用户名: 密码: 验证码:
特殊价态离子掺杂荧光体的发光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特殊价态离子掺杂荧光体具有一些突出优点和特殊的光学性能,使得这些材料有望被用来帮助人类解决所面对的一些问题,如:全球能源危机、环境污染、战争与和平、信息与通讯、健康与医疗等。因此,人们对特殊价态离子掺杂荧光体材料的研究越来越感兴趣。
     本文首先系统地介绍了特殊价态离子掺杂荧光体发展历史、优点、特殊的发光性能、应用领域以及相关研究进展。然后介绍我们研究和开发的一些特殊价态离子掺杂荧光体,并通过现代测试方法对材料的发光性能进行表征和分析,探讨了这些发光材料在不同领域中的可能应用,最后对其特性进行了总结和归纳。研究内容和结果主要包括以下几个方面:
     1、在200~360℃的温度范围和无水无氧条件下,利用融盐(AlCl_3-NaCl)作为反应媒介,制备了一种超宽带近-中红外发光的Bi_5(AlCl_4)_3晶体。探讨了Bi_5(AlCl_4)_3晶体生长的最佳工艺条件。我们首次发现了Bi_5(AlCl_4)_3晶体的发光范围覆盖1000~3000nm,半高宽为~700nm,发光中心位于~1700nm的近-中红外发光;Bi_5(AlCl_4)_3晶体发光是由于Bi_5~(3+)团簇离子引起的。分析了Bi_5(AlCl_4)_3晶体发光的影响因素,并与铋掺杂玻璃材料进行发光性能比较。利用能级图对Bi_5(AlCl_4)_3晶体中Bi_5~(3+)团簇离子的发光机理进行了分析和探讨。这种含有Bi_5~(3+)团簇离子的Bi_5(AlCl_4)_3晶体在环境、激光、通讯、国防和医疗等领域具有广泛的应用前景。
     2、Bi_5(AlCl_4)_3晶体制备条件较苛刻,需要在高温下反应,并且制备的Bi_5(AlCl_4)_3晶体很难从融盐媒介中分离出来。我们研究了合成条件比较温和和晶体可以从反应媒介分离出来的Bi_5(GaCl_4)_3晶体。在室温和无水无氧条件下,利用有机溶剂(如:苯等)作为反应媒介制备了具有超宽带近-中红外发光的Bi_5(GaCl_4)_3晶体。探讨了Bi_5(GaCl_4)_3晶体生长的最佳工艺条件。Bi_5(GaCl_4)_3晶体发光范围在1000~3000nm,发光中心位于~1835nm,半高宽为~800nm;通过时间分辨光谱证明了Bi_5~(3+)团簇离子是Bi_5(GaCl_4)_3晶体中单一的发光中心。分析了影响Bi_5(GaCl_4)_3晶体发光的因素,通过控制不同的实验反应条件和原料对Bi_5(GaCl_4)_3晶体中Bi_5~(3+)团簇离子的发光特性进行了探讨。这种含有Bi_5~(3+)团簇离子的Bi_5(GaCl_4)_3晶体在环境、激光、通讯、国防和医疗等领域具有广泛的应用前景。
     3、在空气中和温度为650~750℃的实验条件下,利用融盐(KCl-NaCl)作为反应媒介制备了具有超宽带近红外发光的Mn离子掺杂的BaSO_4晶体。探讨了Mn离子掺杂的BaSO_4晶体生长的最佳工艺条件。Mn离子掺杂的BaSO_4晶体同时含有Mn~(5+)和Mn~(6+)离子。Mn~(5+)离子发光范围在1100~1400nm,发光中心位于~1183nm,半高宽为~50nm;Mn~(6+)离子发光范围在850~1500nm,发光中心位于~1060nm,半高宽为~150nm。分析了影响Mn离子掺杂的BaSO_4晶体发光的因素,时间分辨光谱证实了Mn离子掺杂的BaSO_4晶体中的Mn~(5+)和Mn~(6+)离子之间存在能量传递。通过温度和原料控制可以制备Mn~(6+)离子掺杂的BaSO_4晶体以及不同价态锰离子(如:Mn~(5+)和Mn~(6+)等)共同掺杂的BaSO_4晶体。Mn离子掺杂的BaSO_4晶体在激光和国防等领域中具有一定的应用前景。
     4、在空气中采用高温固相法合成了BaSO_4:Bi~(2+)红色荧光粉。探讨了BaSO_4:Bi~(2+)红色荧光粉合成的最佳工艺条件。BaSO_4:Bi~(2+)红色荧光粉可以被~452nm蓝光激发产生发光中心位于~627nm的发射光,发射光谱覆盖范围为550~720nm,半高宽为~50nm。分析了影响BaSO_4:Bi~(2+)红色荧光粉发光的因素,证明了荧光粉中只有一个Bi~(2+)离子发光中心。利用环氧树脂+蓝光455nm发光二极管(LED)芯片+BaSO_4:Bi~(2+)红色荧光粉+Y_3Al_5O_(12):Ce~(3+0(YAG:Ce_(3+))黄色荧光粉制备了白光LED,进行了白光LED发光演示和相应的光谱测试,白光LED的CIE色坐标为(x=0.3086,y=0.2902)、显色指数(Ra)为78和色温为7256K。实验结果表明,BaSO_4:Bi~(2+)红色荧光粉在蓝光LED芯片激发的白光LED中具有一定的应用前景。
     5、采用高温固相法在空气中合成了Sr_2MgAl_(22)O_(36):Mn~(4+)红色荧光粉。探讨了Sr_2MgAl_(22)O_(36):Mn_(4+)红色荧光粉合成的最佳工艺条件。Sr_2MgAl_(22)O_(36):Mn~(4+)红色荧光粉可以被近紫外~397nm激发产生发光中心位于~658nm的发射光谱,发射光谱覆盖范围为620~750nm,半高宽为~50nm。分析了影响Sr_2MgAl_(22)O_(36):Mn~(4+)红色荧光粉发光的因素,证明了荧光粉中只有一个Mn~(4+)离子发光中心。利用环氧树脂+近紫外397nm LED芯片+Sr_2MgAl_(22)O_(36):Mn~(4+)红色荧光粉+(Sr, Ba)_2SiO_4:Eu~(2+)绿色荧光粉制备了白光LED,进行了白光LED发光演示和相应的光谱测试,白光LED的CIE色坐标为(x=0.3314,y=0.3211)、显色指数(Ra)为62.2和色温为5545K。实验结果表明,Sr_2MgAl_(22)O_(36):Mn~(4+)红色荧光粉在近紫外LED芯片激发的白光LED中具有一定的应用前景。
     6、采用高温固相法在空气中合成了SrMgAl_x4+xO_(17±δ):yMn~(4+)复合红色荧光粉。探讨了(SrMgAlxO_(17)±δ:yMn~(4+)复合红色荧光粉合成的最佳条件。SrMgAlxO_(17)±δ:yMn~(4+)复合红色荧光粉可以被近紫外~397nm激发产生发光中心位于~657nm的发射光谱,发射光谱覆盖范围为620~750nm,半高宽为~50nm;SrMgAl_x4+xO_(17±δ):yMn~(4+)复合红色荧光粉中包含有含有SrMgAl10O17和Al_2O_3两种纯相,其中Al_2O_3纯相随Al含量增加越来越明显;发射光在Mn~(4+)离子掺杂的SrMgAl10O17和Al_2O_3两相之间可以产生多次吸收和散射,从而使得SrMgAl_x4+xO_(17±δ):yMn~(4+)复合红色荧光粉荧光强度增强;通过Al含量的变化可以制备不同荧光强度的红色荧光粉;荧光寿命和量子效率都随着Al含量的增加而增大;证明了荧光粉中只有一个Mn~(4+)离子发光中心;时间分辨光谱证实了SrMgAl_xO_(17)±δ:yMn~(4+)复合红色荧光粉中两个不同相之间存在能量传递现象。最后利用环氧树脂+近紫外397nmLED芯片+SrMgAl_xO_(17)±δ:yMn~(4+)复合红色荧光粉+(Sr, Ba)2SiO4:Eu2+绿色荧光粉制备了白光LED,进行发光演示和相应的光谱测试,白光LED的CIE色坐标为(x=0.3304,y=0.3201)、显色指数(Ra)为65.2和色温为5445K。实验结果表明,SrMgAl_xO_(17)±δ:yMn~(4+)复合红色荧光粉在近紫外LED芯片激发的白光LED中具有应用前景。
     7、由于铋元素在掺杂材料中可以存在多种价态(如:Bi~(3+)、Bi~(2+)、Bi_2~(2+)、Bi~+、Bi0、Bi~(5+)和Bi3~(+5)等),有些价态在基质中的稳定性差,人们对于铋掺杂发光材料的发光机理(特别是近红外发光机理)还存在一些争议。本文主要是针对铋掺杂的氧化物玻璃中近-中红外发光机理进行分析和讨论。我们通过不同实验方法制备了Bi@SiO2、MF2:Bi(M=Ba和Sr)、MgF2:V和ZnS:Co材料,通过对这些材料的发光性能测试,发现这些材料在近-中红外发光区域具有和铋掺杂的氧化物玻璃(Bi_2O_3-GeO_2)相似的发光峰。经过分析,确认了铋掺杂的氧化物玻璃中中红外发光不是由铋离子引起的,推测其是由于空气在激光能量的激发下产生的热辐射造成的。这些研究结果对于铋掺杂发光材料的近-中红外发光机理研究有一定的指导意义。
     8、在空气中采用高温固相法合成了RF_2:Bi(R=Ca和Sr)荧光粉。探讨了RF_2:Bi(R=Ca和Sr)荧光粉合成的最佳工艺条件。通过对RF_2:Bi(R=Ca和Sr)荧光粉的性能测试发现:在~260nm紫外光激发下,CaF2:Bi荧光粉在380~800nm范围内发射峰值位于~550nm的黄色光,SrF2:Bi荧光粉在400~810nm范围内发射峰值位于~600nm的橙色光。RF_2:Bi(R=Ca和Sr)荧光粉的发光可以确认为Bi~(2+)离子发光,其激发与发射峰分别归属于Bi~(2+)离子的~2P2221/2S1/2和P3/2(1) P1/2电子跃迁。这些研究结果对于铋掺杂发光材料的发光机理研究有一定的指导意义。
     最后,对本文的重点进行了讨论和总结,并对特殊价态离子掺杂的荧光体发光性能和应用前景进行了展望。
Due to special performance of phosphors doped with special valence state ions, thesephosphors are promising to be used to resolve some problems in the human society, such asglobal energy crisis, environmental pollution, war and peace, information and communication,health and medical treatment etc. Therefore, researchers are interested in the study onphosphors doped with special valence state ions in recent years.
