平皿中溶血空斑数。
     7、ELISpot法检测IL-2和IL-10细胞数量
     采用ELISpot法检测脾脏IL-2和IL-10的细胞数量,调整脾细胞浓度分别为1×10~5/ml(IL-2)和1×10~6/ml(IL-10)。每孔加入100μl脾细胞悬液和对照品,37℃CO_2温箱孵育1h。每孔加100μl生物素标记的IL-2或IL-10检测抗体,4℃过夜孵育。加入碱性磷酸酯酶标记链霉亲和素100μl/孔,室温孵育2h。加入BCIP/NBT显色液100μl/孔,避光孵育1h。ELISPOT自动分析仪读板计数IL-2或IL-10细胞数量。
     8、ELIsA法细胞因子IL-2、IL-4、IL-10、IFN-γ测定
     采用双抗体夹心ELISA法:每孔加入50μl倍比稀释的标准品,对照品或培养上清,混匀1min。室温孵育2h。每孔加入100μl各细胞因子多克隆抗体,室温孵育2h。100μl/孔加入酶标记溶液,室温避光孵育30min。加入100μl/孔终止液。用酶标仪在450nm波长读记吸光度OD值。
     9、血清抗体IgG、IgM测定
     采用ELISA检测血清抗体水平:100μl/孔标准品加入到96孔酶标板中,每孔加入100μl血清,加入50μl/孔酶标记溶液,36℃孵育1h,每孔加入底物呈色剂A、B液各50μl,36℃孵育15min,加入50μl/孔终止液。于450nm酶标仪读取OD值。
     10、统计学分析
     采用SAS8.2统计软件进行数据的分析。对数据进行正态性检验后,用均数(Mean)和标准误(SE)描述正态分布数据的描述指标。各组数据之间比较采用单因素方差分析,采用Dunnett(?)t检验进行各个试验组与对照组的多重比较。
     结果
     1、PFOS染毒对小鼠体重、饲料消耗量和器官指数的影响
     短期染毒试验:对照组小鼠血清中PFOS浓度低于检测限(0.05mg/L),PFOS染毒5、20、40mg/kg剂量组小鼠血清中PFOS浓度分别为110.46±6.18mg/L、280.65±16.33mg/L、338.01±23.92mg/L。20、40mg PFOS/kg剂量组小鼠的体重和饲料消耗量呈显著的下降趋势(p<0.05),且脾脏指数和胸腺指数显著的低于对照组。各试验组小鼠肝脏指数均显著的高于对照组,肾脏指数变化并不显著。
     亚慢性染毒试验:PFOS染毒0.5、5、25、50、125mg/kg(bw)TAD剂量组小鼠血清中PFOS浓度分别为0.67±0.17mg/L、7.13±1.04mg/L、21.64±4.41mg/L、65.43±11.73mg/L、120.67±21.76mg/L,均显著的高于对照组血清PFOS水平。25、50、125mg PFOS/kg TAD剂量组小鼠的体重和饲料消耗量呈显著的下降趋势,且脾脏指数和胸腺指数显著的低于对照组。≥5mg PFOS/kg TAD剂量组小鼠肝脏指数显著的高于对照组,并随着染毒剂量的增高,肝脏指数呈增高趋势。
     2、PFOS对小鼠脾细胞和胸腺细胞总数及淋巴细胞亚群的影响
     短期染毒试验:20、40mg PFOS/kg剂量组小鼠脾细胞和胸腺细胞总数显著的降低;40mg PFOS/kg剂量组小鼠CD4~+ CD8~-和CD4~-CD8~+细胞亚群的数量分别减少28%和21%。亚慢性染毒试验:25、50、125mg PFOS/kg TAD剂量组小鼠脾细胞和胸腺细胞总数显著的低于对照组,其中125mg PFOS/kg TAD剂量组小鼠脾细胞和胸腺细胞总数分别减少55%和70%。CD4~+CD8~-和CD4~-CD8~+细胞亚群的数量显著降低。
     3、PFOS对淋巴细胞增殖功能的影响
     短期试验中,当PFOS染毒剂量≥5mg/kg/day时,可显著的抑制T淋巴细胞增殖功能,而B淋巴细胞增殖功能的抑制开始于20mg/kg/day剂量组。亚慢性毒性试验中,随着PFOS染毒剂量的增高,T、B淋巴细胞增殖功能呈先增高后降低趋势。体外试验结果显示,当PFOS暴露剂量为≥200μM时,可显著抑制B细胞增殖功能。
     4、PFOS对NK细胞活性的影响效应
     短期试验中,PFOS染毒剂量20mg和40mg/kg/day组小鼠NK细胞的活性分别为18.04±1.42和13.08±1.11,显著的低于对照组水平(50.33±4.08)。亚慢性毒性试验中,5mg PFOS/kg TAD可显著的上调NK细胞的活性,当PFOS染毒剂量≥50mg/kg TAD时,NK细胞的活性显著降低。
     5、PFOS对脾细胞培养上清NO产生水平影响
     短期试验中,仅40mg/kg/day剂量组NO水平显著的低于对照组。亚慢性试验中,NO水平随着PFOS染毒剂量的增高呈先增高后降低趋势。体外实验显示,当PFOS暴露剂量为300μM时,可显著抑制NO水平。
     6、B细胞溶血空斑试验测定
     短期试验中,5mg、20mg、40mg PFOS/kg剂量组空斑形成细胞数分别减少63%、77%和86%。亚慢性毒性试验中,当PFOS暴露剂量为5mg/kg TAD时,空斑形成细胞数可显著的低于对照组,并随着染毒剂量的增高,空斑形成细胞数呈降低趋势。
     7、细胞因子IL-2、IL-4、IL-10、IFN-γ测定
     短期试验和亚慢性试验中,随着染毒剂量的增高,IL-2和IFN-γ的水平均呈降低趋势。短期试验中IL-4呈先增高后降低趋势;而亚慢性试验中PFOS可显著促进IL-4的水平。IL-10在各剂量组间的差异并没有达到统计学意义。体外实验显示,PFOS并没有显著的抑制细胞因子的表达。
     8、血清抗体IgG、IgM测定
     短期试验中,PFOS各暴露剂量组IgM水平均显著的低于对照组,而IgG水平在5mg/kg/day剂量组显著的增高,40mg/kg/day组显著的降低。亚慢性毒性试验中,当PFOS累计染毒剂量≥5mg/kg TAD时,随着染毒剂量的增高,IgM水平呈显著下降趋势。IgG水平呈先增高后降低趋势。
     结论
     1、PFOS是与机体免疫反应相关的外源性化学物质,以5mg PFOS/kg剂量连续7天染毒小鼠时即可抑制小鼠免疫功能。
     2、PFOS对C57BL/6小鼠经口染毒60天可导致机体免疫系统的抑制,根据免疫指标的改变,其未观察到损害所用的剂量(NOAEL)和观察到损害作用的最低剂量(LOAEL)分别为0.5mg/kg TAD和5mg/kg TAD,对应血清中PFOS浓度分别为0.67±0.17mg/L和7.13±1.04mg/L。
     3、体外试验结果比表明200μM PFOS可显著的抑制脾淋巴细胞的增殖功能,表明在较高剂量水平下PFOS可对淋巴细胞产生直接毒性效应。
     4、根据自然人群血清中PFOS浓度不高于150μg/L计算,小鼠血清中PFOS浓度约为自然人群血清最高浓度的50倍时,可抑制机体免疫功能。
Introduction
     Perfluorooctanesulfonate[PFOS;CF_3(CF_2)_7SO_3~-],which is produced synthetically or from the metabolism of other perfluorinated chemicals(PFCs),has extreme thermal, biological,and chemical stability as well as hydrophobic and lipophobic characteristics. These properties make it widely to be used as industrial surfactants and emulsifiers and in numerous consumer products.Nonstick pans,carpets,furniture,household cleaners, shampoos,shoes,clothing,and convenience food packaging are some of the products that can contain PFCs.PFOS has aroused scientists'great concern in recent years due to its widespread occurrence in the environment,in the wildlife and in humans. Furthermore,it has shifted among biological populations via biological concentration and magnification,leading to excessive accumulation among the higher trophic level of food chain(such as predator and human beings).
