用户名: 密码: 验证码:
北京市低山区低效人工林结构特征与评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以北京市“十五”二类调查数据为基础数据,对各区县人工林地块进行随机抽样与典型样地调查,以森林生态学、统计分析等为理论基础,通过可获取的数据,建立评价指标体系,确定指标权重,对北京市低山区低效人工林进行评价,并提出低效人工林的概念。通过正态等距划分法确定指标评判标准,层次分析法确定指标权重,利用模糊综合评价法确定低效的等级隶属度。对北京市低山区低效人工林分为四个等级,并分别对四个等级进行分类,旨在为北京市森林经营发展提供依据。本研究的主要结果如下:
     (1)不同优势树种间植物种类组成差异较大,相同林分类型由于受人为干扰、立地条件等因素影响,群落植物种类组成差异也较明显。直径分布主要有三种类型,即近似正态分布、近似反“J”形分布、多峰或单峰山状分布,树高分布以近似的正态分布、单峰或多峰曲线分布为主。所有样地,除草本层物种丰富度指数较高外,乔木层和灌木层物种丰富度指数均较低。多样性指数方面,乔木层多样性变化幅度较大,草本层多样性指数最高。均匀度指数变化幅度中,乔木层变化较大。
     (2)构建了由一个目标层指标,四个准则层指标和14个指标层组成的指标体系。指标分为定性指标和定量指标,定性和定量指标的确定分布根据相关标准判定四等分并赋予分值及采用正态等距分析法进行四等分,最后依据指标标准将北京市低效人工林分为四个等级。
     (3)低效人工林等级评价指标层各指标权重的总排序为:
     Ap=(0.09560.04780.01130.02910.04120.02770.02160.01250.13930.27850.13360.03150.07180.0586)
     (4)低效人工林样地中三级低效林最多,占样地总和的40.7%;其次分别是二级低效林、四级低效林和一级低效林,分别样地总和的29.6%、18.5%和11.1%。
     (5)对低效人工林进行了评价,并对北京市低效人工林等级评价进行了分类,结果如下:
     一级低效林:郁闭度为0.8-0.9之间,林分密度过密,土层厚度>50cm,林分结构差,林分过密而导致林内宿存枯枝、濒、枯死木较多;林下物种单一,人为干扰为轻度。对于此类林分应对宿存枯枝进行卫生伐,以避免火灾,还宜对过密,已死或者濒死的林分进行伐除,适当进行疏伐,以保证合理密度。
     二级低效林:郁闭度为0.4-0.5,林分密度稀疏,土层厚度在40-50cm之间,该样地属于没有适地适树而造成的发育差、林分生产力低下的人工林。对于该低效林应采取带状或块状伐除改造法,补植与该气候、土壤条件相适应的树种。
     三级低效林:平均郁闭度为0.4,林分密度较稀疏,土层厚度在20-40cm之间,林分结构较差,林内病腐情况严较重,林下物种多样性较单一,受到中度人为干扰。该低效林适合间伐补植和林下造林改造法。同时进行封禁管理,严禁人为负向干扰。
     四级低效林:郁闭度≤0.3,林分密度稀疏,土层厚度<20cm,林分结构差,林内病腐情况严重,林相败破,林分退化严重,林下物种多样性单一,受到重度人为干扰。该类低效人工林适合带状间伐补植改造。对于其土层较薄的问题,适宜在补植中采用客土补植法,并加以抚育,同时进行封禁管理,严禁人为负向干扰。
Based on the second class investigation data of the tenth five-year plan in Beijing, plantation in each county and district were investigated at random and typically. According to obtaining availability data in the test, the evaluation index system and the index weight could be determined by theoretical basis of forest ecology and statistical analysis. At the same time, the low function plantation in low mountain area of Beijing were evaluated and the concept was put forward. Furthermore, the methods of normal equidistant partition method, analytic hierarchy process (AHP) and multilevel fuzzy comprehensive evaluation were applied to determine an evaluation criterion, an index weight and a membership degree, respectively. The can be achieved through by using. The aim that the low mountain area plantation were divided into four low function grades and then respectively classified is to provide a basis for the development of forest management in Beijing. The main results of this study were as follows:
     (1) The plant species composition differences were not only very large between different dominant tree species, but also obvious at the same forest types, due to the affects of the human disturbance, site conditions and other factors. Three main types of diameter distribution could be obtained, such as approximates normal distribution, approximate anti-"J" distribution, and multimodal or unimodal distribution. Tree height distributions mainly have two types which were approximate normal distribution and unimodal or multimodal curve distribution. Compared with tree and shrub layers, the richness index of herbaceous layer was highest in all plots. For diversity index, the diversity variation of tree layer was greater than the other two layers, but the herbaceous layer had the highest diversity index. Tree layer had the highest variation about evenness index.
