用户名: 密码: 验证码:
低表面能及改性丙烯酸系列无毒防污涂料制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在海洋中航行的船只受到海水侵蚀后会附着种类繁多的生物,并使船体表面的摩擦力明显增加,进而导致舰船航速降低,燃料消耗增大,进坞维修次数增多。为防止海洋生物附着,最有效的措施是在船壳表面涂覆有毒的防污涂料。但有毒防污涂料的使用破坏了海洋的生态环境,严重威胁着人类的健康。国际海事组织已明令禁止在2008年1月1日后使用含有机锡毒物的防污涂料,随着这一禁令的实施,环境友好无毒船舶防污涂料的开发研制已经在全球范围内展开,其中无毒低表面能脱污型(fouling release)防污涂料的研究尤为引人注目。
     本研究以耐候性和耐油性优异、且价格低廉的丙烯酸树脂为基础,针对海洋污损生物的附着机制,设计合成了具有低表面能等不同特性的系列改性丙烯酸树脂,并用红外光谱和凝胶色谱对合成树脂的结构及分子量进行了检测。结果表明,采用自由基溶液共聚法,可以将各种丙烯酸单体与氢氧化锌及聚硅氧烷聚合,合成出具有水解特性的丙烯酸锌树脂和聚硅氧烷改性丙烯酸树脂;也可以将有机硅单体与丙烯酸单体共聚,合成出具有低表面能特性的有机硅改性丙烯酸树脂。采用化学滴定法检测了改性丙烯酸树脂的酸值,用JY-82型接触角检测仪检测了树脂与水滴的接触角和涂膜的表面能。结果表明,合成的丙烯酸锌树脂和聚硅氧烷改性丙烯酸树脂的酸值、水解率和储存稳定性良好,具有自抛光特性;合成的有机硅改性丙烯酸树脂涂膜均匀饱满,与水的接触角可达83°,具有低表面能特性。系列改性丙烯酸树脂的合成工艺方法简便,原料来源广泛,在替代含毒防污涂料方面具有广阔的应用前景。
     同时,本研究以上述系列改性丙烯酸树脂为成膜物,通过添加各种防污剂、防污助剂、颜填料、以及各类溶剂和助剂,制备了丙烯酸锌自抛光型、自抛/低表面能双重作用型和仿生无毒低表面能脱污型等三种防污涂料。依据国标GB6824-86,检测了自抛光防污涂料的铜离子渗出率,用GS-X150表面张力测定仪检测了低表面能防污涂膜的表面能,用SEM和GE5数码显微镜观察了低表面能无毒防污涂料的表面结构、涂膜形貌及其与液体接触的界面状态,并对防污涂料进行了实海试验。结果表明,本研究使用的三种防污助剂(TCPM、百菌清和敌草隆)均可减缓涂料中铜离子的渗出率,因而明显增加了涂料的防污期效与防污性能,其中TCPM的防污效果最好;微米级颜填料和纳米级SiO2粒子的加入,不仅有效地改善了涂料涂膜的强度,更主要的是通过仿照荷叶表面微观结构特征,在涂膜表面构筑出了一种微米-纳米阶层结构。这种结构,导致涂膜与液滴界面间产生了一种显微“气垫”形态,进而导致涂膜与液滴间的接触角高达150°、表面能降至6mJ/m2、且附着力达1级,为在完全环保无毒的条件下仅以仿生涂膜的物理特性防止海洋生物污损方面提供了坚实的理论与应用基础。接触角可达150°的仿生无毒海洋防污涂料,在国内外同类研究与应用方面迄今还未见报导。
     最后,本研究针对海洋污损生物的附着机理、低表面能涂膜表面微米-纳米结构及其上形成“气垫”后表面润湿性及接触角的变化,提出了首先增加固体表面的粗糙度γ,使其更容易稳定地实现表面的超疏水性能,其次降低固液接触界面分数f s,以进一步提高涂膜表面的疏水性能的低表面能涂料的设计思路。实海试验的结果表明,具有微米-纳米阶层结构的涂膜具有良好的防污效果。
The ships navigating in the sea would be fouled by many types of marine life, which causes the friction force of hull surface to be increased obviously, the ships speed to be reduced and the fuel consumption and the maintenance cost of ship to be increased. In order to prevent the marine life attaching, it is the most effective that the surface of hull is coated by virulent antifouling coatings. Traditionally, fouling has been controlled by antifouling paint with tributyltin. They can accumulate in marine life and be difficult to degrade, which not only causes adverse effects in the environment, but also threatens the health of humans. The International Maritime Organization has issued ban to prohibit using antifouling coating included tributyltin after January 1, 2008. Consequently, research and development of environment benign antifouling coatings have already launched over the world.