     In this dissertation, we introduced the research developments on phosphors doped withspecial valence state ions, their luminescence properties, special performance and applicationsat first. Then we introduced the preparation of phosphors doped with special valence stateions, studied their luminescence properties via modern analysis techniques and discussed theirapplications in different fields. The research results in the dissertation can be summarized asfollow:
     (1) Bi_5(AlCl_4)_3crystal was prepared in the200~360℃region under anhydrousanaerobic conditions using melting salt (AlCl_3-NaCl) as reaction media. Optimum synthesisconditions of Bi_5(AlCl_4)_3crystal were investigated. Broadband near-to-mid infrared(NIR-MIR) photoluminescence centering at~1700nm with full width at half maximum(FWHM)~700nm at room temperature, in the range of1000~3000nm was observed fromBi_5(AlCl_4)_3crystal due to a single type of Bi_5~(3+)luminescent center in Bi_5(AlCl_4)_3crystal. Wehave investigated the influencing factor of luminescence of Bi_5(AlCl_4)_3crystal, compared theluminescence properties with these of the glasses doped with Bi ion, and discussed theluminous mechanism of Bi_5~(3+)in Bi_5(AlCl_4)_3crystal based on the configurational coordinationdiagram. Bi_5(AlCl_4)_3crystal may have application in environment, laser, communication,national defense and medical treatment fields.
     (2) Due to rigorous experiment conditions for preparation of Bi_5(AlCl_4)_3crystal such ashigh temperature etc, Bi_5(GaCl_4)_3crystal was prepared at room temperature under anhydrousanaerobic conditions using organic solvent (such as benzene etc) as reaction media. Optimumsynthesis conditions of Bi_5(GaCl_4)_3crystal were investigated. Superbroad NIR-MIRphotoluminescence centering at~1835nm with full width at half maximum (FWHM)~800nm at room temperature, in the range of1000to3000nm was observed from Bi_5(GaCl_4)_3crystal due to a single type of Bi_5~(3+)luminescence center in Bi_5(GaCl_4)_3crystal. We haveinvestigated the influencing factors of luminescence of Bi_5(GaCl_4)_3crystal and discussed theluminous mechanism of Bi_5~(3+)in Bi_5(GaCl_4)_3crystal. Bi_5(GaCl_4)_3crystal may have applicationin environment, laser, communication, national defense and medical treatment fields.
     (3) Mn ions-doped BaSO_4crystal was prepared in the650~750℃region in air usingmelting salt (KCl-NaCl) as reaction media. Broadband near infrared (NIR) luminescence wasobserved. Optimum synthesis conditions of Mn ions-doped BaSO_4crystal were investigated.The concomitant Mn~(5+)and Mn~(6+)ions in the Mn ions-doped BaSO_4crystal were confirmed.NIR luminescence was observed from Mn~(5+)ion in Mn ions-doped BaSO_4crystal centering at~1183nm with full width at half maximum (FWHM)~50nm at room temperature, spanningthe spectral range of1100to1400nm. NIR luminescence was observed from Mn~(6+)ion in Mnions-doped BaSO_4crystal centering at~1060nm with FWHM of~150nm at roomtemperature, in the range of850to1500nm. We have investigated the influencing factor ofluminescence of Mn ions-doped BaSO_4crystal and observed the energy transfer betweenMn~(5+)and Mn~(6+)ions in Mn ions-doped BaSO_4crystal according to time resolvedluminescence spectra. In addition, Mn~(6+)ion-doped BaSO_4crystal was also prepared. Mnions-doped BaSO_4crystal may have application in laser and national defense fields.
     (4) BaSO_4:Bi~(2+)red emission phosphor was synthesized in air via solid state reactionmethod. Optimum synthesis conditions of BaSO_4:Bi~(2+)phosphors were investigated. Theemission band peaking at~627nm in the range of550to720nm with FWHM of~50nm ofBaSO_4:Bi~(2+)excited at452nm was observed at room temperature. We have investigated theinfluencing factor of luminescence of BaSO_4:Bi~(2+)phosphor and confirmed that Bi~(2+)ion isonly luminescent center. White light-emitting diode (W-LED) was fabricated by using epoxyresin, a blend composition BaSO_4:Bi~(2+)and Y3Al5O12:Ce3+(YAG:Ce3+) phosphors pumpedwith a455nm blue LED chip. The white LED shows chromaticity coordinates (x=0.3086,y=0.2902), Ra value78and CCT (7256K). BaSO_4:Bi~(2+)red emission phosphor may haveapplication in W-LED fields.
     (5) Sr_2MgAl_(22)O_(36):Mn~(4+)red emission phosphor was synthesized in air via solid statereaction method. Optimum synthesis conditions of Sr42MgAl22O36:Mn+phosphors wereinvestigated. The emission band peaking at~658nm in the range of620to750nm withFWHM is~50nm of Sr4+2MgAl22O36:Mnexcited at397nm was observed at roomtemperature. We have investigated the influencing factor of luminescence ofSr_2MgAl_(22)O_(36):Mn~(4+)phosphor and confirmed that Mn~(4+)ion is only luminescent center. Whitelight-emitting diode (W-LED) was fabricated by using epoxy resin, a blend compositionSr_2MgAl_(22)O_(36):Mn~(4+)and (Sr, Ba)22SiO4:Eu+phosphors pumped with a397nm near ultraviolet(UV) LED chip. The white LED shows chromaticity coordinates (x=0.3314,y=0.3211), Ravalue62.2and CCT (5545K). Sr_2MgAl_(22)O_(36):Mn~(4+)red emission phosphor may have application in W-LED fields.
     (6) SrMgAl_4+xO_(17)±δ: yMnred emission composite phosphor was synthesized in air viasolid state reaction method. Optimum synthesis conditions of SrMgAl_x4+xO_(17±δ):yMn~(4+)compositephosphors were investigated. The emission band peaking at~657nm in the range of620to750nm with FWHM of~50nm of SrMgAl_xO_(17)±δ: yMn~(4+)excited at397nm was observed atroom temperature. Two concomitant crystalline phases, i.e., SrMaAl10O17and Al_2O_3phases inSrMgAl4xO17±δ:yMn+composite phosphors were observed. Energy transfer was observedbetween Mn~(4+)-doped in SrMgAl4+10O17and Mn-doped in Al_2O_3phases by using time resolvedluminescence spectra. The emission intensity of SrMgAl_xO_(17)±δ:yMn~(4+)composite phosphorchanged with changing Al_2O_3content, and confirmed that Mn~(4+)ion is only luminescent center.Fluorescent lifetime and quantum efficiency increased with increasing Al_2O_3content.W-LEDs were demonstrated by using epoxy resin, a phosphors blend compositionSrMgAl_xO_(17)±δ:1.2Mn~(4+)and (Sr, Ba)2SiO_4:Eu2+phosphors pumped with a397nm nearUV-chip. The white LED shows chromaticity coordinates (x=0.3304,y=0.3201), Ra value65.2and CCT (5445K). SrMgAl_xO_(17)±δ: yMn~(4+)composite phosphor may have application inW-LED fields.
     (7) Optically active emission centers in Bi-doped luminescent materials, especially forNIR emission, remains disputed due to the large number of possible valence states such asBi3+, Bi~(2+), Bi~(2+)02, Bi~+, Bi, Bi~(5+)and Bi_5~(3+)etc and weak stability of Bi valence states in varioushosts. We disscussed the optically active NIR emission centers in Bi-doped oxide glasses. Weprepared Bi@SiO_2, MF_2:Bi (M=Ba and Sr), MgF_2:V and ZnS:Co via various methods, andfound some emission band in the mid luminescence region with Bi-doped Bi2O3-GeO2glassreported by jiang et al. We concluded that the emission is not result from Bi active centers inthe oxide matrix but due to the selective atmospheric absorption of thermal radiation inducedby the laser irradiation. The research result is helpful for clarifying the optically active NIRemission center in Bi-doped luminescent materials..
     (8) RF_2:Bi(R=Ca and Sr)phosphor was synthesized in air via solid state reactionmethod. Optimum synthesis conditions of RF_2:B(iR=Ca and Sr)phosphor were investigated.The emission band peaking at~550nm in the range of380to800nm of CaF2:Bi phosphorexcited at~260nm was observed, and the emission band peaking at~600nm in the range of400to810nm of SrF2:Bi phosphor excited at~260nm was observed. Optically activeemission centers in RF_2:Bi(R=Ca and Sr)phosphor is Bi~(2+)and the excitation and emissionbands of RF_2:B(iR=Ca and Sr)phosphor can be assigned to2P221/2S1/2andP3/2(1)2P1/2 transition of Bi~(2+)ions, respectively. The research results are of reference value for disigningin Bi-doped luminescent materials.
     Finally, we provided a discussion and summary of the main points of the dissertation,and described the application prospect of phosphors doped with special valence state ions invarious fields.