     (2) An index system was constructed by a target indicator, four guidelines indicators and14indicators. Indicators were divided into qualitative and quantitative indicators. Qualitative indicators were based on the determination of the classification, given the score, and normal isometric analysis was used to divide quantitative indicators into a quartern. At last, Beijing inefficient plantation was divided into four grades according to indicators and standards.
     (3) The total order of each index weight from inefficient planted forests evaluation was
     AP=(0.09560.04780.01130.02910.04120.02770.02160.01250.13930.27850.13360.03150.07180.0586).
     (4) Three-level low function plantations were the most and up to40.7%in all plots. Two-level low function plantations, four-level low function plantations and one-level low function plantations was orderly29.6,18.5and11.1%of total plots.
     (5) The results of the low function plantations'grade classification were as follows:
     One-level low function plantations:canopy density was from0.8to0.9, stand density was too dense, soil thickness was more than50cm, stand structure was poor, overstocked stand density led to more deadwood, dying, dead and drying trees. Understory species diversity was single, mild anthropogenic interference. Such forest health cut should be made for deadwood in order to avoid fire, be also cut the thick, dead or dying stand, thinning appropriate in order to ensure the reasonable density.
     Two-level low function plantations:average canopy density was from0.4to0.5, stand density was sparse, and soil thickness was from40to50cm. This planted forest sample belonged to matching species with the site, caused by the poor development and low productivity. Such forest should be taken banding or block cutting transformation method, replanting the species can adapt to the climate and soil conditions.
     Three-level low function plantations:average canopy density was0.4, stand density or sparse, soil thickness between20-40cm, stand structure was poor, disease and rot were more severe within the forest, and species diversity of understory was more singleness by moderate human disturbance. The transformation method to this inefficient planted forest was intermediate cutting, replanting and afforestation at understory. Meanwhile, the ban was managed to prohibit factitious negative interference.
     Four-level low function plantations:Canopy density was less than0.3. The sparse stand density and soil thickness were less than20cm. The worse of stand structure, disease and rot were most severe within the forest. Forest form was broken. Stand was seriously degraded. Species diversity of understory was most singleness by serious human disturbance. Banding intermediate cuttings, after-culture transform are appropriate for this inefficient planted forest. For the problem of its soil layer thinner, out-soil replanting method should be used and fostered, meanwhile, the ban should be also used to prohibit factitious negative interference.
引文
[1]包秀艳.试论保护生物多样性的意义及措施[J].赤峰学院学报(自然科学版),2007,23(5):33-34.
    [2]北京市林业勘察设计院.北京市“十五”森林资源二类调查报告[R].北京:北京市园林绿化局内部资料,2005.
    [3]陈代喜,莫泽莲.人工林地力衰退研究进展.广西林业科学.2000,29(3):115-121.\
    [4]楮建民,卢琦,崔向慧,等.人工林林下植被多样性研究进展.世界林业研究.2007,20(3):9-13.
    [5]陈进军,张忠友,杨春齐.试论低效林的涵义及类型划分.四川林业科技.2009,30(6):98-101.
    [6]陈廉杰,陈德忠,杨德法,等.乌江流域低效林分及其改造技术研究报告.贵州林业科技.1991,19(3):1-21.
    [7]陈淑荣.不同立地因子对楠木生长的影响[J].福建林学院学报,2010,30(2):159-160.