     In this paper, series modified acrylic resin with different characteristics were synthesized referring to the adhesion mechanism of marine lives. Because of superior quality and lower cost, the acrylic resin was taken as foundation material. The infrared spectroscopy and the gelatin chromatograph have been used to detect the synthetic resin structures and the molecular weight. The results indicated that various kinds of acrylic monomer can be co-polymerized with zinc hydroxide and the polysiloxane compound through controlling the craft parameters and based on the free radical solution copolymerization principle, and then the copolymer can be obtained with a compatible hydrolysis characteristic. On the other hand, the acrylic resin modified with the organosilicon and possessed low surface energy can also be synthesized with acrylic monomer and organosilicon monomer. The advantages of the synthesis process are simple and safe, widespread raw material and a broad application prospect.
     The acid values of the modified acrylic resin were detected with the chemistry titrimetric method, and the contact angle between films and liquid and the surface energy of the films are examined with the JY-82 contact angle analyzer. The results showed that the performances including acid value, hydroxide value, hydrolisis rate and the storage stability are excellent, and both the zinc acrylate resin and the polysiloxane modified acrylic resin possess self-polishing characteristic. The contact angle between the film of the modified acrylic resin and water can reach to as high as 83°.
     Three types of antifouling coatings have been prepared by taking the series of modified acrylic resin mentioned above as the matrix material and mixing them with the different kind of antifouling boosters, aid agents, pigments and solvents. The coatings include‘self-polishing zinc acrylate coating’,‘self-polishing/lower-surface energy coating’and‘bionic and non-toxic coating’. Based on the Chinese National Standard of GB6824-86, the Cu-ion release rates, the surface energies, the interaction between the water and the surface structures of the films have been examined with the GS-X150 surface tension analyzer, SEM and the GE5 digital microscope respectively, while the sea exposure test has also been carried out. The result showed that, all the three kinds of antifouling boosters (TCPM, Chlorothalonil and Diuron) can decrease the rates of Cu-ion release and thus increase the antifouling life and property of the coatings obviously. Besides improving the strength, additions of the micro scale pigments and the nano-scale SiO2 particles can also build up micro-nano mixed structures on the film surfaces as happened on the surface of the lotus leaf, and then a“air pad”could be found on the film surface. By existing of the air pad, the contact angles of the films can be significantly increased to as high as 150°, while the surface energies can be decreased to as low as 6mJ/m2, and the adhesion strength of the film on the matrix substances can reach to Grade I. in this case, the sea fouling lives can be retarded totally and solely by the physical mechanism. The sea exposure test confirmed that the antifouling property of the coatings has been increased considerably.
     Based on the adhesion mechanism of the sea life, the micro-nano structure of the low surface energy film and the‘air pad’phenomena, as well as the physical-chemical interaction between the wettability of the surface and the contact angle, and detailed discussions on the antifouling mechanism of the low surface energy coatings have been reviewed systematically. Firstly, to increase the roughness of the solid surface can be helpful to result a super hydrophobic surface stably; secondly, to decrease the ratio of the interface between the solid and liquid can further increase the hydrophobic of the films of the low surface coatings. The results and discussions mentioned above have not been reported so far, and will be helpful to the research and application of the low surface energy and foul release coatings.
引文
[1] Bohlander G S. Biofilm effect on drag: measurements on ships. Polymers in a Marine Environment 1991, 16: 1-4
    [2] Schultz M P, Swain G W. The effects of biofilms on turbulent boundary layers. Journal of Fluids Engineering, 1999, 121: 44-51
    [3] Schultz M P, Swain G W. The influence of biofilms on skin friction drag. Biofouling, 2000, 15: 129-139.