     PFOS,a hydrocarbon chain composited with 17 F-atom and 8 carbon-atom and linked one sulphur acyl,has high surface tension-reducing properties,lower water and oil solubility,and is a relatively strong organic acid.The strength of carbon-fluorine bonds and the high electronegativity of perfluorinated alkyl acids contribute to the extreme stability and unique properties of PFOS which made it not expected to be metabolized when be seethed in oil of vitriol or nitric acid for one hour.Different from the other persistent organic pollutions,PFOS is the predominately PFCs found in both human and wildlife blood samples and accumulates primarily in the blood and liver for its lower water and oil solubility.Previously several exposure routes have been suggested to play an important role in the exposure to PFOS:food,drinking water,air borne dust,house dust or other PFCs which can be rapidly metabolized into PFOS via a perfluorooctane sulfonamide.One study showed that,on average,for a standard adult man(70 kg of body weight),the dietary intake of PFOS was estimated to be 62.5 or 74.2 ng/day.Several blood epidemiology investigaions reported regarding PFOS concentration in human serum,and human serum concentrations vary depending on the population evaluated.For occupational exposure,the serum value was 12.83mg/L. Even in infant,there was also PFOS contamination.One recent study showed that the arithmetic mean half-lives of serum elimination was 8.67 years(range:2.29~21.3 year, standard error=6.12 year),and the maximum biological half-life reaches up to 21.3 years.The historical samples collected from 1983 to 1999 in Japan demonstrated that the PFOS concentrations in Japanese have increased 4.4-fold at a rate of increase of 0.49ng/ml/year.One of our recent studies indicate that the serum PFOS level in un-occupationally exposed individuals from Shenyang of China increased significantly from 0.03μg/l in 1987 to 22.4μg/l in 2002,a 747-fold increase,and from 1999 to 2002, serum PFOS concentration also increased 13 fold.
     For rat,the LD50 based on once oral exposure was 251mg PFOS/kg body weight. A hospital-based cross-sectional epidemiologic study observed small negative associations between both PFOS concentrations and birth weight and size.Another study conducted by 3M revealed an increase in bladder cancer and prostate cancer mortality among workers exposed to PFOS.A number of mammalian toxicology studies were conducted to assess the health effects of exposure to PFOS,recent studies indicated that PFOS can cause hepatotoxicity,tumors of the liver,and of the thyroid and mammary glands,developmental toxicity,reproductive toxicity,neurotoxicity and endocrine-disrupting.However,to our knowledge,few studies have assessed the effects of PFOS exposure on immune system.The purpose of our research is to study the immune toxicity induces by PFOS exposure in mice by flow cytometry assay,ELISA, et al.We therefore evaluated both humoral and cell-mediated immune function in experiments designed to provide scientific evidence in environmental safty evaluation and establish no observed adverse effect level(NOAEL) and lowest observed adverse effect level(LOAEL) values from dose-response studies of immune function.
     Material and Methods
     1.Animal samples
     (1).PFOS solution:
     Potassium PFOS suspensions were prepared in de-ionized water with 2%Tween(?) 80 at concentrations.Exposures consisted of oral administration of PFOS delivered in de-ionized water with 2%Tween(?) 80.Control mice received de-ionized water with 2%Tween(?) 80 only.
     (2).7-day oral exposure to PFOS
     Forty-eight adult C57BL/6 male mice were randomly divided by weight into four groups of 12/group.Once distributed into groups the mice acclimated to the new cage conditions and the new treatment room(12-h light/dark cycle,22±2℃,60-65% relative humidity) for 1 week before dosing was initiated.C57BL/6 mice were dosed once daily via oral gavage for 7 days(0,5,20,or 40 mg/kg body weight day).Food intake and body weight of all animals were measured daily for 7 days.
     (3).60-day oral exposure to PFOS
     Sixty adult C57BL/6 male mice were randomly divided by weight into six groups of 10/group.Once distributed into groups the mice acclimated to the new cage conditions and the new treatment room(12-hr light/dark cycle(light,0600-1800 hours; dark,1800-0600 hours),22.4±1.3℃,60-65%relative humidity) for 10 days before dosing was initiated.Exposures consisted of oral administration of PFOS delivered in de-ionized water with 2%Tween(?) 80.Control mice received de-ionized water with 2%Tween(?) 80 only.C57BL/6 mice were dosed once daily via oral gavage for 60 days (0,8.33,83.33,416.67,833.33 or 2083.33μg PFOS/kg body weight/day) to yield a targeted Total Administered Dose(TAD) over the 60 days of 0,0.5,5,25,50,or 125 mg PFOS/kg body weight.Food intake and body weight of all animals was measured daily for 60 days.
     (4).PFOS exposure in vitro
     Spleens from six adult C57BL/6 male mice were aseptically processed into single-cell suspensions by gentle grinding with the use of sterile,frosted microscope slides for functional immune endpoints.The splenocytes were washed three times in RPMI-1640 supplemented with 10%FBS and then resuspended in RPMI 1640 medium. The concentration of splenocytes was adjusted to 1×10~7 nucleated cells/ml.200μl aliquots of the resulting cell suspensions were dispensed into 24-well plates.The PFOS (dissolved in dimethylsulfoxide(DMSO)) was added to the medium at the indicated concentrations(0,1,5,10,50,200,300μM) at the beginning of the experiment.In this case,the same amount of DMSO alone(0.05%final concentration) was added to the control medium.The plates were incubated for 48 h at 37℃in a humidified 5% CO_2-air mixture.
     (5).Spleen or thymus cells collection
     Mice were bled by retro-orbital puncture under light diethyl ether anesthesia and subsequently sacrificedSpleen,thymus,liver,and kidneys were collected and weighed. All balances were calibrated,using standard weights,prior to use.Spleen and thymus were aseptically processed into single-cell suspensions by gentle grinding with the use of sterile,frosted microscope slides for functional immune endpoints and T-cell immunophenotype determinations.A Coulter Counter(model ZF;Hialeah,FL) was used to obtain cell counts from theses single-cell suspensions.Alterations in cell viability following treatment were assessed after red blood cell lysis.The concentration of splenocytes was adjusted to 1×10~7 nucleated cells/ml.
     2.Experimental Methods
     (1).Serum concentration of PFOS
     0.5 ml of serum,1 ml of 0.5 M tetrabutylammonium hydrogen sulfate solution and 2 ml of sodium carbonate buffer(0.25 M,pH 10) were added to 15 ml polypropylene tube and thoroughly mixed.Following addition of 5 ml of MTBE to the solution,the organic and aqueous layers were separated by centrifugation,and the organic layer was removed.The aqueous mixture was rinsed with MTBE and separated twice.The solvent was evaporated at room temperature under a nitrogen gas flow,and the sample was then reconstituted in 0.5 mL of methanol.The sample was then passed through a nylon filter(Autovial R5 PUNYL;0.45-μm pore size;Whatman Japan,Tokyo) to remove any suspended materials and insoluble particles.
     (2).Splenic and Thymic CD4/CD8 Subpopulations
     Spleen or thymus cells were labeled with fluorescent(phycoerythrin or peridinin chlorophyl protein) rat IgG2 monoclonal antibodies specific for mouse CD4 or CD8 (rat anti-mouse).The antibody dilution used for FACS analysis was 1:5(v/v) for FITC conjugated rat-anti-mouse CD3,1:2(v/v) for PE conjugated rat anti-mouse CD4 and 1:2(v/v) for Percp conjugated rat anti-mouse CD8,respectively,following the manufacturer's instructions.Lastly,the cells were fixed with 1%paraformaldehyde and stored at 6℃in the dark.Flow cytometric analysis was performed using a Becton Dickinson flow cytometer(FACSCalibur;San Jose,CA,USA).Nonstained cells and isotypic antibody controls were used to establish gates for the CD4/CD8 subpopulations in splenic cells.Data are represented as absolute number of cells, determined by multiplying the percent gated cells by the total number of nucleated cells obtained by the Coulter Counter.
     (3).Natural Killer(NK) Cell Activity
     The splenocytes were washed and suspended in complete RPMI-1640 medium, then were counted and diluted to 1.0×10~6 nucleated cells/ml.The amount of the LDH released from the lysed target cells was determined to measure NK activity.The cell line Yac-1 was used as the target cell.The same volume of Yac-1 cells and splenocytes were added to the wells of 96 round-bottom microwell plates(the cell ratio of effector-to-target is 10:1).Three wells were used for every mouse.Finally,a microtiter plate reader(Bio-Rad,Modal 550) was used for evaluation of changes in the absorbance at a wavelength of 490 nm.The release of LDH from Yac-1 cells was expressed as absorbance.The percentage of NK cell activity was calculated by the formula:NK cell activity=[(E-S)/(M-S)]×100%.Where E represents the experimental release of LDH activity from target cells incubated in the presence of lymphocytes,M represents the maximum release of the LDH activity determined by lysing the target cells with 1%of NP-40,and S is the spontaneous release of the LDH activity from target cells incubated in the absence of lymphocytes.