    [8]陈洪吉,阎军杰,朱春之.辽东山区水源涵养林立地类型划分及经营技术的探讨[J].辽东林业科技,2000,第3期:25-26.
    [9]杜国坚,张庆荣,洪利兴,等.杉木连栽林地土壤微生物区系及其生化特性和理化性质的研究.浙江林业科技,1995,15(5):14-20.
    [10]杜晓军,姜凤岐,范志平,等.如何看待中国的低产林问题[J].沈阳农业大学学报,2000,31(3):258-260.
    [11]段劫,马履一,贾黎明等.北京地区油松人工林树冠竞争因子的测算与分析[J].东北林业大学学报,2012,40(3):77-84.
    [12]邓坤枚,邵彬,李飞.长白山北坡云冷杉林胸径、树高结构及其生长规律的研究[J].资源科学,1999,21(1):14-18.
    [13]高均凯.森林健康基本理论与评价方法研究[D].北京;北京林业大学博士论文,2007.
    [14]甘敬.北京山区森林健康评价研究[D].北京:北京林业大学博士论文,2007.
    [15]郭小平,朱金兆,余新晓,等.论黄土高原地区低效刺槐林改造问题.水土保持研究.1998,5(4):77-81.
    [16]国家林业局长防办、四川省林业勘察设计研究院.LY/T1690-2007:低效林改造技术规程[S].北京:中国标准出版社,2007.
    [17]龚直文,亢新刚,顾丽等.天然林林分结构研究方法综述[J].浙江林学院学报.2009,26(3):434-443.
    [18]韩桂芹.森林病虫害防治[J].中小企业管理与科技2010.296.
    [19]何艺玲,傅懋毅.人工林林下植被研究现状.林业科学研究.2002,15(6):727-733.
    [20]侯庆春,黄旭,韩仕峰,等.黄土高原地区小老树成因及其改造途径的研究,Ⅱ土壤水分 和养分状况及其与小老树生长的关系.水土保持学报.1991,5(2):75-83.
    [21]胡喜生,周新年,兰樟仁.人工林桉树胸径分布模型的研究.福建林学院学报.2008,28(4):314-318.
    [22]胡文力.长白山过伐区云冷杉针阔叶混交林林分结构的研究[D].北京林业大学硕士论文,2003.
    [23]黄文彬.黑龙江省青山林场落叶松云杉人工复层林生长过程与林分密度研究[D].北京林业大学硕士论文,2007.
    [24]黄昌勇.土壤学[M].中国农业出版社.2000.第7页.
    [25]贾忠奎,马履一,徐程扬,等.北京市森林资源动态及可持续经营对策.干旱区资源与环境.2006,20(3):30-36.
    [26]金正道.我国人工林经营现状与集约经营对策.中国生态农业学报.2003,11(1):133-134.
    [27]江民锦.杉木人工林林下植被对立地的指示意义.江西林业科技.1998(增刊):39-41.
    [28]姬文元,邢韶华,郭宁等.川西米亚罗林区云冷杉林健康状况评价[J].林业科学,2009,45(3):13-18.
    [29]陆元昌.森林健康状态监测技术体系综述.世界林业研究.2003,16(1):20-25.
    [30]雷静品,肖文发.森林健康的概念及其研究与实践.世界林业研究.2008,21(4):20-24.
    [31]李志洪,叶渭贤.浅论广东省林分结构与森林健康[J].中南林业调查规划,2005,24(2):5-7.
    [32]李国雷,刘勇,李瑞生,等.油松人工林土壤质量的演变[J].林业科学,2008,44(9):76-81.
    [33]李铁民.太行山低质低效林判定标准.山西林业科技.2000,(3):1-8.
    [34]李海涛,黄渝.浅谈生物多样性的理论与实践[J].安徽农业科学,2007,35(32):10488-10489,10491.
    [35]李亚藏,梁彦兰,张东斌.浅谈森林生物多样性的影响因素及其保护[J].河南林业科技,2006,26(4):31-33
    [36]李静锐,张振明,罗凯.森林生态系统健康评价指标体系的建立[J].水土保持学报,2007,14(3):173-175,179.