    [4] Lewthwaite J C, Molland A F, Thomas K W. An investigation into the variation of ship skin frictional resistance with fouling. Transactions of the Royal Institution of Naval Architects, 1985, 127: 269-284
    [5] Al-Juhni A A, Zhang B M. Incorporation of benzoic acid and sodium benzoate into silicone coatings and subsequent leaching of the compound from the incorporated coatings. Progress in Organic Coatings, 2006, 56: 135–145
    [6] Mirta E, et al. Non-toxic Alternative comounds for marine antifouling paints. Internaational Biodeterioration & Biodegradation, 2003, (52):49-52
    [7] James D. Adkins, Ann E. Mera et al. Novel non-toxic coatings designed to resist marine fouling.Progress in Organic Coatings, 1996 (29):1-5
    [8]马士德,谢肖勃,黄修明等.藤壶附着对海水中金属腐蚀的影响.中国腐蚀与防护学报, 1995, 15(1): 74-78
    [9] Yebra D M, Kiil S, Dam-Johansen K. Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 2004, 50: 75-104
    [10]周陈亮.舰船防污涂料的历史现状和未来.中国涂料, 1998, (6): 9-12
    [11] Gitlitz M H, Coat J. Technol, 1981, 53 (678): 46–52
    [12] Omae I, Appl. Organometall. Chem., 2003, (17): 81–105
    [13] Camall M. et al. New acrylic titanium polymers: 2. Synthesis and characterization of organotitanium polymers [J]. Polymer, 1998, 39(25): 6533-6539.
    [14] Alzieu C. Impact of Tributyltin on Marine Invertebrates. Ecotoxicology, 2000, 9: 71-76
    [15] Milne A, Polym. Mar. Environ., Paper. 1991, 17: 139–144
    [16] Mora S J, Stewart C, Phillips D. Sources and Rate of Degradation of Tri(n-butyl)tin in Marine Sediments Near Auckland, New Zealand. Marine Pollution Bulletin, 1995, 30(1):50-57
    [17] Negri A P, Hales L T, Battershill C, et al. TBT contamination identified in Antarctic marine sediments. Marine Pollution Bulletin, 2004, 48: 1142–1144
    [18] Tessier E, Amouroux D, Donard O X. Volatile organotin compounds (butylmethyltin) in three European estuaries (Gironde, Rhine, Scheldt). Biogeochemistry. 2002, 59: 161–181
    [19]黄汉生.有机硅聚合物水解型船底防污涂料.有机硅材料及用, 1994, (3):27-28
    [20] Kiil S, Dam-Johansen K, Weinell C E, Pedersen M S. Seawater-soluble pigments and their potential use in self-polishing antifouling paints: simulation-based screening tool. Progress in Organic Coatings, 2002, 45: 423–434
    [21] Diego Meseguer Yebra, S?ren Kiil, Kim Dam-Johansen, Claus Weinell, Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systems. Progress in Organic Coatings, 2005, (53): 256–275
    [22] Chau Y K, et al. Occurrence of organotin comounds in Canadian aquatic environment fiveyears after the regulation of antifouling uses of tributyltin. Water Qual. Res. J. Canada, 1997, 32(3):453-521
    [23]张洪生.船体防污涂料和水下维护技术的最新进展.交通环保, 1996, (6):37-39
    [24] Chau Y.K. et al. Occurrence of organotin compounds in Canadian aquatic environment five years after the regulation of antifouling uses of tributyltin. Water Qual Res J Canada, 1997, 32(3): 453-521.
    [25]江桂斌.国内外有机锡污染研究现状.卫生研究, 2001, 30(1): 1-3
    [26]余育聪.控制和禁用船舶有害防污漆.江苏船舶, 2001, 18(3): 42-43
    [27] Lobinski R. et al. Optimization of comprehensive speciation of organotin compounds in environmental samples by capillary gas chromatography helium microwave induced plasma emission spectrometry. Anal Chem., 1992, 64: 159-165
    [28]江桂斌等.我国部分内陆水域有机锡污染现状初探.环境科学学报, 2000, 20(5): 636-638
    [29] Hello C, De La Broise D, Dufosse L, et al. Bourgougnon N. Inhibition of marine bacteria by extracts of mactoangle: potential use for environmentally friendly antifouling paints. Marine Environmental Research, 2001, (52): 231-247
    [30] Michael, Champ A. A review of organotin regulatory strategies, pending actions, releated coasts and benefits. The Science of the Total Environment, 2000, 258: 21-71