     (4).Lymphocyte proliferation assay
     The concentration of splenocytes was adjusted to 5×10~6 nucleated cells/ml.The proliferation ability of the lymphocytes was determined by MTT stain assay.100μl aliquots of the resulting cell suspensions were dispensed into 96-well plates(5×10~5 cells/well) containing triplicate wells of either 10μg/ml mitogen Con A,10μg/ml LPS or supplemented RPMI-1640(unstimulated wells),the final culture volume was 200μl in each well.After incubation at 37℃in 5%CO2 atmosphere overnight,the microplate was read on a Bio-Rad microplate reader(Model 550) using test wavelength of 570 nm.The ratio of the optical density(OD) of stimulated to the OD of unstimulated cultures was used as the stimulation index.The proliferation index was calculated by the equation:proliferation index=A value of Con A or LPS-stimulated cells/A value of nonstimulated cells.
     (5).Measurement of NO
     The levels of NO metabolites(nitrite plus nitrate) were determined by enzymatically reducing the nitrate present with nitrate reductase.A standard nitrate curve was obtained by incubating sodium nitrate with reductase buffer.The total amount of nitrite was determined by the Griess method.Briefly,the samples were incubated with an equal volume of freshly prepared Griess reagent(1%sulfanilamide, 0.1%naphthylenediamine dihydrochloride in 5%phosphoric acid).Absorbance at 550nm was determined using a multi-well plate reader.
     (6).Antibody Plaque-Forming Cell Assay
     The number of plaque forming cells(PFCs) was determined using the Jerne plaque assay(Jerne and Nordin,1963).Briefly,Four days prior to euthanasia,mice were administered 0.1 mL of a 25%SRBC suspension in PBS via intraperitoneal injection.All SRBCs for the experiments were drawn from a single donor animal. Spleen cells collected from individual animals(0.1 mL;1×10~6 cells/0.1 mL),0.4 mL of 0.5%"low melting point" agarose(GIBCO,Grand Island,NY,USA) in RPMI-1640 medium,and 50μL of a suspension of 5%SRBC were added to test tubes at 37℃and poured onto microscope slides containing a bottom layer of 0.5%agarose in water.The slides were then incubated for 2 hr at 37℃and 5%CO2.Guinea pig serum diluted 1:4 in RPMI-1640 was added to the slides and after another 40 min(37℃and 5%CO2) incubation the number of plaques was counted and values were expressed as PFC per 10~6 cells.For the preparation of guinea pig serum as the complement source,animals were anesthetized before cardiac puncture and blood samples were collected.
     (7).Measurement of IL-2,IL-10 by ELISpot
     Fill all wells in the microplate with 200 L of sterile culture media and incubate for approximately 20 minutes at room temperature.When cells are ready to be plated, aspirate the culture media from the wells.Immediately add 100 L of the appropriate cells(1×10~5/ml for IL-2 and 1×10~6/ml for IL-10) and controls to each well.Incubate cells in a humidified 37°C CO2 incubator.Optimal incubation time for each stimuli should be determined by each investigator.Add 100 L of diluted Detection Antibody into each well and incubate at 2-8°C overnight.Add 100 L of diluted Streptavidin-AP into each well and incubate for 2 hours at room temperature.Add 100 L of BCIP/NBT Chromogen into each well and incubate for 1 hour at room temperature.The developed microplate can be analyzed by counting spots either manually using a dissection microscope or by using a specialized automated ELISpot reader.
     (8).Measurement of IL-2,IL-4,IL-10,and IFN-γ
     Add 50μL of Standard,Control,or sample per well.Mix by gently tapping the plate frame for 1 minute.Cover with the adhesive strip provided.Incubate for 2 hours at room temperature.Plate layouts are provided to record standards and samples assayed.Aspirate each well and wash,repeating the process four times for a total of five washes.Add 100μL of mouse IL-2,IL-4,IL-10 or IFN-γConjugate to each well. Cover with a new adhesive strip.Incubate for 2 hours at room temperature.Add 100μL of Substrate Solution to each well.Incubate for 30 minutes at room temperature. Protect from light.Add 100μL of Stop Solution to each well.Gently tap the plate to ensure thorough mixing.Determine the optical density of each well within 30 minutes, using a microplate reader set to 450 nm.
     (9).Measurement of IgG,IgM
     Dispense 100μl of standards and specimens into appropriate wells,and then 50μl of Enzyme Conjugate Reagent into each well.Incubate at 36℃for 1 hour.Rinse and empty the microtiter wells 5 times,then dispense 50μl of color A and color B Reagent into each well.Incubate at 36℃for 15 minutes.Stop the reaction by adding 50μl of Stop Solution.Read the optical density at 450 nm within 30 minute.
     (10).Statistics
     Data were tested for normality(Shapiro-Wilks W-test) and homogeneity (Bartlett's test for unequal variances) and,if needed,appropriate transformations were made.Transformations when required are outlined in the figure legends.A one-way analysis of variance(ANOVA) was used to determine differences among doses for each endpoint using SAS software(Version 8.2;SAS Institute Inc.,Cary,NC) in which the standard error used a pooled estimate of error variance.When significant differences were detected by the F-test(p<0.05),Dunnett's t-test was used to compare treatment groups to the control group.
     Results
     1.Animal Body Weight,Food intake and Organ Mass
     In the 7-day study,body weight of mice exposure to 20 mg/kg and 40 mg/kg of PFOS showed significant deterioration from their own pre-exposed baseline.On the last day of the treatment,body,spleen,and thymus mass were signiWcantly decreased compared to the control following exposure to 20 mg/kg and 40 mg/kg of PFOS. Furthermore,liver mass was increased by 34,79,and 117%over control following treatment with 5,20,or 40 mg/kg,respectively.
     In the 60-day study,there was a dose-dependent increase in the concentrations of PFOS in serum from exposed mice.At the last day of the treatment,body,spleen, thymus and kidney mass were significantly decreased compared to the control following exposure to 25 mg/kg TAD,50 mg/kg TAD and 125 mg/kg TAD of PFOS. Furthermore,liver mass was significantly increased at dose as low as 5 mg PFOS/kg TAD.
     2.Splenic and Thymic Cellularity,Lymphocyte Immunophenotypes
     Treatment with 5,20,or 40 mg PFOS/kg resulted in downtrend of splenic and thymic cellularity following 7 days of treatment.FACS analysis of spleen T lymphocytes demonstrated that the relative CD4+CD8- population of total splenocytes had decreased by 28%in the 40 mg/kg PFOS treatment and the relative change in the CD4-CD8+ population was decreased by 21%.Treatment with 25,50,or 125 mg PFOS/kg TAD resulted in downtrend of splenic and thymic cellularity following 60 d of treatment.Especially for the group of mice exposed to 125 mg PFOS/kg TAD,the splenic and thymic cellularity was found to be significantly decreased by 55%and 70% following the 60-d exposure compared with control mice.Splenic and thymic T lymphocytes demonstrated that the numbers of all T-cell CD4/CD8 subpopulations were significantly decreased beginning at 25 mg PFOS/kg TAD.
     3.Effect of PFOS on Lymphocyte Proliferation
     In the 7-day study,the average absorbances of T lymphocytes from≥5 mg/kg PFOS groups were lower than the control,and the B lymphocyte proliferation decreased beginning at≥20 mg/kg PFOS.In the 60-day study,with the level of PFOS exposure increasing,the average absorbances of T and B lymphocytes were first increasing and then decrasing.The effect of PFOS in vitro treatment on lymphocyte proliferation showed that the PFOS did not alter lymphocyte proliferation except for the condition of≥200μM PFOS.
     4.Effect of PFOS on NK-cell Function
     In the 7-day study,treatment with the dose of 20 mg/kg(18.04±1.42) and 40 mg/kg(13.08±1.11) PFOS resulted in a marked decrease in the levels of NK-cell activity compared with control(50.33±4.08).Treatment with the dose of 5 mg PFOS/kg TAD significantly increased the NK cell activity by 38%(45.43±4.74).In contrast,treatment with the dose of 50 mg/kg TAD(20.28±2.51) and 125 mg/kg TAD (15.67±1.52) PFOS resulted in a marked decrease in the levels of NK cell activity.
     5.Effect of PFOS on NO
     Following 7 days of treatment,NO level was significantly lower in group of 40 mg PFOS/ke/day compare control group.In the 60-day study,NO level was elevated at 5 mg PFOS/kg TAD and then decrased at 50 mg PFOS/kg TAD.The effect of PFOS in vitro treatment on NO levels showed that the PFOS did not alter NO level except for the condition of 300μM PFOS.
     6.Plaque-Forming Cell Assessments
     Treatment with 5,20,or 40 mg PFOS/kg resulted in significant suppression of the plaque-forming cell response following 7 days of treatment(63%,77%,and 86% respectively).There was a significant trend toward decreased PFC production with increasing PFOS exposure.The suppression of this response was dose-responsive beginning at exposures of 5 mg PFOS/kg TAD.