引文
[1]张煦.21世纪通信技术发展趋势[J].光纤通信,2001,1:10-13
    [2]杨祥林等.光放大器及其应用[M].北京:电子工业出版社,2000:55-76
    [3]杨英杰.光纤通信技术[M].广州:华南理工大学出版社,2004:10-18
    [4]阮健. Bi掺杂玻璃的宽带近红外荧光机理和光放大[D].上海:上海光机所博士学位论文,2009
    [5] Kao K. C., Hockman G. A., Dielectric-fibre syrface waveguide for optical fequenciess [J].Proc.1. E.E.,1966,113(7):1151-1158
    [6] Snitze E., woodcock R., Yb3+-Er3+glass laser [J]. Appl. Phys. Lett.,1965,6(3):45-46
    [7]张煦.光通信技术快速发展的历程和趋向[J].光纤通信,2000,3:12-15
    [8]张煦. IP通信网的发展和应用[J].光通信技术,2001,25(2):79-83
    [9] Yamada M., Shimizu M., Ohishi Y., et al. Flattening the gain spectrum of an erbium-dopedfiber amplifier by connecting an Er3+-doped SiO2-Al2O3fiber and an Er3+-dopedmulticomponent fiber [J]. Electron. Lett.,1994,30:1762-1764
    [10] Yamada M., Ono H., Ohishi Y., Gain-flattened broadband Er3+-doped silica fiberamplifier with low noise characteristics [J]. Electron. Lett.,1998,34:1747-1748
    [11] Mori A., Kobayashi K., Yamada M., et al. Low noise broadband tellurite-basedEr3+-doped fiber amplifiers [J]. Electron. Lett.,1998,34:887-888
    [12] Ono H., Yamada M., Kanamori T., et al.1.58-μm band gain-flattened erbium-doped fiberamplifiers for WDM transmission systems [J]. J. Lightwave Technol.,1999,17:490-496
    [13] Tanabe S., Sugimoto N., Ito S., et al. Broad-band1.5μm emission of Er3+ions inbismuth-based oxide glasses for potential WDM amplifier [J]. J. Lumin.,2000,87-89:670-672
    [14] Shimizu M., Kanamori T., Temmyo J., et al.28.3dB gain1.3μm-band Pr-doped fluoridefiber amplifier module pumped by1.017μm InGaAs-LD’s [J]. IEEE Photonic. Technol.Lett.,1993,5:654-657
    [15] Yamada M., Shimizu M., Kanamori T., et al. Low-noise and high-power Pr3+-dopedfluoride fiber amplifier [J]. IEEE Photonic. Technol. Lett.,1995,7:869-871
    [16] Nishida Y., Yamada M., Kanamori T., et al. Development of an efficient praseodymium-doped fiber amplifier [J]. IEEE J. Quantum. Elect.,1998,34:1332-1339
    [17] Sakamoto T., Shimizu M., Yamada M., et al.35-dB gain Tm-doped ZBLYAN fiberamplifier operating at1.65μm [J]. IEEE Photonic. Technol. Lett.,1996,8:349-351
    [18] Aozasa S., Masuda H., Ono H., et al.1480-1510nm band Tm-doped fiber amplifier withhigh power conversion efficiency of42%[J]. Electron. Lett.,2001,37:1157-1158
    [19] Hayashi H., Tanabe S., Hanada T.,1.4μm band emission properties of Tm3+ions intransparent glass ceramics containing PbF2nanocrystals for S-band amplifier [J]. J. Appl.Phys.,2001,89:1041-1045
    [20] Sakamoto T., Shimizu M., Kanamori T., et al.1.4-μm-band gain characteristics of aTm-Ho-doped ZBYAN fiber amplifier pumped in the0.8-μm band [J]. IEEE Photonic.Technol. Lett.,1995,7:983-985
    [21] Driesen K., Tikhomirov V. K., G rller-Walrand C., et al. Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission [J]. Appl. Phys. Lett.,2006,88:073111
    [22]任进军,铋掺杂玻璃的超宽带荧光与光放大性能的研究[D].上海:上海光机所博士学位论文,2005
    [23]汪国年,稀土掺杂TeO2基氧卤玻璃光谱和激光性质的研究[D].上海:上海光机所博士学位论文,2006
    [24]关淼嘉,铋掺杂玻璃宽带近红外发光性能研究[D].浙江:浙江大学硕士学位论文,20011
    [25]徐兵,铋掺杂硅酸盐玻璃的制备与光谱特性的研究[D].武汉:华中科技大学硕士学位论文,2010
    [26]彭明营,超宽带光纤放大器用新型铋掺杂激光玻璃的研究[D].上海:上海光机所博士学位论文,2003
    [27]王玺,铋掺杂硼酸盐和硅酸盐玻璃的红外宽带发光和光放大[D].浙江:浙江大学硕士学位论文,2008
    [28] Mears R. J., Reekie L., Poole S. B., et al. Low-threshold, tunable cw and Q-switchedfibre laser operating at1.55μm [J]. Electron. Lett.,1986,22:159-160
    [29] Poole S. B., Paye D. N., Mears R. J., et al. Fabrication and characterization of low-lossoptical fibers containing rare-earth ions [J]. J. Lightwave Technol.,1986, LT-4:870-876
    [30]张劲松,陶智勇,韵湘.光波分复用技术[M].北京:北京邮电大学出版社,2001,p.2,157,163
    [31]杜戈果,忻向军,余重秀等.拉曼光纤放大器原理及其应用[J].深圳大学学报,理工版.,2004,21:86-90
    [32] Tanabe S., Feng X., Temperature variation of near-infrared emission from Cr4+inaluminate glass for broadband telecommunication [J]. Appl. Phys. Lett.,2000,77:818-820
    [33] Chen X., Wang L., et al. Diode-pumped microchip Nd3+, Cr4+:YAG laser and itsfrequency-doubling operation [J]. Proceedings of SPIE.,2002,4630:155-162
    [34] Ishii T., Fujimura K., Ogasawara K., et al. Theoretical calculation for the multipletstructures of tetrahedrally coordinated Cr4+in silicate crystals [J]. J. Phys.: Condensedmatter.,2001,13:5757-5784
    [35] Lo C. Y., Huang K. Y., Chen J. C., et al. Double-clad Cr4+:YAG crystal fiber amplifier [J].Opt. Lett.,2005,30:129-131
    [36] Wu X., Yuan H., Yen W. M., et al. Compositional dependence of the luminescence fromCr4+-doped calcium aluminate glass [J]. J. Lumin.,1995,66-67:285-289
    [37] Suzuki T., Ohishi Y., Broadband1400nm emission from Ni2+in zinc-alumino-silicateglass [J]. Appl. Phys. Lett.,2004,84(19):3804-3806
    [38] Suzuki T., Murugan G.., Ohishi Y., Spectroscopic properties of a novel near-infraredtunable laser material Ni2+:MgGa2O4[J]. J. Lumin.,2005,113:265-270
    [39] Suzuki T., Horibuchi K., Ohishi Y., Structural and optical properties of ZnO–Al2O3–SiO2system glass–ceramics containing Ni2+-doped nanocrystals [J]. J. Non-Cryst. Solids.,2005,351:2304–2309
    [40] Suzuki T., Murugan G., Ohishi Y., Optical properties of transparent Li2O–Ga2O3–SiO2glass-ceramics embedding Ni-doped nanocrystals [J]. Appl. Phys. Lett.,2005,86:131903-1-131903-3
    [41] Dianov E. M., Dvoyrin V. V., Mashinsky V. M., et al. CW bismuth fibre laser [J].Quantum Electron.,2005,35(12):1083-1084
    [42] Razdobreev I., Bigot L., Pureur V., et al. Efficient all-fiber bismuth-doped laser [J].Appl.phys. Lett,2007,90(3):031103
    [43] Dvoyrin V. V., Mashinsky V. M., Dianov. E. M., Yb-Bi Pulsed fiber lasers [J]. Opt Lett.,2007,32(5):451-45
    [44] Peng M. Y., Meng X. G., Qiu. J. R., et al. GeO2:Bi, M (M=Ga, B) glasses withsuper-wide infrared luminescence [J]. Chem. Phy. Lett.,2005,403.(4-6):410-414
    [45] Murata K., Fujimoto Y., Kanabe T., et al. Bi-doped SiO2as a new laser material for anintense laser [J]. Fusion Eng. Des.,1999,44:437-439
    [46] Fujimoto Y., Nakatsuka M., Infrared luminescence from bismuth-doped silica glass [J].Jpn. J. Appl. Phys.,2001,40: L279-281
    [47] Fujimoto Y., Nakatsuka M., Optical amplification in bismuth-doped silica glass [J]. Appl.Phys. Lett.,2003,82(19):3325-3326
    [48] Peng M., Qiu J., Chen D., et al. Bismuth-and aluminum-codoped germanium oxideglasses far super-broadband optical amplification [J]. Opt. Lett.,2004,29:1998-2000
    [49] Meng X., Qiu J., et al. Near infrared broadband emission of bismuth-dopedaluminophosphate glasses [J]. Opt. Exp.,2005,13(5):1628-1634
    [50] Meng X., Qiu J., et al. Infrared broadband emission of bismuth-doped barium-aluminum–borate glasses [J]. opt. Exp.,2005,13(5):1635-1642
    [51] Meng X., Peng M., et a1. Broadband Infrared Luminescence of Bismuth-DopedBorosilicate glasses [J]. Chin. Phys. Left.,2005,22:615-617
    [52] Dvoyrin V. V., Mashinsky V. M., Dianov. E. M., Efficient bismuth-doped fiber laser [J].Quantum Electron.,2008,44(9):834-840
    [53] Mainman T. H., Stimulated optical radiation in ruby [J]. Nature.,1960,187:493-49
    [54]徐军.激光晶体材料的发展和思考[J].激光与光电子学进展.,2006,43(9):17-24
    [55]周炳馄,高以智,陈惆嵘等.激光原理(第4版)[M].北京:国防工业出版社.2000
    [56] W.克希耐尔(孙文江泽文等翻译).固体激光工程[M].北京:北京科学出版社.2002
    [57] Anthony E. S., Lasers Califomia [M]. University Seience Books.1986
    [58] Danielmeyer H. G., Ostermayer E. W., Diode-pump-modulated Nd:YAG laser [J]. Appl.Phys.,1972,43:2911-2913
    [59] Moulton R. E., Spectroscopic and laser characteristics of Ti:A12O3[J]. J. Opt. Soc. Am.B1986,3:125-13
    [60] Shazer D. L., Vanadate crystals exploit diode-pump technology [J]. Laser Focus World.,1994,30:88-93
    [61]张学健,掺镜忆铝石榴石激光材料[D],长春:长春理工大学博士学位论文,2009
    [62]干福熹.邓佩珍.激光材料[M].上海:上海科学技术出版社,1995
    [63]徐军.激光材料科学与技术前沿[M].上海:上海交通大学出版社,2007
    [64]丛恒将,几种重要激光晶体生长与物性研究[D],济南:山东大学博士学位论文,2010