    [37]李金良,郑小贤.北京地区水源涵养林健康评价指标体系的探讨[J].林业资源管理,2004,1:31-34.
    [38]李兰花.北京市低山区残次水土保持林评价[D].北京林业大学博士论文,2011.
    [39]李永宁,张宾兰,秦淑英等.郁闭度及其测定方法研究与应用[J].世界林业研究,2008,21(1):40-46.
    [40]李秀英.森林健康评价指标体系初步研究与应用[D].北京:中国林业科学研究院硕士论文,2006.
    [41]李伟伟,谷建才,陈瑜等.林分密度对华北落叶松人工林林下植被多样性影响的研究[J]. 中国农学通报,2009,25(06):84-88.
    [42]李毅,孙雪新,康向阳.甘肃胡杨林分结构的研究[J].干旱区资源与环境,1994,8(3):88-95.
    [43]刘世荣,蒋有绪.中国暖温带森林生物多样性研究[M].北京:中国科学技术出版社.1998,90-144.
    [44]刘新宪,朱道立.选择与判断—AHP决策[M].上海:上海科学普及出版社,1990.
    [45]刘建利,李凯荣,易亮等.黄土高原丘陵区人工刺槐林林分结构及林下植物多样性研究[J].水土保持通报,2008,28(3):49-52,70.
    [46]吕勇.马尾松林下植被及其生物量的研究[J].中南林业调查规划.1997,16(1):53-56.
    [47]吕勇,易红新.水土保持林的密度调控[J].林业资源管理.2001,(6):50-53.
    [48]罗晓华,何成元,刘兴良,等.国内低效林研究综述[J].四川林业科技,2004,25(2):31-36.
    [49]罗素梅,何东进,谢益林等.林分密度对尾赤桉人工林群落结构与生态效应的影响研究[J].热带亚热带植物学报,2010,18(4):357-363.
    [50]鲁绍伟,刘凤琴,余新晓.北京市八达岭林场森林生态系统健康性评价[J].水土保持学报,2006,20(3):79-82,105.
    [51]连米均.水土流失概念及水土流失强度分级标准[J].水土保持科技情报,2001,1:25,27,44.
    [52]廖彩霞,衣德萍,曾小山.林分结构研究[J].科技信息.2008,36:378.
    [53]孟宪宇.测树学[M].中国林业出版社.1995.
    [54]马履一,王希群,甘敬,等.北京市森林经营的基本原则刍议.北京林业大学学报.2006,28(4):159-163.
    [55]马立.北京山地森林健康综合评价体系的构建与应用.[D].北京:北京林业大学硕士论文,2005.
    [56]马庆祥,黄宝龙.人工林地力衰退研究综述.南京林业大学学报.1997.21(2):77-82.
    [57]马海娟,高广阔.确定指标权重的统计方法比较[J].统计与咨询,2011,30-31.
    [58]马克平.试论生物多样性的概念[J].生物多样性,1993,1(1):20-22.
    [59]倪少凯.7种确定评估指标权重方法的比较[J].华南预防医学,2002,28(6):54-55,62.
    [60]欧阳君祥,曾思齐.长江中上游低质低效次生栎林的分类与评价[J].林业资源管理,2002(3):69-74.
    [61]潘庭华.石林县低质低效林改造探讨.内蒙古林业调查设计.2008,31(2):65-67.
    [62]潘峰,付强,梁川.模糊综合评价在水环境质量综合评价中的应用[J].环境工程,2002,20(2):58-61.
    [63]庞雄飞.中国农业百科全书·昆虫卷[M].北京:农业出版社.1990.第323页.
    [64]綦山丁.乌江流域低效林分特点及改造途径探讨.长江中上游防护林建设论文集.中国林业出版社,1991,349-353.
    [65]沈国舫.21世纪_中国绿化的新纪元及首都绿化的新高地.绿化与生活.2001(1):4-6.
    [66]沈国舫.森林培育学[M].北京:中国林业出版社,2001
    [67]盛炜彤,杨承栋.关于杉木林下植被对改良土壤性质效用的研究[J].生态学报.1997,17(4):377-385.