     7.Effect of PFOS on IL-2,IL-4,IL-10 and IFN-γ
     With the PFOS exposure increasing,there was a significant trend toward decreased IL-2 and INF-γproduction,and PFOS increased IL-4 synthesis.IL-10 was not statistically altered by exposure to the tested doses of PFOS.In vitro treatment,no other statistical changes in cytokine were observed exposed to PFOS.
     8.Effect of PFOS on IgG and IgM
     In the 7-day study,exposure to PFOS reduced IgM synthesis.IgG titers were elevated at 5 mg PFOS/kg/day and then decrased at 40 mg PFOS/kg/day.In the 60-day study,IgM synthesis was suppressed at exposures≥5 mg PFOA/kg TAD in a dose-dependent manner.
     Conclusion
     1.PFOS,as an exogenous chemical material,is related to immune reaction.PFOS exposure can suppress the immunity function in mice in a dose of 5 mg/kg bw for 7 d.
     2.Based on the liver mass and PFC response,the no observed adverse effect level (NOAEL) and low observed effect level(LOAEL) for male mice exposed PFOS for 60 days was 0.5 mg/kg TAD and 5 mg/kg TAD,respectively.Measured PFOS serum concentrations at these dose levels were 0.67±0.17mg/L and 7.13±1.04mg/L, respectively.
     3.In vitro treatment,PFOS exposure can suppress the lymphocyte proliferation which indicate that PFOS may have a direct toxicity to lymphocyte.
     4.Human biomonitoring studies indicates that PFOS residues in adult blood or serum are generally present at levels lower than 150μg/L,that PFOS exposure can affect the immunity function in mice at levels approximately for 50-fold for highly exposed human populations.
引文
1 Moody CA,Field JA.Perfluorinated surfactants and the environmental implications of their use in fire-fighting foams [J].Environ Sci Technol.2000.34:3864-3870.
    2 Begley TH,White K,Honigfort P,et al.Perfluorochemicals:potential sources of and migration from food packaging [J].Food Addit Contam,2005.22(10):1023-1031.
    3 de Vos MG,Huijbregts MA,van den Heuvel-Greve MJ,et al.Accumulation of perfluorooctane sulfonate (PFOS)in the food chain of the Western Scheldt estuary:Comparing field measurements with kinetic modeling [J].Chemosphere,2008.70(10):1766-1773.
    4 Ericson I,Marti-Cid R,Nadal M,et al.Human Exposure to Perfluorinated Chemicals through the Diet:Intake of Perfluorinated Compounds in Foods from the Catalan (Spain)Market [J].J Agric Food Chem,2008.56(5):1787-1794.
    5 Tittlemier SA,Pepper K,Seymour C,et al.Dietary exposure of Canadians to perXuorinated carboxylates and perXuorooctane sulfonate via consumption of meat,Wsh,fast foods,and food items prepared in their packaging [J].J Agric Food Chem.2007.55:3203-3210.
    6 Higgins CP,McLeod PB,MacManus-Spencer LA,et al.Bioaccumulation of perfluorochemicals in sediments by the aquatic oligochaete Lumbriculus variegates [J].Environ Sci Techno.2007.41:4600-4606.
    7 R Renner.Scotchgard scotched-Fol lowing the fabric protector's slippery trail to a new class of pollutant [J].Sci Am.2001.
    8 Moody CA,Hebert GN,Strauss SH,et al.Occurrence and persistence of perfluorooctaned surfactants in groundwater at a firetraining area at Wurtsmith air Force Base,Michigan,USA [J].J Enviren Monit.2003.5(2):341-345(2003)
    9 Seed,Jennifer.Hazard Assessment and Biomonitoring Data on Perfluorooctane Sulfonate-PFOS [M].USEPA/EPA/RAD.Washington,DC.August 31,2000.
    10 Kannan K,Koistinen J,Beckmen K,et al.Accumulation of perfluorooctane sulfonate in marine mammals [J].Environ Sci Technol.2001.35(8):1593-1598
    11 Calafat A M,Wong L Y,Kuklenyik Z,et al.Polyfluoroalkyl chemicals in the U.S.population:data from the National Health and Nutrition Examination Survey (NHANES)2003-2004 and comparisons with NHANES 1999-2000 [J].Environ Health Perspect,2007.115(11):1596-1602.
    12 Jin Y,Saito N,Harada K H,et al.Historical trends in human serum levels of perfluorooctanoate and perfluorooctane sulfonate in Shenyang,China [J].Tohoku J Exp Med,2007.212(1):63-70.
    13 Kannan K,Corsolini S,Falandysz J,et al.Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries [J].Environ Sci Technol,2004.38(17):4489-4495.
    14 Olsen GW,Chang SC,Noker PE,et al.A comparison of the pharmacokinetics of perfluorobutanesulfonate(PFBS) in rats,monkeys,and humans[J].Toxicology.2009.256(1-2):65-74.
    15 Yeung LW,Miyake Y,Taniyasu S,et al.Perfluorinated compounds and total and extractable organic fluorine in human blood samples from China[J].Environ Sci Technol.2008.42(21):8140-8145.
    16 Olsen G W,Burris J M,Mandel J H,et al.Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees[J].J Occup Environ Med,1999.41(9):799-806.
    17 Fei C,McLaughlin JK,Lipworth L,et al.Prenatal exposure to perfluorooctanoate(PFOA) and perfluorooctanesulfonate(PFOS) and maternally reported developmental milestones in infancy [J].Environ Health Perspect.2008.116(10):1391-1395.
    18 Inoue K,Okada F,Ito R,et al.Perfluorooctane sulfonate(PFOS) and related perfluorinated compounds in human maternal and cord blood samples:assessment of PFOS exposure in a susceptible population during pregnancy[J].Environ Health Perspect.2004.112(11):1204-1207.
    19 Burris J M,Olsen G,Simpson C,et al.Interim Report:Determination of Serum Half-lives of Several Fluorochemicals[M].St.Paul,MN:3M Company.U.S.EPA docket AR-226-1086.Washington,DC:U.S.Environmental Protection Agency.2002.
    20 Harada K,Koizumi A,Saito N,et al.Historical and geographical aspects of the increasing perfluorooctanoate and perfluorooctane sulfonate contamination in human serum in Japan[J].Chemosphere.2007.66(2):293-301.
    21 Fei C,McLaughlin JK,Tarone RE,et al.Fetal growth indicators and perfluorinated chemicals:a study in the Danish National Birth Cohort[J].Am J Epidemioi.2008.168(1):66-72.
    22 Apelberg BJ,Witter FR,Herbstman JB,et al.Cord serum concentrations of perfluorooctane sulfonate(PFOS) and perfluorooctanoate(PFOA) in relation to weight and size at birth[J].Environ Health Perspect,2007.115(11):1670-1676.
    23 Alexander BH,Olsen GW,Burris JM,et al.Mortality of employees of a perfluorooctanesulphonyl fluoride manufacturing facility[J].Occup Environ Med.2003.60(10):722-729.
    24 Giililand FD,Mandel JS.Mortality among employees acid production plant[J].Occup Med.1993.35(9):950-954.
    25 Johansson N,Fredriksson A,Eriksson P.Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid(PFOA) causes neurobehavioural defects in adult mice[J].Neurotoxicology,2008.29(1):160-169.
    26 范轶欧,金一和,麻懿馨,等.全氟辛烷磺酸对雄性大鼠生精功能的影响[J].卫生研究. 2005.34(1):37-39.
    27 Chang SC,Thibodeaux JR,Eastvold ML,et al.Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS)[J].Toxicology,2008.243(3):330-339.
    28 Fuentes S,Colomina M T,Vicens P,et al.Concurrent exposure to perfluorooctane sulfonate and restraint stress during pregnancy in mice:effects on postnatal development and behavior of the offspring [J].Toxicol Sci,2007.98(2):589-598.
    29 Peden-Adams MM,EuDaly JG,Dabra S,et al.Suppression of Humoral Immunity Following Exposure to the Perfluorinated Inseticide Sulfluramid [J].J Toxicol Environ Health,Part A.2007.70:1130-1141.
    30 Janeway C A,Travers P.Walport M,et al.Immunobiology:The immune system in health and disease [M].4~(th)Edn,New York:Garland Publishing.1999.
    31 Lynes MA,Kang YJ,Sensi SL,et al.heavy metal ions in normal physiology,toxic stress,and cytoprotection [J].Ann N Y Acad Sci,2007.1113:159-172.
    32 Veraldi A,Costantini AS,Bolejack V,et al.Immunotoxic effects of chemicals:A matrix for occupational and environmental epidemiological studies [J].Am J Ind Med.2006.49(12):1046-1055.