    [65] Müller, G.., The Czochralski Method-where we are90years after Jan Czochralski’sinvention [J]. Cryst. Res. Technol.,2007,42:1150-1161
    [66]武安华,申慧,徐家跃等.光学浮区法生长技术及其在晶体生长中的应用[J].功能材料.,2007,38:4036-4039
    [67] Holonyak J. N., Bevacqua S. F., Coherent (Visible) Light Emission From Ga(As1–xPx)Junctions [J]. Appl. Phys. Lett.,1962,1:82-8
    [68] Nakamura S., Mukai T., Senoh M., andela-Class High-Brightness InGaN/AlGaNDouble-Hetero Structure Blue-Light-Emitting Diodes [J]. Appl. Phys. Lett.,1994,64(13):1687-1689
    [69] Nakamura S., Fasol G., The Blue Laser Diode: Gan Based Light Emitters And Lasers [M].Berlin: Springer,1996,1-2
    [70]方志烈.半导体照明技术[M].北京:电子工业出版社,2009:56-63
    [71]陈元灯. LED制造技术与应用[M].北京:电子工业出版社,2007:3-6
    [72]徐叙瑢.苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004:139-143
    [73]谢安,白光LED用钥酸盐红色荧光粉的制备及发光性能研究[D],武汉:中国地质大学博士学位论文,2010
    [74] Steigerwald D. A., Bhat J. C., Collins D., et al. Illumination with solid state lightingtechnology [J]. IEEEJ. Sel. Top. Quant.,2002,8:310-320
    [75] Jang H. S., Im W. B., Lee D. C., et al. Enhancement of red spectralemission intensity ofY3Al5O12:Ce3+phosphor via Pr co-doping and Tb substitution forthe application to whiteLEDs [J]. J. Lumin.,2007,126(2):371-377
    [76] Pan Y. X., Wu M. M., Su Q., Comparative investigation on synthesis andphotoluminescence of YAG:Ce phosphor [J]. Mater. Sci. Eng. B.,2004,106:251-256
    [77] Pan Y. X., Wu M. M., Su Q., Tailored photoluminescence of YAG:Ce phosphor throughvarious methods [J]. J. Phys. Chem. Solids.,2004,65:845-850
    [78] Lin Y. S., Liu R. S., Chemical substitution effects of Tb3+in YAG:Ce phosphors andenhancement of their emission intensity using flux combination [J]. J. Lumin.,2007,122:580-582
    [79] Haranath D., Harish C., Pooja S., et al. Enhanced luminescence of Y3Al5O12:Ce3+nanophosphor for white light-emitting diodes [J]. Appl. phys. lett.,2006,89(17):173118
    [80]李建宇.稀土发光材料及其应用[M].北京:化学工业出版社,2003
    [81] Blasse G.., Bril A., A new phosphor for lying-spot cathod-ray tubes for color televisions[J]. Appl. Phys. Lett.,1967,11:53-54
    [82] Kong L., Gan S. C., Hong G. Y., et al. Relationship between crystal structure andluminescence properties of (Y0.96-xLnxCe0.04)3Al5O12(Ln=Gd, La, Lu) phosphors [J]. J.Rare Earths.,2007,25(6):692-696
    [83] Lee S., Seo S. Y., Optimization of yttrium aluminum garnet:Ce3+phosphors for whitelight-emitting diodes by combinatorial chemistry method [J]. J. Electrochem. Soc.,2002,149(11): J85-J88
    [84] Zhang S. S., Zhuang W. D., Zhao C. L., et al. Study on (Y,Gd)3(Al,Ga)5O12phosphor [J].J. Rare Earth.,2004,22(1):118-121
    [85] Jang H. S., Im W. B., Lee D. C., et al. Enhancement of red spectral emission intensity ofY3Al5O12:Ce3+phosphor via Pr co-doping and Tb substitution for the application towhite LEDs [J]. J. Lumin.,2007,26(2):371-377
    [86] Lee J. W., Lee J. H., Woo E. J., et al. Synthesis of nanosized Ce3+, Eu3+codoped YAGphosphor in a continuous supercritical water system [J]. Ind. Eng. Chem. Res.,2008,47:5994-6000
    [87] Park J. K., Kim C. H., Park S. H., et al. Application of strontium silicate yellow phosphorfor white light-emitting diodes [J]. Appl. Phys. Lett.,2004,84:1647-1649
    [88] Pardha S. M., Varadaraju U. V., Photoluminescence Studies on Eu2+-Activated Li2SrSiO4-a Potential Orange-Yellow Phosphor for Solid-State Lighting [J]. Chem. Mater.,2006,18:5267-5272
    [89] Yang Z. P., Wang S. L., Yang G. W., et al. Luminescent properties of Ca2BO3Cl:Eu2+yellow-emitting phosphor for white light-emitting diodes [J]. Mater. Lett.,2007,61(30):5258-5260
    [90] Jang H. S., Jeon D. Y., Yellow-emitting Sr3SiO5:Ce3+, Li+phosphor for white-light-emitting diodes and yellow-light-emitting diodes [J]. Appl. Phys.Lett.,2007,90:041906
    [91] Xie R. J., Hirosaki N., Sakuma K., et al. Eu2+-doped Ca-α-SiAlON:A yellow phosphorfor white light-emitting diodes [J]. Appl. phys. Lett.,2004,84(26):5404-5406
    [92] Xie R. J., Hirosaki N., Mitomo M., et al. Highly efficient white-light-emitting diodesfabricated with short-wavelength yellow oxynitride phosphor [J]. Appl. Phys. Lett.,2006,88:101104
    [93] Piao X. Q., Machida K., Horikawa T., et al. Self-propagating high temperature synthesisof yellow-emitting Ba2Si5N8:Eu2+phosphors for white light-emitting diodes [J]. Appl.Phys. Lett.,2007,91:04190
    [94]张新民,吴昊,曾和平等.一种黄绿光LED用荧光粉:Ga2S3:Eu2+[J].无机化学学报.,2007,23(5):933-936
    [95]徐剑,张剑辉,张新民. Ga2S3:Eu2+和SrGa2+xS4+y:Eu2+系列荧光粉的发光性能研究[J].中国稀土学报.,2003,21(6):635-639
    [96] Sastry I., Bacalski C., Mckittrick J., Preparation of green-emitting Sr1-xEuxGa2S4phosphors by a solid state rapid metathesis reaction [J]. J. E lectrochem. Soc.,1999,146:4316-4319
    [97] Jiang Y., Villalobos G., Souriau J., et al. Synthesis and properties of green phosphorSrGa2S4:Eu2+for field emission displays by an environmentally clean technique [J].Solid State Communications.,2000,113:475-480
    [98] Guo C., Zhang C., Lu Y., et al. Luminescent properties of Eu2+and Ho3+co-dopedCaGa2S4phosphor [J]. Phys. Stat. Sol (a).,2004,201:1588-1591
    [99] Zhang X., Zhang J., Xu J., et al. Luminescent properties of Eu2+-activated SrLaGa3S6Ophosphor [J]. J. Alloys Comp.,2005,389:247-152
    [100] Shimomura Y., Honma T., Shigeiwa M., et al. Photoluminescence and Crystal Structureof Green-Emitting Ca3Sc2Si3O12:Ce3+Phosphor for White Light Emitting Diodes [J]. J.Electrochem. Soc.,2007,154(1): J35-J38
    [101] Yang P., Lin J. H., Yao G. Q., Luminescence and Preparation of LED PhosphorCa8Mg(SiO4)4Cl2:Eu2+[J]. Journal of Rare Earth.,2005,23(5):633-637
    [102] Liu J, Lian H Z, Sun J Y., et al. Characterization and properties of green emittingCa3SiO4Cl2:Eu2+powder phosphor for white light-emitting diodes [J]. Chem. Lett.,2005,34(10):1340-1345
    [103] Hirosaki N., Xie R. J., Kimoto K., Characterization and properties of green-emittingβ-SiAlON:Eu2+powder phosphors for white light-emitting diodes [J]. Appl. Phys. Lett.,2005,86:211905
    [104] Xie R. J., Mitomo M., Kim W., et al. Preferred orientation of beta phase and itsmechanisms in a fine-grained silicon-nitride-based ceramic, J. Mater. Res.,2001,1(2):590-596
    [105] Xie R. J., Hirosaki N., Liu X. J., et al. Crystal structure and photoluminescence ofMn2+-Mg2+codoped gamma aluminum oxynitride γ-AlON: A promising green phosphorfor white light-emitting diodes [J]. Appl. Phys. Lett.,2008,92:201905
    [106] Sung H. J., Cho Y. S., Huh Y. D., et al. Preparation, characterization andphotoluminescence of properties of Ca1-xSrxS:Eu red-emitting phosphors for a whiteLED [J]. B. Korean Chem. Soc.,2007,28(8):1280-1284
    [107] Jia D., Wang X., Alkali earth sulfide phosphors doped with Eu2+and Ce3+for LEDs [J].Opt. Mater.,2007,30(3):375-380
    [108] Zhao X. X., Wang X. J., Chen B. J., et al. Luminescent properties of Eu3+dopedα-Gd2(MoO4)3phosphor for white light emitting diodes [J]. Opt. Mater.,2007,29:1680-1684
    [109]张国有,赵晓霞,孟庆裕等.白光LED用红色荧光粉Gd2Mo3O9:Eu3+的制备及表征[J].发光学报.,2007,28(1):57-61
    [110] Zhao X. X., Wang X. J., Chen B. J., et al. Novel Eu3+-doped red-emitting phosphorGd2Mo3O9for white-light-emitting-diodes (WLEDs) application [J]. J. Alloys. Compd.,2007,433:352-355
    [111] Schlieper T., Milius W, Schnick W., High temperature syntheses and crystal structuresof Sr2Si5N8and Ba2Si5N8[J]. Z. Anorg. Allg. Chem.,1995,621:1380-1384
    [112] Cao G., Metselaar R., Alpha-Sialon ceramics: a review [J]. Chem. Mater.,1991,3(2):242-247
    [113] Piao X., Horikawa T., Hanzawa H., et al. Characterization and luminescence propertiesof Sr2Si5N8:Eu2+phosphor for white light emitting diode illumination [J]. Appl. Phys.Lett.,2006,88:161908.