    [31] Alzieu C, Environmental impact of TBT: the French experience. The Science of the Total Environment, 2000, 258: 99-102
    [32] Pettitt M E, Henry S L, Callow M E, et al. Activity of Commercial Enzymes on Settlement and Adhesionof Cypris Larvae of the Barnacle Balanus amphitrite, Spores ofthe Green Alga Ulva linza, and the Diatom Navicula perminuta. Biofouling, 2004, 20(6): 299–311
    [33] Evans S M, Birchenough A C, Brancato M S.,The TBT Ban: Out of the Frying Pan into the Fire?. Marine Pollution Bulletin, 2000, 40 (3): 204-211
    [34]梁春群.无有机锡自抛光船舶防污涂料.化工进展, 1994, (5): 40-44
    [35]金晓鸿.海洋污损生物防除技术和发展(Ⅲ)——世界防污技术的历史和发展.材料开发与应用, 2006, 21(1): 44-46
    [36]李佳利.无锡自抛光型防污涂料.涂料工业, 2003, 33(11): 25-27
    [37]桂泰江.海洋防污涂料的现状及发展趋势.现代涂料与涂装, 2005, (5): 28-29
    [38] Yonehara Y, Yamashita H, Kawamura C, et al. A new antifouling paint based on a zinc acrylate copolymer. Progress in Organic Coatings, 2001, (42): 150–158
    [39]梁春群,王平,宋兰花.无有机锡自抛光船舶防污涂料.化工进展, 1994, 9: 40-44
    [40]赵九夷.我国海洋耐蚀防污铜合金研究及其应用.特种铸造及有色合金, 2003, 26(6): 390-393
    [41]赵金榜.无锡防污涂料的现状和发展(Ⅰ).现代涂料与涂装, 2005, (2): 35-38
    [42]于良民,李霞,王利,董磊.吲哚类防污剂及其在海洋防污涂料中的应用.化工新型材料, 2006, 34(4): 57-59
    [43] Voulvoulis N, Scrimshaw M D, Lester J N. Comparative environmental assessment of biocides used in antifouling paints. Chemosphere, 2002, 47: 789-795
    [44] Thomas K V, Fileman T W, Readman J W, et al. Antifouling Paint Booster Biocides in the UK Coastal Environment and Potential Risks of Biological Effects. Marine Pollution Bulletin, 2001, 42(8): 677-688
    [45] Okamura H, Watanabe T, Aoyama I, et al. Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere, 2002, 46: 945-951
    [46] Sakkas V A, Konstantinou I K, Albanis T A. A quatic phototransformation study of the antifouling agent Sea-Nine 211: identification of byproducts and the reaction pathway by gas chromatography–mass spectroscopy. Journal of Chromatography A, 2002, 959: 215–227
    [47]吴始栋.船舶防污技术发展现状.船舶物资与市场, 2001, (4): 46- 49
    [48]周晓东,孙道兴.关于低表面能无毒防污涂料的应用研究.涂料技术与文摘, 2004,25(3): 7-11
    [49]边蕴静.低表面能防污涂料的防污特性理论分析.中国涂料, 2000, 15(5): 36-39
    [50] Lindner, Elek. A low surface free energy approach in the control of marine biofouling. Biofouling, 1992, 6(2): 193-205
    [51]陈立军,张心亚,陈焕钦.环保型防污涂料研究进展.化工新型材料. 2005, 33(7): 43-46
    [52]西昭雄等.三菱重工技报. 1996, (3): 258-262
    [53]王献红,孙祖信,耿延候等.导电聚苯胺防污防腐涂料的制备方法:中国,CN1215744[P]. 2001
    [54]金光羊,金钟成,韩相秀等.海水电解型偏二氯乙烯共聚树脂系列无公害防污涂料及其涂覆体系.中国, CN1385480[P]. 2002
    [55] Slater, et al.. Antifouling Coating Compositions. US Patent: 5331074
    [56]王俊.无锡防污涂料技术.中国涂料, 2005, 20(5): 16-19
    [57]边蕴静.新型海洋涂料技术.化工新型材料, 2002, 30(6): 25-28
    [58] Denys R. et al. Broad Spectrum Effects of Secondary Metabolites from the Red Alga Deli Sea Pulchra in Antifouling Assays. Biofouling, 1995, (8):259-271
    [59]赵晓燕.海洋天然产物防污进展.材料开发与应用, 2001, 16(4): 34-37
    [60] Todd J T, Zimmerman R C, Crews P, et al. The anti-fouling activity of natural and synthetic phenolic acid sul-phate eaters. Phytochemistry, 1993, 34(2): 401-404
    [61] Denys R, Steinberg P D, Willemsen P, et al. Broad spectrum effects of secondary metabolites from the red alga Delisea pulchrain antifouling assays. Biofouling, 1995, 8: 259-271
    [62] Mary A SR, Mary V SR, Sarojini R, et al. Broad spec-trum natural products from the Indian Ocean octocoral Euplexaura nuttingi. Recent development in biofouling control, 1994, 241-249
    [63] Tomono Y, Hirota H, Fusetani N. Isogosterones A-D, antifouling 13,17-Secosteroids from an octocoralDendro-nephthya sp. J Org Chem., 1999, 64: 2272-2275.