    33 Lefebvre DE,Curran I,Armstrong C,et al.Immunomodulatory Effects of Dietary Potassium Perfluorooctane Sulfonate (PFOS)Exposure in Adult Sprague-Dawley Rats [J].J Toxicol Environ Health,Part A.2008.71:1516-1525.
    34 Boise LH,Thompson CB.Hierarchical control of lymphocyte survival [J].Science.1996.274(5284)67-68.
    35 Hong C,Lee H,Oh M,et al.CD4+ T cells in the absence of the CD8+ cytotoxic T cells are critical and sufficient for NKT cell-dependent tumor rejection [J].J Immunol.2006.177(10):6747-6757.
    36 Hyrcza MD,Kovacs C,Loutfy M,et al.Distinct transcriptional profiles in ex vivo CD4+ and CD8+ T cells are established early in human immunodeficiency virus type 1 infection and are characterized by a chronic interferon response as well as extensive transcriptional changes in CD8+ T cells [J].J Virol.2007.81(7):3477-3486.
    37 Yang Q,Xie Y,Depierre J W.Effects of peroxisome proliferators on the thymus and spleen of mice [J].Clin Exp Immunol.2000.122:219-266.
    38 Keil D E,Mehlmann T,Butterworth L.et al.Gestational exposure to perfluorooctane sulfonate (PFOS)suppresses immune function in B6C3F1 mice [J].Toxicol Sci.2008.103(1)77-85.
    39 Yang Q,Abedi-Valugerdi M,Xie Y,et al.Potent suppression of the adaptive immune response in mice upon dietary exposure to the potent peroxisome proliferator,perfuorooctanoic acid [J].Int Immunopharmacol,2002,2(2-3):389-397.
    40 Cooney CM.PFOS alters immune response at very low exposure levels [J].Environ Sci Technol,2008,42(10):3486-3487.
    41 Berts KS.Not Immune to PFOS Effects [J]? Environ Health Perspect,2008,116(7):A290.
    42 Olsen GW,Burris JM,Burlew MM,et al.Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS)and perfluorooctanoate (PFOA)concentrations and medical surveillance examinations [J].J Occup Environ Med,2003,45(3):260-270.
    43 Li Zheng,Guang-Hui Dong,Yi-He Jin,et al.Immunotoxic changes associated with a 7-day oral exposure to perfluorooctanesulfonate (PFOS)in adult male C57BL/6 mice [J].Archives of Toxicology 2008;DOI 10.1007/s00204-008-0361-3.
    44 Peden-Adams MM,Keller JM,EuDaly JG,et al.Suppression of Humoral Immunity in Mice following Exposure to Perfluorooctane Sulfonate [J].Toxicology Science.2008.104(1);144-154.
    45 Lau C,Anitole K,Hodes C,et al.Perfluoroalkyl acids:A review of monitoring and toxicological findings [J].Toxicol.Sci.2007.99:366-394.
    46 Yeung LW,So MK,Jiang G,et al.Perfluorooctanesulfonate and related fluorochemicals in human blood samples from China [J].Environ Sci Technol.2006.40(3):715-720.
    47 Houde M,Wells RS,Fair PA,et al.Polyfluoroalkyl compounds in free-ranging bottlenose dolphins (Tursiopstruncatus)from the Gulf of Mexico and the Atlantic Ocean [J].Environ.Sci.2005.Technol.39:6591-6598.
    48 Giesy JP,and Kannan K.Global distribution of perfluorooctane sulfonate in wildlife [J].Environ.Sci.Technol.2001.35:1339-1342.
    49 Dauwe T,Van de Vijver K,De Coen W,et al.PFOS levels in the blood and liver of a small insectivorous songbird near a fluorochemical plant [J].Environ Int 2007;33(3):357-361.
    50 Organisation for Economic Co-operation and Development.Co-operation on Existing Chemicals:hanzard Assessment of Perfluorooctane Sulfonate (PFOS)and Its Salts.Environemntal Directorate,joint meeting of The Chemicals Committee and the Working party on Chemicals,Pesticides and Biotechnology [M].JT00135607;ENV /JM /RD (2002)17/ FINAL.
    51 Romagnani S.The Th1/Th2 padadigm [J].Immunol Today.1997.18(6):263-266.
    52 Mauri C.Down-regulation of Thl-mediated pathology in experimental arthritis by stimulation of the Th2 arm of the immune response [J].Arthritis Rhenm.2003.48(3):839-845.
    53 Kulmatycki KM,Jamali F.Therapeutic relevance of altered cytokine expression [J].Cytokine.2001.14(1):1-10.
    54 Nelson DL,Frazier DE,Jr.Ericson JE,et al.The effects of perfluorodecanoic acid (PDFA)on humoral,cellular,and innate immunity in Fisher 344 rats.Immunopharmacol.Immunotoxicol[J].1992.14,925-938.
    55 Olsen GW,Church TR,Miller JP,et al.Perfluorooctanesulfonate and other fluorochemicals in the serum of American Red Cross adult blood donors[J].Environ Health Perspect.2003.111:1892-1901.
    56 Cooney CM.PFOS alters immune response at very low exposure levels[J].Environ Sci Technol,2008,42(10):3486-3487.
    57 Betts KS.Not Immune to PFOS Effects[J]? Environ Health Perspect,2008,116(7):A290.
    58 Asakawa A,Toyoshima M,Fujimiya M,et al.Perfluorooctane sulfonate influences feeding behavior and gut motility via the hypothalamus[J].Int J Mol Med 2007;19(5):733-739.
    59 3M Company.104-Week Dietary Chronic Toxicity and Carcinogenicity Study with Perfluorooctane Sulfonic Acid Potassium Salt(PFOS;T-6295) in Rats[M].Final Report,3M T-6295(Covance study no.:6329-183),Volumes Ⅰ-Ⅸ,4068 pages,January 2,2002.3M,St.Paul,Minnesota.
    60 刘冰,于麒麟,金一和,等.全氟辛烷磺酸对大鼠海马神经细胞内钙离子浓度的影响[J].毒理学杂志.2005.19(3):225-226.
    61 Yu WG,Liu W,Jin YH.EFFECTS OF PERFLUOROOCTANE SULFONATE ON RAT THYROID HORMONE BIOSYNTHESIS AND METABOLISM[J].Environ Toxicol Chem.2008 Dec 1:1.[Epub ahead of print].
    62 陈成章.免疫毒理学[M].郑州大学出版社,2008.287-288.
    63 王昕,陈誉华.全氟辛烷磺酰基化合物(PFOS)对脑血管内皮细胞的损伤作用[J].中国现代医学杂志.2006.16(11):1646-1648.
    64 Liu C,Yu K,Shi X,et al.Induction of oxidative stress and apoptosis by PFOS and PFOA in primary cultured hepatocytes of freshwater tilapia(Oreochromis niloticus)[J].Aquat Toxicol.2007.82(2):135-143.
    65 Hu W,Jones PD,Upham BL,et al.Inhibition of gap junctional intercellular communication by perfluorinated compounds in rat liver and dolphin kidney epithelial cell lines in vitro and Sprague-Dawley rats in vivo[J].Toxicol Sci.2002.68(2):429-436.
    66 Yang Q,Xie Y,Depierre JW.Effects of peroxisome proliferators on the thymus and spleen of mice[J].Clin Exp Immunol.2000.122(2):219-226.
    67 Slotkin TA,MacKillop EA,Melnick RL,et al.Developmental neurotoxicity of perfluorinated chemicals modeled in vitro[J].Environ Health Perspect.2008.116(6):716-22.
    68 Cunard R,DiCampli D,Archer DC,et al.WY14,643,an PPAR alpha ligand,has profound effects on immune responses in vivo[J].J.Immunol.2002.169:6806-6812.
    69 Hill MR,Clarke S,Rodgers K,et al.Effect of peroxisome proliferator-activated receptor alpha activators on tumor necrosis factor expression in mice during endotoxemia[J].Infect.Immun.1999.67:3488-3493.
    70 Abbott BD.Review of the expression of peroxisome proliferators-activated receptors alpha (PPARalpha),beta(PPARbeta),and gamma(PPARgamma) in rodent and human development [J].Reprod Toxicol.2008.
    71 Ren H,Vallanat B,Nelson DM,et al.Evidence for the involvement of xenobiotic-responsive nuclear receptors in transcriptional effects upon perfluoroalkyl acid exposure in diverse species [J].Reprod Toxicol.2009 Jan 3.[Epub ahead of print]
    72 Cwinn MA,Jones SP,Kennedy SW.Exposure to perfluorooctane sulfonate or fenofibrate causes PPAR-alpha dependent transcriptional responses in chicken embryo hepatocytes [J].Comp Biochem Physiol C Toxicol Pharmacol.2008.148(2):165-71.