    [68]孙时轩.造林学[M].北京:中国林业出版社,1992.
    [69]单长卷,徐新娟.黄土高原刺槐水分关系研究进展[J].安徽农业科学,2006,34(6):1075-1076.
    [70]森林资源规划设计调查主要技术规定.北京:国家林业局,2003.
    [71]双同科,田佳林,刘学等.一种基于改进AHP的指标权重确定方法[J].中国西部科技,2011,265(32):37-38.
    [72]唐罗中,虞木奎,严春风等.立地条件及抚育措施对麻栎人工林生长的影响[J].福建林学院学报,2008,28(2):130-135.
    [73]工彦辉,唐守正.德国等欧洲国家森林受害及监测[M]//江泽慧,张守攻,等主.编面向21世纪的林业.北京:中国农业科技出版社,1998.447-455.
    [74]王继兴.北京市森林资源现状及分析研究[J].林业资源管理,2005(增刊):1-10.
    [75]王慧,郭晋平.中国人工林现状及近自然经营.现代农业科学.2008.15(10):124-125.
    [76]王世忠,姜镇荣,郭洁,等.辽西地区水土保持林低价成因及早期诊断技术[J].科技简报.2000,(12):29-31.
    [77]王希群,马履一.北京地区油松、侧柏人工林叶面积指数变化规律[J].生态学杂志,2006,25(12):1487-1488.
    [78]王迪生.关于林分密度研究[J].林业资源管理,1994,1:67-71.
    [79]王全元,张书桐.刺槐人工林干梢原因调查初报[J].河北林业科技,1982,4:14-17.
    [80]王春丽,王维升,高鹏飞.应用灰色关联度法分析刺槐胸径生长与立地因子的关系[J].吉林农业,2011,254(4):79.
    [81]王忠春.林分级森林健康评价研究[D].北京林业大学硕士论文,2010.
    [82]吴克选,曾志光,杨先锋,等.低效林人工改造技术浅议[J].江西林业科技.2002,2:21-24.
    [83]吴海平,刘顺喜,张荣慧ALOS在土地资源调查与监测中的应用研究[J].测绘与空间地理信息.2009,32(5):87-91.
    [84]吴明作.栓皮栎研究进展[J].陕西林业科技,1998,4:65-69.
    [85]武智双,崔丽萍.低质低效有林地和灌木林地封育问题探讨[J].内蒙古林业.2008,10:20-21.
    [86]王殿蓓,暨淑仪,陈飞鹏.植物群落物种多样性研究综述[J],生态学杂志.2001,20(4)55-60.
    [87]肖文发,韩景军,马娟.美国国家森林健康监测与评价计划及对我国的启示.世界林业研究.2001,14(3):67-74.
    [88]肖杰,刘春芹.影响辽宁省刺槐林生长的生态因子[J].造林与经营,2010,6:22-23.
    [89]徐化成.发展人工林与生态学原理[J].河北林学院学报.1991,6(2):218-225.
    [90]徐秀琴,杨敏生.刺槐资源的利用现状[J].河北林业科技,2006,(增刊):54-57.
    [91]徐期瑚.现代林业评价指标体系研究初探[J].湖北林业科技,2009,2:43-47.
    [92]阳彬,王熙钱,欧阳勋志.森林健康的概念、特征及其影响因素探析[J].江西林业科技.2007,6:26-29.
    [93]杨承栋,焦如珍.杉木林下植被对5-15cm土壤性质的改良[J].林业科学研究.1995,8(4):514-519.
    [94]杨建伟,梁宗锁,韩蕊莲.不同水分状况对刺槐生长及水分利用特征的影响[J].林业科学,2004,40(5):93-98.
    [95]杨凯,高燕平,李国春等.红皮云杉人工林直径结构分布模型的研究[J].吉林林学院学报,1999,15(1):15-19.
    [96]杨艳峰,郑小贤,梁雨等.北京八达岭林场元宝枫人工林林分结构研究[J].林业资源管理,2008,2:57-60.
    [97]叶功富,徐俊森,隆学武,等.木麻黄低效林土壤成因的判别分析[J].防护林科技.1996,(国家“八五”科技攻关项目专辑):69-72.