    [114] Li Y., With B., Hintzen B., The effect of replacement of Sr by Ca on the structural andluminescence properties of the red-emitting Sr2Si5N8:Eu2+LED conversion phosphor
    [J]. J. Solid State Chem.,2008,181:515-520
    [115] Piao X., Machida K., Takashi H., Preparation of CaAlSiN3:Eu2+phosphors by the selfpropagating high temperature synthesis and their luminescent properties [J]. Chem.Mater.,2007,19(18):4592-4597
    [116] Xie R., Hirosaki N., Takeda T., Wide color gamut back light for liquid crystal displaysusing three band phosphor converted white light emitting diodes [J]. Appl. Phys. Exp.,2009,2:022401
    [117] Yang P., Yao G. Q., Lin J. H., Energy transfer and photoluminescence of BaMgAl10O17co-doped with Eu2+and Mn2+[J]. Opt. Mater.,2004,26(3):327-331
    [118] Park J., Choi K., Kim C., et al. Luminescence characteristics of Sr3MgSi2O8:Eu bluephosphor for light emitting diodes [J]. Electrochem. Solid State Lett.,2004,7(10):H42-H46
    [119] Wu Z. C., Shi J. X., Wang J., A novel blue-emitting phosphor LiSrPO4:Eu for whiteLEDs [J]. J. Solid State Chem.,2006,179:2356-2360
    [120] Kang Y., Sohn J., Yoon H., et al. Improved photoluminescence of Sr5(PO4)3Cl:Eu2+phosphor particles prepared by flame spray pyrolysis [J]. J. Electrochem. Soc.,2003,150(2): H38-H42
    [121] Kottaisamy M., Mohan R., Jeyakumar D., Divalent europium activated alkaline earthmetal chlorophosphate luminophores [M5(PO4)3Cl:Eu2+(M=Ca, Sr, Ba) by selfpropagating high temperature synthesis [J]. J. Mater. Chem.,1997,7(2):345-350
    [122] Hu Y. S., Zhuang W. D., Hao J. H., et al. Preparation mechanism and luminescence ofSr2SiO4:Eu phosphor from (Sr,Eu)CO3@SiO2core-shell precursor [J]. Open. J. Inorg.Chem.,2012,2:6-11
    [123] Yu R. J., Wang J., Zhang M., et al. A new blue-emitting phosphor of Ce3+-activatedCaLaGa3S6O for white-light-emitting diodes [J]. Chem. Phys. Lett.,2008,453:197-201
    [124] Takahashi K., Hirosaki N., Xie R. J., et al. Luminescence properties of blueLa1-xCexAl(Si6-zAlz)(N10-zOz)(z~1) oxynitride phosphors and their application in whitelight-emitting diode [J]. Appl. Phys. Lett.,2007,91:091923
    [125] Kim J. S., Park Y. H., Kim S. M., et al. Temperature-dependent emission spectra ofM2SiO4:Eu2+(M=Ca, Sr, Ba) phosphors for green and greenish white LEDs [J]. SolidState Comm.,2005,133:445-448
    [126] Kim J. S., Park Y. H., Choi J. C., et al. Optical and structural properties of Eu2+doped(Sr1-xBax)2SiO4phosphors [J]. J. Electrochem. Soc.,2005,152(9): H135-H137
    [127] Chiu Y. C., Liu W. R., Yeh Y. T., et al. Luminescent properties and energy transfer ofgreen-emitting Ca3Y2(Si3O9)2:Ce3+,Tb3+phosphor [J]. J. Electrochem. Soc.,2009,156:J221-J225
    [128]林海,刘行仁. Ce3+和Eu2+共激活氯硅酸锌钙的光谱和敏化特性[J].中国稀土学报.,1997,15(4):309-312
    [129] Qi L., Lee B., Gu X., et al. Concentration efficiency of doping in phosphors:Investigation of the copper and aluminum doped zinc sulfide [J]. Appl. Phys. Lett.,2003,83(24):4945-4947
    [130] Zhang Z. Y., Wang J. G., Yin Y. L., et al. A novel green-to-yellow emitting phosphor:BaSi2SN2.67:Eu2+for potential application in UV-LEDs., Opt. Mater.,2013,3:325-329
    [131] Song X., Fu R., Agathopoulos S, et al. Luminescence and energy transfer of Mn2+codoped SrSi2O2N2:Eu2+green emitting phosphors [J]. Mater. Sci Eng.: B.,2009,164:12-17
    [132] Jung K., Lee H., Jung H., Luminescent properties of (Sr,Zn)Al2O4:Eu2+,B3+particles asa potential green phosphor for UV LEDs [J]. Chem. Mater.,2006,18:2249-2253
    [133] Wu S. L, Zhang S. F, Yang J. Z., Influence of microwave process on photoluminescenceof europium-doped strontium aluminate phosphor prepared by a novel sol–gel-microwave process[J] Materials Chemistry and Physics.,2007,102:80-85
    [134] Wang Z., Liang H., Gong M., et al. The red phosphor NaEu(MoO4)2prepared by thecom bust ion m ethod [J]. Mater. Letts.,2008,62(4-5):619-623
    [135] Wang Z., Liang H., Zhou L., et al. Luminescence of (Li0.333Na0.334K0.333)Eu(MoO4)2andits application in near UV InGaN based light emitt ing diode [J]. Chem. Phys. Lett.,2005,412:313-317
    [136] Neeraj S., Kijima N., Cheetham A. K. Novel red phosphors for solid-state lighting: thesystem NaM(WO4)2-x(MoO4)x:Eu3+(M=Gd, Y, Bi)[J]. Chem. Phys. Lett.,2004,387:2-6
    [137] Li H. L., Xie R. J., Hirosaki N., et al. Synthesis and photoluminescence properties ofSr2Si5N8:Eu2+red phosphor by a gas-reduction and nitridation method [J]. J. Electrochem.Soc.,2008,155(12): J378-J381
    [138] Duan C. J., Otten W. M., Delsing A. C. A., et al. Preparation and photoluminescenceproperties of Mn2+-activated M2Si5N8(M=Ca, Sr, Ba) phosphors [J]. J. Solid. State.Chem.,2008,181:751-756
    [139] Kim J. S., Jeon P. E., Choi J. C., et al. Warm-white-light emitting diode utilizing asingle-phase full-color Ba3MgSi2O8:Eu2+, Mn2+phosphor [J]. Appl. Phys. Lett.,2004,85(15):2932-2933
    [140] Kim J. S., Kwon A. K., Park Y. H., et al. Luminescent and thermal properties offull-color emitting X3MgSi2O8:Eu2+, Mn2+(X=Ba, Sr, Ca) phosphors for white LED [J].J. Lumin.,2007,122:583-586
    [141] Lee S. H., Park J. H., Kim J. S., White light emitting phosphor: CaMgSi2O6:Eu2+,Mn2+phosphor and its related properties with blending [J]. Appl. Phys. Lett.,2006,89:2219161-3
    [142] Chang C. K., Chen T. M., White light generation under violet-blue excitation fromtunable green-to-red emitting Ca2MgSi2O7:Eu, Mn through energy transfer [J]. Appl.Phys. Lett.,2007,90:161901
    [143]杨志平,刘玉峰,王利伟等.用于白光LED的单一基质白光荧光粉Ca2SiO3Cl2:Eu2+,Mn2+的发光性质[J].物理学报.,2007,56(1):546-550
    [144] Yang W. J., Chen T. M., White-light generation and energy transfer in SrZn2(PO4)2:Eu,Mn phosphor for ultraviolet light-emitting diodes [J]. Appl. Phys. Lett.,2006,88(10):101903
    [145] Chang C. K., Chen T. M., Sr3B2O6:Ce3+, Eu2+: A potential single-phased white-emittingborate phosphor for ultraviolet light-emitting diodes [J]. Appl. Phys. Lett.,2007,91:081902
    [146] Zhang X. L., He H., Li Z. S., et al. Photoluminescence studies on Eu2+and Ce3+-dopedLi2SrSiO4[J]. J. Lumin.,2008,128(12):1876-1879
    [147] Guo C. F., Luan L., Xu Y., et al. White Light-Generation Phosphor Ba2Ca(BO3)2:Ce3+,Mn2+for Light-Emitting Diodes [J]. J. Electrochem. Soc.,2008,155(11): J310-J314
    [148] Zhang Q. Y., Yang C. H., Pan Y. X., Enhanced white light emission fromGdAl3(BO3)4:Dy3+, Ce3+nanorods [J]. Nanotechnology.,2007,8:145602