    [64] Standing J, Hooper I R, Costlow J D. Inhibition and in-duction of barnacle settlement by natural product present in octocorals. J Chem Ecol., 1984, 10: 823-834
    [65] Hirota H, Okino T, Yoshimura E, et al. Five new antifouling sesquiterpenes from two marine sponges of theGenus Axinyssaand theNudibranch Phyllidia pustulosa. Tetrahedron, 1998, 54: 13971-13980
    [66] Sera Y, Adachi K, Nishida F, Shizuri Y. A new sesquit-erpene as an antifouling substance from a Palauan marine sponge. Dysidea herbacea. J Nat Prod., 1999, 62: 395-396
    [67] Goto R, Kado R, Muramoto K, et al. Furospongolide: an antilouling substance from the marine spongePhylio-spongia papyraceaagainst the barnacleBalanus amphi-trite. Nippon Suisan Gakkaishi, 1993, 59: 195
    [68] Hattori T, Adachi K, Shizuri Y. New ceramide from marine spongeHaliclona koremellaand related compounds as antifouling substances against macroalgae. J Nat Prod., 1998, 61: 823~826
    [69] Sakkas V A, Konstantinou I K, Albanis T A. A quatic phototransformation study of the antifouling agent Sea-Nine 211: identification of byproducts and the reaction pathway by gas chromatography–mass spectroscopy. Journal of Chromatography A., 2002, 959: 215-227
    [70]吴始栋.舰船防污和环境保护.船舶, 2002, (2): 56-59
    [71]陈容发.海洋环保辣素防污漆.今日科技, 2002, (2): 12-14
    [72]吴宏博,丁新静,于敬晖,刘在阳.有机硅树脂的种类、性能及应用.纤维复合材料, 2006, 2: 55-59
    [73]刘国杰.有机硅改性涂料的开发现状.有机硅材料, 2003, 17(2): 25-27
    [74]李永清,郑淑贞.有机硅低表面能海洋防污涂料的合成及应用研究.化工新型材料, 2003, 31(7): 1-4
    [75]美国专利4910252
    [76] Slater D. Antifouling coating compositions.US 5331074,1994
    [77] Kishihara. M, Nanishi, et al. Nontoxic antifouling coating.composition.US 5218059,1993
    [78] Brady R F, Singer I L. Mechanical Factors favouring release from Fouling Release coatings. Biofouling, 2000, 15(1-3): 73-81
    [79]汪敬如,袁水娇. 96’材料科学与工程学术交流会论文汇编.洛阳船舶材料研究所, 1996, 361-365
    [80]田军.无毒海洋防污涂. CN 1097447A, 1994
    [81]王智和,丁鹤雁,任静.涂料用含硅丙烯酸树脂的研究进展.有机硅材料, 2001, 15(4): 29-33
    [82] Chen M J, Osterholtz F D, pohi E R, et al. Silane in High Solids and Waterborne Coatings.Journal of coatings Technology, 1997,(870): 43-51
    [83] Park H. S, Yang L M, et al. Synthesis of Silicone-Acrylic Resins and TheirApplications to Super Weather Able Coatings.Applied Polymer Science, 2001, (7): 1614-1623
    [84] Kenneth R.Spectroscopic investigation of the gel polymer electrolytes based on methyl methacrylate. Material Science, 2004, 50(2): 327-330
    [85] Kawakami Y. Influence of modification of fine silica by organosilicon compounds on particle-particle interaction in aqueous suspensions. Journal of coatings Technology, 2000, 172(9): 45-50
    [86]黄光佛,卿胜波.有机硅丙烯酸酯涂料的制备.江苏化工, 2001, (2): 20-23
    [87] James D, Askins, Mera A E. Novel non-toxic coatings designed to resist marine fouling.Progress in Organic Coatings. 1996, (29): 1-5