    73 DeWitt JC,Shnyra A,Badr MZ,et al.Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha [J].Crit Rev Toxicol.2009.39(1):76-94.
    1.(AR226-0550)Fluorochemical Use,Distribution,and Release Overview.3M.St.Paul,MN.May 26,1999.
    2.Moody CA,Hebert GN,Strauss SH,et al.Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base,Michigan,USA.J Environ Monit 2003;5(2):341-345.
    3.Clarke T.FOC:It's everywhere.Another class of chemicals may soon make the environmental blacklist.2001,March 21.doi:10.1038/news010322-6.http://www.nature.com/news/2001 /010322/full/newsO 10322-6.html
    4.Seed,Jennifer.Hazard Assessment and Biomonitoring Data on Perfluorooctane Sulfonate-PFOS.USEPA/EPA/RAD.Washington,DC.2000,August 31.
    5.US-EPA (2002).Perfluorooctyl Sulfonates.Proposed Significant New Use Rule,40 CFR Part 721,US Federal Register,Vol 67,No 47,Monday 11 March 2002.
    6.OS PAR (2002).Grouping of Perfluorinated Substances,Presented by the United Kingdom and Sweden,Meeting of the Working Group on Priority"Substances (SPS),OSPAR concention for the Protection of the Marine Environment of the North-east Atlantic.Arona,21-25 October 2002.
    7.欧盟PFOS禁令:限制氟化物的使用。经贸实践2007:2:15.
    8.Persistent Organic Pollutants Protocol to the Long-Range Trans-boundary Air Pollution Convention.Perfluorooctane sulfonate and its precursors were approved under Track A and are currently under Track B review.
    9.EU.Proposal for a Directive of the European Parliament and of the Council relating to restrictions on the marketing and use of perfluorooctane sulfonates (amendment of Council Directive 76/769/EEC).
    10.Yamashita N,Taniyasu S,Petrick G,et al.Perfluorinated acids as novel chemical tracers of global circulation of ocean waters.Chemosphere 2007 Sep 11.
    11.Nakayama S,Strynar MJ,Helfant L,et al.Perfluorinated compounds in the Cape Fear Drainage Basin in North Carolina.Environ Sci Technol 2007;41(15):5271-5276.
    12.Senthilkumar K,Ohi E,Sajwan K,et al.Perfluorinated compounds in river water,river sediment,market fish,and wildlife samples from Japan.Bull Environ Contam Toxicol 2007;79(4):427-431.
    13.Young CJ,Furdui VI,Franklin J,et al.Perfluorinated acids in Arctic snow:new evidence for atmospheric formation.Environ Sci Technol 2007;41(10):3455-3461.
    14.Moriwaki H,Takatah Y,Arakawa R.Concentrations of perfluorooctane sulfonate (PFOS)and perfluorooctanoic acid(PFOA) in vacuum cleaner dust collected in Japanese homes.J Environ Monit 2003;5(5):753-757.
    15.Jahnke A,Berger U,Ebinghaus R,et al.Latitudinal gradient of airborne polyfluorinated alkyl substances in the marine atmosphere between Germany and South Africa(53 degrees N-33degrees S).Environ Sci Technol 2007;41(9):3055-3061.
    16.Barber JL,Berger U,Chaemfa C,et al.Analysis of per-and polyfluorinated alkyl substances in air samples from Northwest Europe.J Environ Monit 2007;9(6):530-541.
    17.Nakayama S,Harada K,Inoue K,et al.Distributions of perfluorooctanoic acid(PFOA) and perfluorooctane sulfonate(PFOS) in Japan and their toxicities.Environ Sci 2005;12(6):293-313.
    18.Loewen M,Halldorson T,Wang F,et al.Fluorotelomer carboxylic acids and PFOS in rainwater from an urban center in Canada.Environ Sci Technol 2005;39(9):2944-2951.
    19.刘薇,金一和,全燮,等.沈阳市降雪中PFOS和PFOA污染现状调查。环境科学2007;28(9):2068-2073.
    20.Simcik MF,Dorweiler KJ.Ratio of perfluorochemical concentrations as a tracer of atmospheric deposition to surface waters.Environ Sci Technol 2005;39(22):8678-8683.
    21.Hansen KJ,Johnson HO,Eldridge JS,et al.Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River.Environ Sci Technol 2002;36(8):1681-1685.
    22.Boulanger B,Vargo J,Schnoor JL,et al.Detection of perfluorooctane surfactants in Great Lakes water.Environ Sci Technol 2004;38(15):4064-4070.
    23.Loganathan BG,Sajwan KS,Sinclair E,et al.Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia.Water Res 2007 Jun 22;
    24.Moody CA,Martin JW,Kwan WC,et al.Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke Creek.Environ Sci Technol 2002;36(4):545-551.
    25.Loos R,Woilgast J,Huber T,et al.Polar herbicides,pharmaceutical products,perfluorooctanesulfonate(PFOS),perfluorooctanoate(PFOA),and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy.Anal Bioanal Chem 2007;387(4):1469-1478.
    26.Rostkowski P,Yamashita N,So IM,et al.Perfluorinated compounds in streams of the Shihwa Industrial Zone and Lake Shihwa,South Korea.Environ Toxicol Chem 2006;25(9):2374-2380.
    27.So MK,Taniyasu S,Yamashita N,Giesy JP,et al.Perfluorinated compounds in coastal waters of Hong Kong,South China,and Korea.Environ Sci Technol 2004;38(15):4056-4063.
    28.Saito N,Harada K,Inoue K,et al.Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan.J Occup Health 2004;46(1):49-59.
    29.Senthilkumar K,Ohi E,Sajwan K,et al.Perfluorinated compounds in river water,river sediment,market fish,and wildlife samples from Japan.Bull Environ Contam Toxicol 2007;79(4):427-4231.
    30.So MK,Miyake Y,Yeung WY,et al.Perfluorinated compounds in the Pearl River and Yangtze River of China.Chemosphere 2007;68(11):2085-95.
    31.金一和,丁梅,翟成,等.长江三峡库区江水和武汉地区地面水中PFOS和PFOA污染现状调查。生态环境2006;15(3):486-489.
    32.刘冰,金一和,于棋麟,等.松花江水系江水中全氟辛烷磺酸和全氟辛酸污染现状调查。环境科学学报2007:27(3):480-486.
    33.金一和,刘晓,秦红梅,等.我国部分地区自来水和不同水体中的PFOS污染。中国环境科学2004;24(2):166-169.
    34.de Vos MG,Huijbregts MA,van den Heuvel-Greve MJ,et al.Accumulation of perfluorooctane sulfonate(PFOS) in the food chain of the Western Scheldt estuary:Comparing field measurements with kinetic modeling.Chemosphere 2007 Oct 9.
    35.Houde M,Bujas TA,Small J,et al.Biomagnification of perfluoroalkyl compounds in the bottlenose dolphin(Tursiops truncatus) food web.Environ Sci Technol 2006;40(13):4138-4144.
    36.Mayack DT,Roblee K,Yamashita N,et al.Occurrence of perfluoroalkyl surfactants in water,fish,and birds from New York State.Arch Environ Contam Toxicol 2006;50(3):398-410.
    37.Giesy JP,Kannan K.Global distribution of perfluorooctane sulfonate in wildlife.Environl Sci Technol 2001;35:.
    38.Tao L,Kannan K,Kajiwara N,et al.Perfluorooctanesulfonate and related fluorochemicals in albatrosses,elephant seals,penguins,and polar skuas from the Southern Ocean.Environ Sci Technol 2006;40(24):7642-7648.
    39.Dai J,Li M,Jin Y,et al.Perfluorooctanesulfonate and periluorooctanoate in red panda and giant panda from China.Environ Sci Technol 2006;40(18):5647-5652.
    40.Morikawa A,Kamei N,Harada K,et al.The bioconcentration factor of perfluorooctane sulfonate is significantly larger than that of perfluorooctanoate in wild turtles(Trachemys scripta elegans and Chinemys reevesii):an Ai river ecological study in Japan.Ecotoxicol Environ Saf 2006;65(1):14-21.
    41.Butt C,Mabury S,Kwan M,et al.Spatial trends of perfluoroalkyl compounds in ringed seals (Phoca hispida)from the Canadian Arctic.Environ Toxicol Chem 2007 Nov 7;1
    42.Verreault J,Berger U,Gabrielsen GW.Trends of perfluorinated alkyl substances in herring gull eggs from two coastal colonies in northern Norway:1983-2003.Environ Sci Technol 2007;41(19):6671-6677.
    43.Gulkowska A,Jiang Q,So MK,et al.Persistent perfluorinated acids in seafood collected from two cities of China.Environ Sci Technol 2006;40(12):3736-3741.