    [149] Setlur A. A., Comanzo H. A., Srivastava A. M., et al. Spectroscopic evaluation of awhite light phosphor for UV-LEDs Ca2NaMg2V3O12:Eu3+[J]. J. Electrochem., Soc.,2005,152(12): H205-H208
    [150] Li P. L., Yang Z. P., Wang Z. J., et al. White-light-emitting diodes of UV-basedSr3Y2(BO3)4:Dy3+and luminescent properties [J]. Mater. Lett.,2008,62:1455-1457
    [151] Liu X. M., Lin C. K., Lin J., White light emission from Eu3+in CaIn2O4host lattices [J].Appl. Phys. Lett.,2007,90:081904
    [152]孙晓园,张家骅,张霞等.新一代白光LED照明用一种适于近紫外光激发的单一白光荧光粉[J].发光学报.,2005,26(3);404-406
    [153]李广环,白光LED用荧光粉的制备于性能研究[D],长春:吉林大学博士学位论文,2012
    [154]严小松,白光LED用荧光材料的制备与性能研究[D],上海:上海交通大学博士学位论文,2011
    [155]肖芬,紫外激发白光LED荧光粉的制备及发光特性研究[D],广州:华南理工大学博士学位论文,2011
    [156] Bufetov I., Dianov E., Bi-doped fiber lasers [J]. Laser Phys. Lett.,2009,6(7):487–504
    [157] Bufetov I. A., Melkumov M. A., Firstov S. V., et al. Optical gain and laser generation inbismuth-doped silica fibers free of other dopants [J]. Opt. Lett.,2011,36(2):166–168
    [158] Kir’yanov A. V., Dvoyrin V. V., Mashinsky V. M., et al. Influence of electronirradiation on optical properties of Bismuth doped silica fibers [J]. Opt. Express.,2011,19(7):6599–6608
    [159] Dvoyrin V., Mashinsky V., Dianov E., Efficient bismuth-Doped Fiber Lasers [J]. IEEEJ. Quantum Electron.,2008,44(9):834–840
    [160] Hughes M. A., Akada T., Suzuki T., et al. Ultrabroad emission from a bismuth dopedchalcogenide glass [J]. Opt. Express.,2009,17(22):19345–19355
    [161] Zhou S., Dong H., Zeng H., et al. Broadband optical amplification in Bi-dopedgermanium silicate glass [J]. Appl. Phys. Lett.,2007,91(6):061919
    [162] Razdobreev I., Bigot L., On the multiplicity of Bismuth active centres in germano-aluminosilicate preform [J]. Opt. Mater.,2011,33(6):973–977
    [163] Peng M., Qiu J., Chen D., et al. Superbroadband1310nm emission from bismuth andtantalum codoped germanium oxide glasses [J]. Opt. Lett.,2005,30(18):2433–2435
    [164] Peng M., Qiu J., Chen D., et al. Broadband infrared luminescence fromLi2O-Al2O3-ZnO-SiO2glasses doped with Bi2O3[J]. Opt. Express.,2005,13(18):6892–6898
    [165] Peng M., Wondraczek L., Bismuth-doped oxide glasses as potential solar spectralconverters and concentrators [J]. J. Mater. Chem.,2009,19(5):627–630
    [166] Peng M., Zollfrank C., Wondraczek L., Origin of broad NIR photoluminescence inbismuthate glass and Bidoped glasses at room temperature [J]. J. Phys. Condens. Matter.,2009,21(28):285106
    [167] Peng M., Sprenger B., Schmidt M. A., et al. Broadband NIR photoluminescence fromBi-doped Ba2P2O7crystals: insights into the nature of NIR-emitting Bismuth centers [J].Opt. Express.,2010,18(12):12852–12863
    [168] Peng M., Dong G., Wondraczek L., et al. Discussion on the origin of NIR emissionfrom Bi-doped materials [J]. J. Non-Cryst. Solids.,2011,357(11-13):2241–2245
    [169] Peng M., Da N., Krolikowski S., et al. Luminescence from Bi2+-activated alkali earthborophosphates for white LEDs [J]. Opt. Express.,2009,17(23):21169–21178
    [170] Peng M., Wondraczek L., Photoluminescence of Sr(2)P(2)O(7):Bi(2+) as a redphosphor for additive light generation [J]. Opt. Lett.,2010,35(15):2544–2546
    [171] Arai Y., Suzuki T., Ohishi Y., et al. Ultrabroadband near-infrared emission from acolorless bismuth-doped glass [J]. Appl. Phys. Lett.,2007,90:261110
    [172] Peng M., Zhao Q., Qiu J., et al. Generation of emission centers for broadband NIRluminescence in bismuthate glass by femtosecond laser irradiation [J]. J. Am. Ceram.Soc.,2009,92(2):542–544
    [173] Xu J., Zhao H., Su L., et al. Study on the effect of heat-annealing and irradiation onspectroscopic properties of Bi:alpha-BaB2O4single crystal [J]. Opt. Express.,2010,18(4):3385–3391
    [174] Zhou S., Lei W., Jiang N., et al. Space-selective control of luminescence inside theBi-doped mesoporous silica glass by a femtosecond laser [J]. J. Mater. Chem.,2009,19(26):4603–4608
    [175] Khonthon S., Morimoto S., Arai Y., et al. Luminescence characteristics of Te-andBi-doped glasses and glass-ceramics [J]. J. Ceram. Soc. Jpn.,2007,115(1340):259–263
    [176] Sokolov V. O., Plotnichenko V. G., Dianov E. M., Origin of broadband near-infraredluminescence in bismuth-doped glasses [J]. Opt. Lett.,2008,33(13):1488–1490
    [177] Ahmed E., Kohler D., Ruck M., Room-temperature synthesis of bismuth clusters inionic liquids and crystal growth of Bi5(AlCl4)3[J]. Z. Anorg. Allg. Chem.,2009,635(2):297–300
    [178] Sun H. T., Sakka Y., Fujii M., et al. Ultrabroad near-infrared photoluminescence fromionic liquids containing subvalent bismuth [J]. Opt. Lett.,2011,36(2):100–102
    [179] Sun H. T., Sakka Y., Gao H., et al. Ultrabroad near-infrared photoluminescence fromBi5(AlCl4)3crystal [J]. J. Mater. Chem.,2011,21(12):4060–4063
    [180] Krebs B., Mummert M., Brendel C., Characterization of the Bi53+cluster cation:preparation of single crystals, crystal and molecular structure of Bi5(AlCl4)3[J]. J. LessCommon Met.,1986,116(1):159–168
    [181] Niels C., Bjerrum J., Smith G., Lower oxidation states of bismuth. Bi+and Bi53+inmolten salt solutions [J]. Inorg. Chem.,1967,6(6):1162–1172
    [182] Corbett J., Homopolyatomic ions of the heavy post-transition elements. The preparation,properties and bonding of Bi5(AlCl4)3and Bi4(AlCl4)[J]. Inorg. Chem.,1968,7(2):198–208
    [183] Ulvenlund S., Bengtsson-Kloo L., Stahl K., Formation of subvalent bismuth cations inmolten gallium trichloride and benzene solutions [J]. J. Chem. Soc., Faraday Trans.,1995,91:4223–4234
    [184] Perenthaler E., Schulz H., Rabenau A., Die Strukturen von LiAlCl4und NaAlCl4alsFunktion der Temperatur [J]. Z. Anorg. Allg. Chem.,1982,491(1):259–265
    [185] Xu R., Tian Y., Hu L., et al. Enhanced emission of2.7μm pumped by laser diode fromEr3+/Pr(3+)-codoped germanate glasses [J]. Opt. Lett.,2011,36(7):1173–1175
    [186] Peng M., Zhang N., Wondraczek L., et al. Ultrabroad NIR luminescence and energytransfer in Bi and Er/Bi co-doped germanate glasses [J]. Opt. Express.,2011,19(21):20799–20807
    [187] Suzuki T., Ohishi Y., Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2glass [J]. Appl. Phys. Lett.,2006,88(19):191912
    [188] Yang Z., Liu Z., Song Z., et al. Influence of optical basicity on broadband near infraredemission in bismuth doped aluminosilicate glasses [J]. J. Alloy. Comp.,2011,509(24):6816–6818