    [98]岳永杰.北京山区防护林优势树种群落结构研究[D].北京林业大学博士论文,2008.
    [99]袁力,姜琴.隶属函数确定方法探讨[J].郧阳师范高等专科学校学报,2009,29(6):44-46.
    [100]赵良平,叶建仁,曹国江,等.森林健康理论与病虫害可持续控制——对美国林业考察的思考[J].南京林业大学学报:自然科学版,2002,26(1):5-9.
    [101]姚爱静,朱清科,张玉清等.林分结构研究现状与展望[J].林业调查规划.2005,30(2):70-76.
    [102]赵其国.发展与创新现代科学[J]土壤学报.2003,40(3):321-327.
    [103]赵杰.浅析区域循环经济发展水平综合评价指标权重确定的方法[J].商场现代化,2007,230-231.
    [104]张三.我国工业人工林发展现状与对策-解决我国木材供需矛盾途径研究之一[J].中国农村经济.2001,42-48.
    [105]张顺昌,李昆.人工林地力衰退与维护研究综述[J].世界林业研究.2005,18(1):17-21.
    [106]张露,高璜.人工林地力衰退研究现状与进展[J].江西林业科技.2000,6:28-33.
    [107]张其水,俞新妥.杉木连栽地营造不同混交林后土壤生化特性及土壤肥力的研究[J].福建林学院学报.1990,10(3):197-205.
    [108]张健,等.三江流域低效林类型划分及制定标准研究.长江中上游(川江)防护林研究[M].科学出版社,1993.
    [109]张革,宋修田,徐斌.辽东山区柞树成-过熟林萌芽更新问题的探讨[J].辽宁林业科技.1999,6:24-25.
    [110]张敏杰,石小宁,宋华军,等.低效成过熟林的改造与更新研究一以辽宁柳河林场为例[J].河北农业科学.2008,12(12):12-13,19.
    [111]张铁平,卢立,熊嘉武.黔东南州低产低效林现状、成因及改造模式[J].林业调查规划.2010,35(4):83-86.
    [112]张涛,全小川,惠谦,等.低效-质-林改造的方法与效果分析[J].林业勘察设计.2004,131(3):30-31.
    [113]曾思齐,欧阳君祥.马尾松低质低效次生林分类技术研究[J].中南林学院学报,2002,22(2):12-16,57.
    [114]周立江.低效林评判与改造途径的探讨[J].四川林业科技.2004,25(1):16-21.
    [115]庄建荣,北京地区森林健康评价研究[D].北京林业大学硕士论文,2008.
    [116]臧润国,杨彦承.海南岛霸王岭热带山地雨林群落结构及树种多样性特征的研究[J].植物生态学报,2001,25(3):270-275.
    [117]周浙昆.中国栎属的起源演化及其扩散[J].云南植物研究,1992,14(3):227-236.
    [118]中华人民共和国水利部.SL190-2007:中华人民共和国行业标准《土壤侵蚀分类分级标准》[S].北京:中国水利水电出版社,2008.
    [119]Ayres MP, Lombardero MJ. Assessing the Consequences of global change for Forest Disturbance from Herbivores and Pathogens. Sci Total Environ.2000,262:263-286.
    [120]Bussotti F, Gellini R, Grossoni P, et al. Mediterranean Forest Tree Decline in Italy [M]. Rome:Consiglio Nazionale delle Ricerche (CNR),1992.
    [121]Brugam RB.Pollen indicators of land-use change in southern Connecticu[J]. Quat Res 1978,9:349-362.
    [122]Caccia F D, Ballare C L. Effects of tree over, understory vegetation, and litter on Regeneration of Douglas-fir in Southwestern Argentina[J]. Canada Journal of Forest Research.1998,28(5):683-692.
    [123]Dale VH, Joyce LA, McNulty S, et al. Climate change and Forest Disturbance[J]. BioScience.2001,57:723-734.
    [124]Evans J. Long-term productivity of Forest plantation status in 1990.IUFRO[J],19th world congress proceedings,1990,1(1):165.