    [88]田军,薛群基.有机硅涂层表面能对海生物附着的影响.海洋学报, 1998, 20(5): 61-64
    [89] Grath J, Preparation properties and applications of peroxides organosilicon. Journal of coatings Technology, 1982, 238(1): 26-28
    [90] Owens M. The role of the transition metal in the homogeneous catalytic polymerisation of strained organosilicon heterocycles. Journal of Organometallic Chemistry, 1972, 44(2): 291-293
    [91] Yamashita. Siloxane Polymer antifouling paint composition containing polysiloxanes. US 4910252, 1990
    [92] Iwao O. General Aspects of Tin-free Antifouling Paints. Chemical Reviews, 2003, 103(9): 3431 -3448
    [93]边蕴静.氟碳树脂涂料.中国涂料, 2000(6): 22-26
    [94] Schmidt D L. Surface Coatings. International, 1999, (2):582-585
    [95]田军,徐锦芬,潘光明等.含氟的聚合物及其应用.功能高分子学报, 1995, 8(4): 504-511
    [96]田军,薛群基.无毒防污涂层表面的化学结构的研究.环境科学, 1998, (1): 46-49
    [97] Moniz W B, Brady J R. NRL Memorandum Report, 1985: 5517
    [98] Robret F. Sur. Coat. Int, 1998, 81(4): 181-185
    [99] Schmidt D L. Dekoven B M. Langmuir.1996, 12: 518-529
    [100] William Graham.首届全国氟树脂及氟涂料研究会论文选集, 2000:37-42
    [101]张人韬.水性氟硅涂料及其自分层效果研究.新型建筑材料, 2002, (6): 19-21
    [102]美国专利6265515
    [103]杨源龙,黄超峰,孙守信.长效防污闪涂料—硅氟聚合物的研究.高压电器, 1996, (1): 13-16
    [104] Baier R E, DePalma V A. The relationship of the internal surface of grafts to Thrombosis, In Dale WA, (Ed) Management of Occlusive Aterial Disease, Yearbook Medical Publishers, Chicago, 1971, 147-163
    [105] Linkner. Biofouling. 1992, 6(2): 193-205
    [106] Schmidt D L. Surface Coatings International. 1999, 1(2): 582-58
    [107] Robert F. Brady Jr. A fracture mechanical analysis of fouling release from nontoxic antifouling coatings. Progress in Organic Coatings, 2001, 43: 188-192
    [108] Anderson C, Atlar M, Callow M, et al. The development of foul-release coatings for seagoing vessels. Journal of Marine Design and Operations, 2003, No. B: 11-22
    [109]武利民.现代涂料配方设计.北京:化学工业出版社, 2000.397-399
    [110]王季昌,孙缀.丙烯酸树脂产品个性化发展方向.中国涂料, 2007, 22(1): 6-7
    [111]汪地强,刘白玲,胡杰.有机硅改性聚丙烯酸聚合物研究进.皮革科学与工程, 2002, 12(6): 33-41
    [112] Parkh S, Yang I M. Synthesis of silicone-acrylic resins and their applications to superweatherable coatings. Journal of Applied Polymer Science, 2001, 81(7): 1 614-1623
    [113] Smith A, Wagner O. Factors affecting dirt pickup in latex coatings. Journal of Coatings Technology, 1996, 68(862): 37-41.
    [114] Tanner H, Ohsuji H. A new resin system for super high solids coating. Progress in Organic Coatings, 1997, 32: 197-203.
    [115]黄光速,何其佳,江璐霞.聚苯基烷氧基/聚丙烯酸酯同步互贯网络聚合物阻尼材料的研究.高分子材料科学与工程, 2001, 17(2): 133-136
    [116]余锡宾,王华林.丙烯酸树脂与聚硅氧烷接枝改性的研究.高分子材料科学与工程, 1998, 14(2): 129-132
    [117]王国建.有机硅改性弹性乳液外墙防水涂料的研制.化学建材, 2000, (6): 31-35.