    [189] Ren J., Yang L., Qiu J., et al. Effect of various alkaline-earth metal oxides on thebroadband infrared luminescence from bismuth-doped silicate glasses [J]. Solid StateCommun.,2006,140(1):38–41
    [190] Peng M., Wondraczek L., Bi2+-doped strontium borates for white-light-emitting diodes[J]. Opt. Lett.,2009,34(19):2885–2887
    [191] Romanov A., Fattakhova Z., Zhigunov D., et al. On the origin of near-IR luminescencein Bi-doped materials (I). generation of low-valence bismuth species by Bi3+and Bi0synproportionation [J]. Opt. Mater.,2011,33(4):631–634
    [192] Peng M., Wu B., Da N., et al. Bismuth-activated luminescent materials for broadbandoptical amplifier in WDM system [J]. J. Non-Cryst. Solids.,2008,354(12-13):1221–1225
    [193] Sun H. T., Shimaoka F., Miwa Y., et al. Sensitized superbroadband near-IR emission inbismuth glass/Si nanocrystal superlattices [J]. Opt. Lett.,2010,35(13):2215–2217
    [194] Cao R., Peng M., Wondraczek L., et al. Superbroad near-to-mid-infrared luminescencefrom Bi53+in Bi5(AlCl4)3[J]. Opt. Express.,2012,20(3):2562–2571
    [195] Xu W., Peng M., Ma Z., et al. A new study on bismuth doped oxide glasses [J]. Opt.Express.,2012,20(14):15692–15702
    [196] Bjerrum N. J., Boston C. R., Smith G. P., Lower oxidation states of bismuth. Bi+andBi53+in molten salt solutions [J]. Inorg. Chem.,1967,6(6):1162–1172
    [197] Ulvenlund S., Wheatley A., Bengtsson L., Synthesis of main-group metal clusters inorganic solvents [J]. J. Chem. Soc. Chem. Commun.,1995,1(1):59–60
    [198] Ulvenlund S., St hl K., Bengtsson-Kloo L., Structural and quantum chemical study ofBi53+and isoelectronic main-group metal clusters. The crystal structure ofpentabismuth(3+) tetrachlorogallate(III) refined from X-ray powder diffraction data andsynthetic attempts on its antimony analogue [J]. Inorg. Chem.,1996,35(1):223–230
    [199] Burns R. C., Gillespie R. J., Luk W. C., The preparation, spectroscopic properties, andstructure of the pentabismuth(3+) cation, Bi53+[J]. Inorg. Chem.,17(12):3596–3604
    [200] Romanov A. N., Fattakhova Z. T., Veber A. A., et al. On the origin of near-IRluminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+luminescence in AlCl3/ZnCl2/BiCl3chloride glass [J]. Opt. Express.,2012,20(7):7212–7220
    [201] Lindsj M., Fischer A., Kloo L., Improvements of and insights into the isolation ofbismuth polycations from benzene solution–single-crystal structure determinations ofBi8[GaCl4]2and Bi5[GaCl4]3[J]. Eur. J. Inorg. Chem.,2005,2005(4):670–675
    [202] Brunold T. C., Güdel H. U., Kück S., Huber G., Excited-state absorption and laserpotential of Mn6+-doped BaSO4crystals [J]. J. Opt. Soc. Am. B.,1997,14:2373-2377
    [203] Moulton P. F., Spectroscopic and Laser Characteristics of Ti-Al2O3[J]. J. Opt. Soc. Am.B.,1986,3:125-133
    [204] MoncorgéR., Manaa H., Boulon G., Cr4+and Mn5+active centers for new solid-statelaser materials [J]. Opt. Mater.,1994,4:139-151
    [205] Eilers H., H mmerich U., Jacobsen S. M., et al. Spectroscopy and dynamics ofCr4+:Y3Al5O12[J]. Phys. Rev. B.,1994,49:15505-15513
    [206] Koechner W., Solid-state Laser engineering [M],3rd ed. Springer-Verlag, Berlin, Vol.1,1992
    [207] MoncorgéR., Manaa H., Deghoul F., et al. Spectroscopic study and laser operation ofCr4+doped (Sr,Ca)Gd4(SiO4)3O single crystals [J]. Opt. Commun.,1995,116:393-397
    [208] Brunold T. C., Güdel H. U., Absorption and Luminescence Spectroscopy ofMnO(4)(2)(-)-Doped Crystals of BaSO(4)[J]. Inorg. Chem.,1997,36:1946-1954
    [209] Capobianco J. A., Bettinelli G., M., Moncorgé R., et al. Near-infraredintraconfigurational luminescence spectroscopy of the Mn5+(3d2) ion in Ca2PO4Cl,Sr5(PO4)3Cl, Ca2VO4Cl and Sr2VO4Cl [J]. J. Lumin.,1992,54:1-11
    [210] Herren M., Güdel H. U., Albrecht C., et al. High-resolution near-infrared luminescenceof mangenese(V) in tetrahedral oxo coordination [J]. Chem. Phys. Lett.,1991,183:98-102
    [211] Herren M., Riedener T., Güdel H. U., et al. Near-infrared luminescence ofmanganate(V)-doped phosphates and vanadates [J]. J. Lumin.,1992,53:452-456
    [212] Merkle L. D., Pinto A., Verdún H. R., et al. Laser action from Mn5+in Ba3(VO4)2[J]. Appl. Phys. Lett.,1992,61:2386-2388
    [213] Brunold T. C., Hazenkamp M. F., Güdel H. U., Manganate (VI): A novel near-infraredbroadband emitter [J]. J. Am. Chem. Soc.,1995,117:5598-5599
    [214] Schenker R. P., Brunold T. C., Güdel H. U., Synthesis and optical spectroscopy ofMnO42--doped crystals of Cs2CrO4, SrCrO4, CsBr, and CsI [J]. Inorg. Chem.,1998,37:918-927
    [215] Romanyuk Y. E., Ehrentraut D., Pollnau M., et al. Low-temperature flux growth ofsulfates, molybdates, and tungstates of Ca, Sr, and Ba and investigation of doping withMn6+[J]. Appl. Phys. A.,2004,79:613-618
    [216] Brunold T. C., Hazenkamp M. F., Güdel H. U., CrO43-and MnO42-: broadband emittersin the NIR and potential laser systems [J]. Adv. Solid-State Lasers.,1996,1:474-477
    [217] Kosky C. A., Mcgarvey B. R., Holt S. L., ESR and Optical spectroscopy of MnO42-inBaSO4[J]. J. Chem. Phys.,1972,56:5904-5912
    [218] Brunold T. C., Güdel H. U., Near-infrared emission from MnO42-in various host lattices[J]. Chem. Phys. Lett.,1996,249:77-80
    [219] Brunold T. C., Güdel H. U., Riley M. J., Jahn–Teller effect in the ground and excitedstates of MnO42doped into Cs2SO4[J]. J. Chem. Phys.,1996,105(18):7931-7941
    [220] Radhakrishna S., Hariharan K., Optical and Vibronic Spectra of MnO42-in CesiumBromide [J]. Phys. Status Solidi B.,1979,92:293-296
    [221] Hazenkamp M. F., Brunold T. C., Güdel H. U., Laser potential of CrO43-and MnO42-doped crystals [J]. J. Lumin.,1997,72/74:675-676
    [222] Martin T. P., Onari S., Multiple-order Raman scattering in MnO42--doped CsI [J]. Phys.Rev. B.,1977,15:1093-1099
    [223] Day P., Disipio L., Oleari L., Electronic transitions of permanganate and manganateions in the near infrared [J]. Chem. Phys. Lett.,1970,5:533-535
    [224] Greenblatt M., Pifer J. H., The electronic structure of MnO42-as determined by ESR inK2SO4[J]. J. Chem. Phys.,1980,72:529-534
    [225] Ehrentraut D., Pollnau M., Kück S., Epitaxial growth and spectroscopic investigation ofBaSO4:Mn6+layers [J]. Appl. Phys. B.,2002,75:59-62
    [226] Laha S., Sharma R.. Bhat S. V., et al. Ba3(P1-xMnxO4)2: Blue/green inorganic materialsbased on tetrahedral Mn(V)[J]. Bull. Mater. Sci.,2011,6:1257-1262
    [227] JCPDS24-1035.