    [125]Eric D. Vance. Agricultural site productivity:principles derived from long-term experiments and their implications for intensively managed forests[J]. Forest Ecology and Management.2000,138(1-3):369-396.
    [126]Hartley M J. Rationale and Methods for Conserving Biodiversity in Plantation Forests[J]. Forest Ecology and Management.2002,155:81-95.
    [127]Hekhuis H J,Wieman E A. Costs, revenues and function fulfillment of nature conservation and recreation values of mixed, uneven-aged forests in The Nether-lands. In: Olsthoorn A FM, Bartelink HH, Gardiner J J,et al. (eds)[R]. Management of mixed-species forest:silviculture and economics.Dlo Institute for Forestry and Nature Research(IBN_DLO),Wageningen,1999,23(1):331-345.
    [128]Janice L. Fuller, David R. Foster, Jason S. McLachlan, et al.Impact of Human Activity on Regional Forest Composition and Dynamics in Central New England[J], Ecosystems.1998,1:76-95.
    [129]Jesse A Logan, Jacques R, James A Powell. Assessing the Impacts of Global Warming on Forest Pest Dynamics[J]. Front Ecol Environ.2003,1(3):130-137.
    [130]J Szwagrzyk, J Szewczyk, J Bodziarczyk. Dynamics of seedling banks in beech forest: result of a 10-year study on germination, growth and survival [J]. Forest Ecology and Management,2001,141(3):237-250.
    [131]Keeves A. Some evidence of loss of Productivity with successive rotations of Prinus radiate in South east of Australia [J]. Australian Forestry,1996,(30):51-63.
    [132]Martin Simard, Nicolas Lecomte, Yves Bergerom, et al. Forest Productivity Decline Caused by Successional Paludification of Boreal[J].Soil. Ecological Application,2007, 17(6):1619-1637.
    [133]M D Busse, P H Cochran, J W Barrett. Changes in Ponderosa Pine Site Productivity following Removal of Understory Vegetation [J]. Soil Science Society of American Journal.1996,60:1614-1621.
    [134]Marie-Charlotte Nilsson, David A Wardle. Understory Vegetation as a Forest Driver: Evidence from the Northern Swedish boreal Forest[J]. Frontiers in Ecology and the Environment.2005,3(8):421-428.
    [135]Maria Teresa Zugliani Toniato, Ary T. de Oliveira-Filho. Variations in tree community composition and structure in a fragment of tropical semi deciduous forest in Southeastern Brail related to different human disturbance histories [J].Forest Ecology and Management.2004,(198):319-339.
    [136]Magnusson, M,Fransson, J.E.S, Eriksson, L.E.B, et al. Estimation of forest stem volume using ALOS PALSAR satellite images[J]. Geoscience and Remote Sensing Symposium, 2007,23-28:4343-4346.
    [137]Oszlanyi J. Forest health and environmental pollution in Slovikia[J]. Environment Pollution,1997,98(3):389-392.
    [138]Russell EWB, David RB, Anderson RS, et al. Recent centuries of vegetational change in the glaciated north-eastern United State [J]. J Ecol,1993.81:647-664.
    [139]Rahman MM, Sumantyo JTS. Mapping tropical forest cover and deforestation using synthetic aperture radar (SAR) images[J]. Appl Geomat,2010,2:113-121.
    [140]Smith WH. The health of North American Forests:Stress and risk assessment [J]. Journal of Forestry,1990,88(1):32-35.
    [141]Shimada, M,Tadono, T, Rosenqvist, A. Advanced land observing Satellite(ALOS) and Monitoring Global Environment Change[J]. Proceedings of the IEEE.2010,98(5):780-799.
    [142]Witter J A, I F Ragenovich. Regeneration of Fraser fir at Mt. Mitchell, North Carolina, after depredations by the balsam woolly adelgid[J]. For Sci.1986,32:585-594.
    [143]Yuta T suchida, Sigeru Omatu, Michifumi Yoshioka. Land cover estimation with ALOS Satellite image using a neural-net work[J]. Artificial Life and Robotics,2010,15(1):37-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700