    [118]鄢文彪,廖爱平.有机硅改性丙烯酸树脂皮革涂饰剂的研究.江西化工, 2000, (4): 32-35
    [119]舛岗茂.有机硅聚合物水解型船底防污涂料.有机硅材料及应用. 1994, (3): 27-28
    [120]邓继勇,肖鑫廖,张献进.自研磨型无毒船底防污涂料的研制.材料保护, 2001, 34(2): 25-28
    [121] Camail M, Humbert M, Margaillan A, et al. New acrylic titznium polymers: 1. Synthesis and characterization of new titanium trialkoxide methacrylate monomers prepared via the esterification of methacrylic acid by titanium tetraalkoxides. Polymer, 1998, 39(25): 6525-6531
    [122] Grinwis G C M, Boonstra A, et al. Short-term toxicity of bis (tri-n-butyltin) oxide in ?ounder (Platichthys ?esus ) : Pathology and immune function. Aquatic Toxicology, 1998, 42: 15-36
    [123]张占平,齐育红,刘述锡等.船舶防污涂料与防污剂的研究进展.大连水产学院学报, 2006, 21(2): 175-179
    [124]王华进,王贤明,刘登良等. 94-01无毒防污涂料的研制.涂料工业, 1998, (12): 11-13
    [125]王彪,李思盛.纳米涂料的研究进展.辽宁建材, 2004, (3): 10-12
    [126]森本刚.はっに水コ一ティンゲ膜.机能材料, 1999, 14(7): 26-32
    [127]三轮将史,中岛章.光触媒机能をもつ透明超はつ超滑水膜.工业材料, 2000, 48(6): 53-56
    [128]田军等.聚氨酯改性有机硅含氟涂层表面能的研究.高分子材料科学与工程, 1999, (7): 164-165
    [129]谢文峰等.改性聚四氟乙烯不粘涂料的研制.精细化工, 2001, (8): 493-495
    [130]黄志祥,左美祥.纳米二氧化硅在涂料中的运用.上海建材, 1999, (4): 21-23
    [131] Green L, Rhine W, Calvert P. Graft polymerization of vinyl monomers initiated by azo groups introduced onto organic pigment surface. Surface and Coatings Technology, 1999, 36(1): 10-14
    [132]李旭朝,陈绍平,于雪艳等.仿生学在涂料开发中的应用.现代涂料与涂装, 2006, (7): 47-49
    [133] Carman M L, Estes T G, Feinber A W. Engineered antifouling microtopographies– correlating wettability with cell attachment. Biofouling, 2006, 1– 11
    [134]洪峰,赵中华,桂泰江.仿生防污涂料的发展概况.现代涂料与涂装, 2002, (5): 7-11
    [135] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202: 1-8
    [136] Feng L, Li S H, Li Y S, et al. Super-hydrophobic surface: from naturalto artificial. Advance materials, 2002, 14(24): 1857-1860
    [137] Xie Q D, Xu J, Feng L, et al. Adv. Mater., 2004, 16: 302-305
    [138]翟锦,李欢军,李英顺等.碳纳米管阵列超双疏性质的发现.物理. 2002, 31(8): 483-486
    [139] Feng L, Li S, Li Y, et al. [J]. Angew. Chem., 2002, 114: 1269
    [140] Yoichi Y, Yamashita H, Kawamura C, et al. A new antifouling paint based on a zinc acrylate copolymer[J]. Progress in Organic Coatings, 2001, 42:150-158
    [141]杨桂法,王玉枝,杨霞.有机化学分析.第2版.长沙:湖南大学出版社, 1996:295-298
    [142]杭州大学化学系分析化学教研室.分析化学手册(第三分册):电化学与光学分析.第一版.北京:化学工业出版社, 1983: 598-632
    [143] Owens D K, Wendt R C. Estimation of the Surface Free Energy of Polymers. J Appl Polym Sci, 1969, (13): 1741-1747
    [144]荆煦英,陈式隶,么恩云.红外光谱实用指南.天津科学技术出版社,天津: 1992, 92-93
    [145]刘国杰,耿耀宗.涂料应用科学与工艺学.北京:中国轻工业出版社, 1999: 205-209
    [146] Yamamori,Naoki.丙烯酸树脂和防污涂料[J].涂料技术与文摘,2004.25(3):31-33
    [147] Readman J W, Hattum B, Barcelo D. Assessment of Antifouling Agents in Coastal Environments. http://www.pml.ac.uk/ace
    [148]胡春,刘星娟,李爽. ZnO催化剂对苯胺光降解的研究.环境科学学报, 1998, 18(1): 81-85
    [149]邱海源,王宪.苯胺对海洋藻类生长的影响研究.海洋环境科学, 2004, 23(3): 30-32
    [150]沈德言.红外光谱法在高分子研究中的应用.第一版.科学出版社, 1982: 105-107
    [151]杭州大学化学系分析化学教研室.分析化学手册(第三分册):电化学与光学分析.第一版.北京:化学工业出版社, 1983: 598-632