    44.Hansen KJ.Compound-specific quantitative characterization of organic fiuorochemicals in biological matrices.Environ Sci Technol 2001;35:766-770.
    45.Kannan K,Corsolini S.Perfluorooctanesulfonate and related fluorinated hydrocarbons in marine mammals,fishes,and birds from coasts of the Baltic and the Mediterranean Seas.Environ Sci Technol 2002;36(15):3210-3216.
    46.Olivero-Verbel J,Tao L,Johnson-Restrepo B,et al.Perfluorooctanesulfonate and related fiuorochemicals in biological samples from the north coast of Colombia.Environ Pollut 2006;142(2):367-372.
    47.Martin JW,Smithwick MM,Braune BM,et al.Identification of long-chain perfluorinated acids in biota from the Canadian Arctic.Environ Sci Technol 2004;38(2):373-380.
    48.Butt C,Mabury S,Kwan M,et al.Spatial trends of perfluoroalkyl compounds in ringed seals (Phoca hispida)from the Canadian Arctic.Environ Toxicol Chem 2007 Nov 7
    49.Kannan K,Corsolini S,Falandysz J,et al.Perfluorooctanesulfonate and related fluorinated hydrocarbons in marine mammals,fishes,and birds from coasts of the Baltic and the Mediterranean Seas.Environ Sci Technol 2002;36(15):3210-3216.
    50.Falandysz J,Taniyasu S,Yamashita N,et al.Perfluorinated compounds in some terrestrial and aquatic wildlife species from Poland.J Environ Sci Health A Tox Hazard Subst Environ Eng 2007;42(6):715-719.
    51.Van de Vijver KI,Holsbeek L,Das K,et al.Occurrence of perfluorooctane sulfonate and other perfluorinated alkylated substances in harbor porpoises from the Black Sea.Environ Sci Technol 2007;41(1):315-320.
    52.Smithwick M,Mabury SA,Solomon KR,et al.Circumpolar study of perfluoroalkyl contaminants in polar bears (Ursus maritimus).Environ Sci Technol 2005;39(15):5517-5523.
    53.Tao L,Kannan K,Kajiwara N,et al.Perfluorooctanesulfonate and related fiuorochemicals in albatrosses,elephant seals,penguins,and polar skuas from the Southern Ocean.Environ Sci Technol 2006;40(24):7642-7648.
    54.Dauwe T,Van de Vijver K,De Coen W,et al.PFOS levels in the blood and liver of a small insectivorous songbird near a fluorochemical plant.Environ Int 2007;33(3):357-361.
    55.Sinclair E,Mayack DT,Roblee K,et al.Occurrence of perfluoroalkyl surfactants in water,fish,and birds from New York State.Arch Environ Contam Toxicol 2006;50(3):398-410.
    56.Tomy GT,Budakowski W,Halldorson T,et al.Fluorinated organic compounds in an eastern Arctic marine food web.Environ Sci Technol 2004;38(24):6475-6481.
    57.Kannan K,Perrotta E,Thomas NJ.Association between perfluorinated compounds and pathological conditions in southern sea otters.Environ Sci Technol 2006;40(16):4943-4948.
    58.Kannan K,Newsted J,Halbrook RS,et al.Perfluorooctanesulfonate and related fluorinated hydrocarbons in mink and river otters from the United States.Environ Sci Technol 2002;36(12):2566-2571.
    59.Hoff PT,Van Campenhout K,Van de Vijver K,et al.Perfluorooctane sulfonic acid and organohalogen pollutants in liver of three freshwater fish species in Flanders (Belgium):relationships with biochemical and organismal effects.Environ Pollut 2005;137(2):324-333.
    60.Hoff PT,Van de Vijver K,Dauwe T,et al.Evaluation of biochemical effects related to perfluorooctane sulfonic acid exposure in organohalogen-contaminated great tit (Parus major)and blue tit (Parus caeruleus)nestlings.Chemosphere 2005;61(11):1558-1569.
    61.Kannan K,Choi JW,Iseki N,et al.Concentrations of perfluorinated acids in livers of birds from Japan and Korea.Chemosphere 2002;49(3):225-231.
    62.Tittlemier SA,Pepper K,Seymour C,et al.Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat,fish,fast foods,and food items prepared in their packaging.J Agric Food Chem 2007;55(8):3203-3210.
    63.Karrman A,Ericson I,van Bavel B,et al.Exposure of perfluorinated chemicals through lactation:levels of matched human milk and serum and a temporal trend,1996-2004,in Sweden.Environ Health Perspect 2007;115(2):226-230.
    64.V(o|¨)lkel W,Genzel-Borovicz(?)ny O,Demmelmair H,et al.Perfluorooctane sulphonate (PFOS)and perfluorooctanoic acid (PFOA)in human breast milk:Results of a pilot study.Int J Hyg Environ Health 2007 Sep 14.
    65.Olsen GW,Burris JM,Burlew MM,et al.Epidemiologic Assessment of Worker Serum Perfluorooctanesulfonate (PFOS)and Perfluorooctanoate (PFOA)Concentrations and Medical Surveillance Examinations.J Occup Environ Med 2003;45:260-270.
    66.Olsen GW,Burris JM,Mandel JH,et al.Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees.J Occup Environ Med 1999;41(9):799-806.
    67.Calafat AM,Kuklenyik Z,Caudill SP,et al.Perfluorochemicals in pooled serum samples from United States residents in 2001 and 2002.Environ Sci Technol 2006;40(7):2128-2134.
    68.Olsen GW,Mair DC,Reagen WK,et al.Preliminary evidence of a decline in perfluorooctanesulfonate (PFOS)and perfluorooctanoate (PFOA)concentrations in American Red Cross blood donors.Chemosphere 2007;68(1):105-111.
    69.Kubwabo C,Vais N,Benoit FM.A pilot study on the determination of perfluorooctanesulfonate and other perfluorinated compounds in blood of Canadians.J Environ Monit 2004;6(6):540-545.
    70.Harada K,Koizumi A,Saito N,et al.Historical and geographical aspects of the increasing perfluorooctanoate and perfluorooctane sulfonate contamination in human serum in Japan.Chemosphere 2007;66(2):293-301.
    71.Midasch O,Schettgen T,Angerer J.Pilot study on the perfluorooctanesulfonate and perfluorooctanoate exposure of the German general population.Int J Hyg Environ Health 2006;209(6):489-496.
    72.K(a|¨)rrman A,Mueller JF,van Bavel B,et al.Levels of 12 perfluorinated chemicals in pooled australian serum,collected 2002-2003,in relation to age,gender,and region.Environ Sci Technol 2006;40(12):3742-3748.
    73.Calafat AM,Needham LL,Kuklenyik Z,et al.Perfluorinated chemicals in selected residents of the American continent.Chemosphere 2006;63(3):490-496.
    74.Ericson I,G(?)mez M,Nadal M,et al.Perfluorinated chemicals in blood of residents in Catalonia (Spain) in relation to age and gender:a pilot study.Environ Int 2007;33(5):616-623.
    75.Jin Y,Saito N,Harada KH,et al.Historical trends in human serum levels of perfluorooctanoate and perfluorooctane sulfonate in Shenyang,China.Tohoku J Exp Med 2007;212(1):63-70.
    76.金一和,董光辉,舒为群,等.沈阳和重庆人群血清中全氟辛烷磺酸和全氟辛酸的污染水平比较研究。卫生研究2006;35(5):560-563.
    77.Kannan K,Corsolini S,Falandysz J,et al.Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries.Environ Sci Technol 2004;38(17):4489-4495
    78.Inoue K,Okada F,Ito R,et al.Perfluorooctane sulfonate(PFOS) and related perfluorinated compounds in human maternal and cord blood samples:assessment of PFOS exposure in a susceptible population during pregnancy.Environ Health Perspect 2004;112(11):1204-1207.
    79.Apelberg BJ,Goldman LR,Calafat AM,et al.Determinants of fetal exposure to polyfluoroalkyl compounds in Baltimore,Maryland.Environ Sci Technol 2007;41(11):3891-3897.
    80.金一和,刘晓,李彤,等.沈阳地区成人血清和脐带血中全氟有机物污染现状。卫生研究2004;33(4):481-483.
    81.K(a|¨)rrman A,Ericson I,van Bavel B,et al.Exposure of perfluorinated chemicals through lactation:levels of matched human milk and serum and a temporal trend,1996-2004,in Sweden.Environ Health Perspect 2007;115(2):226-230.
    82.So MK,Yamashita N,Taniyasu S,et al.Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan,China.Environ Sci Technol 2006;40(9):2924-2929.