    [152] Aldis O, et al. Measurement of copper release rates from antifouling paint under laboratory and in situ conditions: implications for loading estimation to marine water bodies.Marine. Pollution Bulletin, 2003(46): 763-77
    [153]郑群锁.低表面能防污涂料的进展.材料开发与应用, 2001, 16(1): 33-35
    [154]洪啸吟,冯汉保.涂料化学.北京:科学出版社, 1997: 100-101
    [155]陆佳琳,张宝华,李德芳. SiO2纳米涂料的分散性研究进展.上海化工, 2004, (12): 33-35
    [156] Anderson C, Atlar M, Callow M, et al. The development of foul-release coatings for seagoing vessels. Journal of Marine Design and Operations, 2003, No. B: 11-22
    [157] Callow M E, Callow J A. Marine Biofouling: a sticky problem. Biologist, 2002, 49: 10-14
    [158]宋永香,王志政.海洋生物及其粘附机理-微生物、小型海藻、巨型海藻、贻贝.中国胶粘剂, 2002, 11(4): 48-52
    [159] Hoagland K D, Rosowski J R, Gretz M R, et al. Diatom extracellular polymeric substrances: function, fine structure, chemistry and physiology. J Phycol, 1993, 29: 537-566
    [160] Wetherbee R, Lind J L, Burke J. The first kiss: establishment and control of initial adhesion by raphid diatoms. J Phycol, 1998, 34: 9-15
    [161]史航,王鲁民.海洋污损生物藤壶的附着机理及防除.广东农业科学, 2006, 6: 72-74
    [162]赵梅英,陈立侨,禹娜.藤壶-高度适应附着的海洋污损生物.生物学教学, 2004, 29(5): 56-57
    [163] Clare A S, Matsumura K. Nature and perception of barnacle settlement pheromones. Biofouling, 2000, 15: 57-71
    [164]宋永香,王志政.海洋生物及其粘附机理-藤壶、帽贝、海葵、管栖蠕虫.中国胶粘剂, 2003, 12(4): 60-63
    [165] Callow M E, Callow J A. Substratum location and zoospore behaviour in the fouling alga Enteromorpha. Biofouling, 2000, 15: 49-56
    [166] Callow M E, Callow J A. Marine Biofouling: a sticky problem. Biologist, 2002, 49: 10-14
    [167] Trentin I, Romairone V, Marcenaro G, et al. Quick test methods for marine antifouling paints. Progress in Organic Coatings, 2001, 42: 15–19
    [168]于春影,李春超,王超等.马来酰亚胺类杀菌剂的制备与性能评价.工业水处理. 2004, 24(7): 36-38
    [169]秦瑞香,于世涛,刘福胜等.酰胺类除草剂的研究进展.青岛科技大学学报, 2003, 24: 21-23
    [170]严胜骄,杨丽娟,李俊峰等.双苯甲酰基脲类化合物的合成及杀虫活性.应用化学, 2004, 21(12): 1320-1322
    [171]叶贵标.除草剂作用机理分类法及其应用.农药科学与管理, 1999, 20(1): 32-35
    [172]严胜骄,杨丽娟,李俊峰等.双苯甲酰基脲类化合物的合成及杀虫活性.应用化学, 2004, 21(12): 1320-1322
    [173] Young T, Experiments and calculations relative to physical optics. Phil. Trans. Roy. Soc, Lond., 1804, 94: 1-16
    [174] Wenzel R N. Surface roughness and contact angle (letter). J. Phys. Colloid Chem., 1949, 53: 1466-1467
    [175] Onda T, Shibuichi S, Satoh N, et al. Super water-repellent fractal surfaces. Langmuir, 1996, 12: 2125-2127
    [176] Cassie A B D. Contact angles Discuss. Faraday Soc., 1948, 3: 11-16
    [177]郑黎俊,乌学东,楼增等.表面微细结构制备超疏水表面.科学通报, 2004, 49(17):1691-1699
    [178] Carman M L, Estes T G, Feinberg A W, et al. Engineered antifouling microtopographies– correlating wettability with cell attachment. Biofouling, Pr Eview article, 2006, 1-11
    [179] Michele S S, Callow M. E., Callow J. A. et al. Monoclonal antibodies to adhesive cell coat glycoproteins secreted by zoospores of the green alga Enteromorpha. Planta, 1999, 210: 61-71
    [180] Herminghaus S. Roughness-induced non-wetting. Europhys Lett, 2000, 52(2): 165-170
    [181] Walsh G G. Protein Biotechnology. John Wiley & Sons Press, 1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700