    83.Yeung LW,So MK,Jiang G,et al.Perfluorooctanesulfonate and related fluorochemicals in human blood samples from China.Environ Sci Technol 2006;40(3):715-720.
    84.Johnson JD.Cholestyramine-enhanced fecal elimination of carbon-14 in rats after administration of ammonium perfluorooctanoate or potassium perfluorooctane sulfonate.Fundam.Appl.Toxicol 1984;4(6):972-976.
    85.Olsen GW,Burris JM,Ehresman DJ,et al.Half-life of serum elimination of perfluorooctanesulfonate,perfluorohexanesulfonate,and perfluorooctanoate in retired fluorochemical production workers.Environ Health Perspect 2007;115(9):1298-305.
    86.Burris JM,Olsen G,Simpson C,et al.Interim Report:Determination of Serum Half-lives of Several Fluorochemicals.St.Paul,MN:3M Company.U.S.EPA docket AR-226-1086.Washington,DC:U.S.Environmental Protection Agency.2002.
    87.Seacat AM,Thomford PJ,Hansen KJ,et al.Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys.Toxicol Sci 2002;68(1):249-264.
    88.Vanden Heuvel JP,Kuslikis BI,Van Rafelghem MJ,et al.Tissue distribution,metabolism,and elimination of perfluorooctanoic acid in male and female rats.J Biochem Toxicol 1991;6(2):83-92.
    89.Newsted JL,Beach SA,Gallagher SP,et al.Pharmacokinetics and acute lethality of perfluorooctanesulfonate(PFOS) to juvenile mallard and northern bobwhite.Arch Environ Contam Toxicol 2006;50(3):411-420.
    90.Harada K,Inoue K,Morikawa A,et al.Renal clearance of perfluorooctane sulfonate and perfluorooctanoate in humans and their species-specific excretion.Environ Res 2005;99(2):253-561.
    91.OECD(Organisation for Economic Co-operation and Development),2002.Hazard Assessment of Perfluorooctane Sulfonate(PFOS) and Its Salts.Available at URL http://www.oecd.org/dataoecd/23/18/2382880.pdf
    92.Griffith FD,Long JE.Animal toxicity studies with ammonium perfluorooctanoate.Am Ind Hyg Assoc J 1980;41:576-583.
    93.Li MH.Effects of nonionic and ionic surfactants on survival,oxidative stress,and cholinesterase activity of planarian.Chemosphere 2007 Sep 28;
    94.Fuentes S,Colomina MT,Vicens P,et al.Influence of maternal restraint stress on the long-lasting effects induced by prenatal exposure to perfluorooctane sulfonate(PFOS) in mice.Toxicol Lett 2007;171(3):162-170.
    95.王昕,陈誉华。全氟辛烷磺酰基化合物(PFOS)对脑血管内皮细胞的损伤作用。中国现代医学杂志2006;16(11):1646-1648.
    96.Guang-hui Dong,Yi-he Jin,Bing Liu,et al.A study on the mechanism of perfluorooctane-sulfonate-induced neuronal apoptosis in rat.Journal of Veterinary Medical Science 2008;
    97.刘冰,于麒麟,金一和,等.全氟辛烷磺酸对大鼠海马神经细胞内钙离子浓度的影响。毒理学杂志2005;19(A03):225-226.
    98.Harada KH,Ishii TM,Takatsuka K,et al.Effects of perfluorooctane sulfonate on action potentials and currents in cultured rat cerebellar Purkinje cells.Biochem Biophys Res Commun 2006;351(1):240-245.
    99.Harada K,Xu F,Ono K,et al.Effects of PFOS and PFOA on L-type Ca2+ currents in guinea-pig ventricular myocytes.Biochem Biophys Res Commun 2005;329(2):487-494.
    100.范轶,金一和,麻懿馨,等.全氟辛烷磺酸对雄性大鼠生精功能的影响。卫生研究2005;34(1):37-39.
    101.Apelberg BJ,Witter FR,Herbstman JB,et al.Cord Serum Concentrations of Perfluorooctane Sulfonate(PFOS) and Perfluorooctanoate(PFOA) in Relation to Weight and Size at Birth.Environ Health Perspect 2007;115(11):1670-1676.
    102.Grasty RC,Bjork JA,Wallace KB,et al.Effects of prenatal perfluorooctane sulfonate(PFOS)exposure on lung maturation in the perinatal rat.Birth Defects Res B Dev Reprod Toxicol 2005;74(5):405-416.
    103.Grasty RC,Wolf DC,Grey BE,et al.Prenatal window of susceptibility to perfluorooctane sulfonate-induced neonatal mortality in the Sprague-Dawley rat.Birth Defects Res B Dev Reprod Toxicol 2003;68(6):465-471.
    104.Luebker DJ,Case MT,York RG,et al.Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate(PFOS) in rats.Toxicology 2005;215(1-2):126-148.
    105.Molina ED,Balander R,Fitzgerald SD,et al.Effects of air cell injection of perfluorooctane sulfonate before incubation on development of the white leghorn chicken(Gallus domesticus)embryo.Environ Toxicol Chem 2006;25(1):227-232.
    106.Case MT,York RG,Christian MS.Rat and rabbit oral developmental toxicology studies with two perfluorinated compounds.Int J Toxicol 2001;20(2):101-109.
    107.Kannan K,Perrotta E,Thomas NJ.Association between perfluorinated compounds and pathological conditions in southern sea otters.Environ Sci Technol 2006;40(16):4943-4948.
    108.Peden-Adams MM,EuDaly JG,Dabra S,EuDaly A,et al.Suppression of humoral immunity following exposure to the perfluorinated insecticide sulfluramid.J Toxicol Environ Health A 2007;70(13):1130-1141.
    109.Liu C,Yu K,Shi X,Wang J,et al.Induction of oxidative stress and apoptosis by PFOS and PFOA in primary cultured hepatocytes of freshwater tilapia(Oreochromis niloticus).Aquat Toxicol 2007;82(2):135-143.
    110.Martin MT,Brennan RJ,Hu W,et al.Toxicogenomic study of triazole fungicides and perfluoroalkyl acids in rat livers predicts toxicity and categorizes chemicals based on mechanisms of toxicity.Toxicol Sci 2007;97(2):595-613.
    111.Asakawa A,Toyoshima M,Fujimiya M,et al.Perfluorooctane sulfonate influences feeding behavior and gut motility via the hypothalamus.Int J Mol Med 2007;19(5):733-739.
    112.3M Company,2002.104-Week Dietary Chronic Toxicity and Carcinogenicity Study with Perfluorooctane Sulfonic Acid Potassium Salt(PFOS;T-6295) in Rats.Final Report,3M T-6295(Covance study no.:6329-183),Volumes Ⅰ-Ⅸ,4068 pages,January 2,2002.3M,St. Paul,Minnesota.
    113.Grice MM,Alexander BH,Hoffbeck R,et al.Self-reported medical conditions in perfluorooctanesulfonyl fluoride manufacturing workers.J Occup Environ Med 2007;49(7):722-729.
    114.Alexander BH,Olsen GW.Bladder cancer in perfluorooctanesulfonyl fluoride manufacturing workers.Ann Epidemiol 2007;17(6):471-478.
    115.Gilliland FD,Mandel J S.Mortality among employees acid production plant.Occup Med 1993;35(9):950-954.
    116.Alexander BH,Olsen GW,Burris JM,et al.Mortality of employees of a perfluorooctanesulphonyl fluoride manufacturing facility.Occup Environ Med 2003;60(10):722-729.
    117.Yeung LW,Guruge KS,Yamanaka N,et al.Differential expression of chicken hepatic genes responsive to PFOA and PFOS.Toxicology 2007;237(1-3):111-125.
    118.Jernbro S,Rocha PS,Keiter S,et al.Perfluorooctane sulfonate increases the genotoxicity of cyclophosphamide in the micronucleus assay with V79 cells.Further proof of alterations in cell membrane properties caused by PFOS.Environ Sci Pollut Res Int 2007;14(2):85-87.
    119.Austin ME,Kasturi BS,Barber M,et al.Neuroendocrine effects of perfluorooctane sulfonate in rats.Environ Health Perspect 2003;111(12):1485-1489.
    120.Hu W,Jones PD,DeCoen W,et al.Alterations in cell membrane properties caused by perfluorinated compounds.Comp Biochem Physiol C Toxicol Pharmacol 2003;135(1):77-88.
    121.O'Brien TM,Wallace KB.Mitochondrial permeability transition as the critical target of N-acetyl perfluorooctane sulfonamide toxicity in vitro.Toxicol Sci 2004;82(1):333-340.
    122.Beach SA,Newsted JL,Coady K,et al.Ecotoxicological evaluation of perfluorooctanesulfonate (PFOS).Rev Environ Contam Toxicol 2006;186:133-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700