    [228] Dardenne K., Vivien D., Huguenin D., Color of Mn(V)-Substituted Apatites A10((B,Mn)O4)6F2, A=Ba, Sr, Ca; B=P, V [J]. J. Solid. State. Chem.,1999,146:464-472
    [229] Scott M. A., Henderson B., Gallagher H. G., et al. Optical spectroscopy of (MnO4)3-and(VO4)5-in Sr10(VO4)6F2[J]. J. Phys.: Condens, Matter.,1997,9:9893-9908
    [230] Borromet R., Oleari L., Day P., The absorption spectrum of Manganate (Ⅵ) in BaSO4[J]. Phys. Stat. Sol.(B).,1984,124:707-717
    [231] Chen C. C., Liu L. G., Lin C. C., et al. High-pressure phase transformation in CaSO4[J].J. Phys. Chem. Solids.,2001,62:1293-1298
    [232] Clark R. J. H., Dines T. J., Doherty J. M., Resonance Raman Spectroscopy of theManganate(V1) Ion: Band Excitation Profiles and Excited-State Geometry [J]. Inorg.Chem.,1985,24:2088-2091
    [233] Maksimova T., Hermanowicz K., Hanuza J., et al. Absorption and luminescencespectroscopy of the MnO4-centers in alkali halide crystals [J]. J. Alloys and compd.,2002,341:239-243
    [234] Maksimova T., Hermanowicz K., Macalik L., et al. MnO4-and MnO42-molecularcenters in cubic lattice: near infrared luminescence and resonance Raman spectra [J]. J.Mol. Struct.,2001,563/564:353-357
    [235] Jubert A. H., Varetti E. L., Normal and Resonance Raman Spectra of some manganates[J]. J. Mol struct.,1982,79:285-288
    [236] Brunold T. C., Güdel H. U., Absorption and luminescence spectroscopy ofmanganese-doped BaSO4crystals [J]. Chem. Phys. Lett.,1996,257:123-129
    [237] Noda L. K., Ribeiro M. C. C., Goncalves N. S., et al. Electronic transitions of themanganate(V) ion in aqueous solution: a resonance Raman study [J]. J. RamanSpectrosc.,1999,30:697-704
    [238] Hazenkamp M. F., Güdel H. U., Kück S., et al. Excited state absorption and laserpotential of Mn5+-doped Li3PO4[J]. Chem. Phys. Let.,1997,265:264-270
    [239] Blasse G., Grabmaier B. C., Luminescent Materials [M]. Springer-Verlag: Berlin,1994
    [240] Wang J., Liu Z., Ding W., et al. Luminescent Properties of(Ca1-xSrx)3SiO4(Cl1-yFy)2:Eu2+Phosphors and Their Application for White LED [J]. J.Appl. Ceram. Technol.,2009,6(4):447–452
    [241] Lin C., Luo Y., You H., et al. Sol-gel-derived BPO4/Ba2+as a new efficient andenvironmentally-friendly bluish white luminescent material [J]. Chem. Mater.,2006,18(2):458–464
    [242] Guo H., Zhang H., Li J., et al. Blue-white-green tunable luminescence fromBa2Gd2Si4O13:Ce3+, Tb3+phosphors excited by ultraviolet light [J]. Opt Express.,2010,18:27257-27262
    [243] Huang C., Chen T., Ca9La(PO4)7:Eu2+,Mn2+: an emission-tunable phosphor throughefficient energy transfer for white light-emitting diodes [J]. Opt. Express.,2010,18(5):5089-5099
    [244] Zhou S., Jiang N., Zhu B., et al. Multifunctional Bismuth-Doped Nanoporous SilicaGlass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-BroadbandInfrared Amplifiers [J]. Adv. Funct. Mater.,2008,18(9):1407–1413
    [245] Cao R., Peng M., Song E., et al. High Efficiency Mn4+Doped Sr2MgAl22O36RedEmitting Phosphor for White LED [J]. ECS J. Solid State. Sci. Technol.,2012,1(4):R123-R126
    [246] Lü J., Du F., Zhu R., et al. Phase formations and tunable red luminescence ofNa2CaMg1-xMnx(PO4)2(x=0.05–1.0)[J]. J. Mater. Chem.,2011,21:16398-16405
    [247] Guo H., Wei R., Liu X., Tunable white luminescence and energy transfer in (Cu+)2,Eu3+co-doped sodium silicate glasses [J]. Opt. Lett.,2012,37:1670-1672
    [248] HuangY., Nakai Y., TsuboiT., et al. The new red-emitting phosphor of oxyfluorideCa2RF4PO4:Eu3+(R=Gd, Y) for solid state lighting applications [J]. Opt. Express.,2011,19(7):6303-6311
    [249] Liu W., Lin C., Chiu Y., et al. ZnB2O4:Bi3+, Eu3+: a highly efficient, red-emittingphosphor [J]. Opt. Express.,2010,18:2946-2951
    [250] Guo H., Wang X., Chen J., et al. Ultraviolet light induced white light emission in Agand Eu3+co-doped oxyfluoride glasses [J]. Opt. Express.,2010,18:18900-18905
    [251] Chen Y., Wang J., Liu C., et al. A host sensitized reddish-orange Gd2MoO6:Sm3+phosphor for light emitting diodes [J]. Appl. Phys. Lett.,2011,98:081917-3
    [252] de Mello DonegáC., Crombag M., Meijerink A., et al. Vibronic transitions in theluminescence spectra of Pr3+in Na5La(MoO4)4[J]. J. Lumin.,1994,60–61:74–77
    [253] Pan Y., Liu G., Enhancement of phosphor efficiency via composition modification [J].Opt. Lett.,2008,33:1816-1818
    [254] Kuhshreshtha C., Kwak J., Y. Park, et al. Photoluminescent and Decay Behaviors ofMn2+and Ce3+Coactivated MgSiN2Phosphors for Use in Light-Emitting-DiodeApplications [J]. Opt. Lett.,2009,34:794–796
    [255] Dvoyrin V. V., Mashinsky V. M., Bulatov L. I., et al. Bismuth-doped-glass opticalfibers-a new active medium for lasers and amplifiers [J]. Opt. Lett.,2006,31(20):2966-2968
    [256] Cao R., Peng M., Zheng J., et al. Superbroad near to mid infrared luminescence fromcloso-deltahedral Bi53+cluster in Bi5(GaCl4)3[J]. Opt. Express.,2012,20(16):18505–18514
    [257] Ruan J., Su L., Qiu J., et al. Bi-doped BaF2crystal for broadband near-infrared lightsource [J]. Opt. Express.,2009,17(7):5163–5169
    [258] Blasse G., Bril A., Investigations on Bi3+-activated phosphors [J]. J. Chem. Phys.,1968,48(1):217–222
    [259] Hamstra M., Folkerts H., Blasse G., Materials chemistry communications. Red bismuthemission in alkaline-earth-metal sulfates [J]. J. Mater. Chem.,1994,4(8):1349–1350
    [260] Blasse G., Meijerink A., Nomes M., et al. Unusual bismuth luminescence in strontiumtetraborate (SrB4O7:Bi)[J]. J. Phys. Chem. Solids.,1994,55(2):171–174
    [261] Peng M., Wondraczek L., Orange-to-red emission from Bi2+and alkaline earth codopedstrontium borate phosphors for white light emitting diodes [J]. J. Am. Ceram. Soc.,2010,93:1437–1442
    [262] Srivastava A., Luminescence of divalent bismuth in M2+BPO5(M2+=Ba2+, Sr2+andCa2+)[J]. J. Lumin.,1998,78(4):239–243
    [263] JCPDS Card No.76-213.
    [264] Xia Z., Zhuang J., Liao L., Novel Red-Emitting Ba2Tb(BO3)2Cl:Eu Phosphor withEfficient Energy Transfer for Potential Application in White Light-Emitting Diodes [J].Inorg. Chem.,2012,51:7202–7209
    [265] Chen T. M., Lou J. T., Highly saturated red-emitting Mn(IV) activated phosphors andmethod of fabricating the same [P], US7,846,350B2,2010, Dec,7
    [266] Wang Z. L, Liang H. B, Gong M. L., et al. Novel red phosphor of Bi3+, Sm3+co-activated NaEu(MoO4)2[J]. Opt. Mater.,2007,29:896–900
    [267] Yu R. J., Wang J., Zhang M., et al. Luminescence properties ofCa1-xSrx(Ga1-yAly)(2)S4:Eu2+and their potential application for white LEDs [J]. J.Electrochem. Soc.,2008,155: J290-J294
    [268] Setlur A. A., Heward W. J., Gao Y., et al. Crystal chemistry and luminescence ofCe3+-doped Lu2CaMg2(Si,Ge)3O12and its use in LED based lighting [J]. Chem. Mater.,2006,18(14):3314–3322
    [269] Jang H. S., Yang H., Kim S. W., et al. White Light-Emitting Diodes with ExcellentColor Rendering Based on Organically Capped CdSe Quantum Dots andSr3SiO5:Ce3+,Li+Phosphors [J]. Adv. Mater.,2008,20:2696-2701
    [270] Zhou Y., Liu J., Yang X., et al. A Promising Deep Red Phosphor AgLaMo2O8:Pr3+withBlue Excitation for White LED Application [J]. J. Electrochem. Soc.,2010,157(3):H278-H281
    [271] Chiu Y. C., Liu W. R., Chang C. K., et al. Ca2PO4Cl:Eu2+: an intense near-ultravioletconverting blue phosphor for white light-emitting diodes [J]. J. Mater. Chem.,2010,20:1755–1758
    [272] Guo H., Wang X., Zhang X., et al. Effect of NH4F Flux on Structural and LuminescentProperties of Sr2SiO4:Eu2+Phosphors Prepared by Solid-State Reaction Method [J]. J.Electrochem. Soc.,2010,157(8): J310-J314
    [273] Han J. Y., Im W. B., Lee G. Y., et al. Near UV-pumped yellow-emitting Eu2+-dopedNa3K(Si1-xAlx)8O16±δphosphor for white-emitting LEDs [J]. J. Mater. Chem.,2012,22:8793-8798
    [274] Kim J. S., Jeon P. E., Park Y. H., et al. White light generation throughultraviolet-emitting diode and white-emitting phosphor [J]. Appl. Phys. Lett.,2004,85(17):3696-3698
    [275] Wang Z. L, Liang H. B., Zhou L. Y., et al. NaEu0.96Sm0.04(MoO4)2as a promisingred-emitting phosphor for LED solid-state lighting prepared by the Pechini process [J]. J.Lumin.,2008,128:147–154
    [276] Wu L., Zhang Y., Gui M. Y., et al. Luminescence and energy transfer of a color tunablephosphor: Dy3+, Tm3+, and Eu3+-coactivated KSr4(BO3)3for warm white UV LEDs [J]. J.Mater. Chem.,2012,22:6463-6470
    [277] Guo H., Zhang H., Wei R. F., et al. Preparation, structural and luminescent properties ofBa2Gd2Si4O13:Eu3+for white LEDs [J]. Opt Express.,2011,19. Suppl2: A201-A206
    [278] Li X., Yang Z. P., Guan L., et al. Fabrication and luminescence properties of redemitting phosphor Y2O2S:Sm3+for white LED by combustion method [J]. J. Alloys.Compd.,2008,464:565–568
    [279] Kemeny G., Hakke C. H., Activator center in magnesium fluorogermanate phosphors[J]. J. Chem. Phys.,1960,33:783-789
    [280] Srivastava A. M., Beers W. W., Luminescence of Mn4+in the Distorted PerovskiteGd2MgTiO6[J]. J. Electrochem. Soc.,1996,143(9): L203-L205
    [281] Williams F. E., Some New Aspects of Germanate and Fluoride Phosphors [J]. J. Opt.Soc. Am.,1947,37:302-307
    [282] Bergstein A., White W. B., Manganese activated luminescence in SrAl12O19andCaAl12O19[J]. J. Electrochem. Soc.,1971,118:1166-1171
    [283] Murata T., Tanoue T., Iwasaki M., et al. Fluorescence properties of Mn4+in CaAl12O19compounds as red-emitting phosphor for white LED [J]. J. Lumin.,2005,114(3-4):207-212
    [284] Brik M. G., Pan Y. X., Liu G. K., Spectroscopic and crystal field analysis of absorptionand photoluminescence properties of red phosphor CaAl12O19:Mn4+modified by MgO[J]. J. Alloys Compd.,2011,509:1452-1456
    [285] JCPDS No.89-571.
    [286] Stevels A. L. N., Schrama-de Pauw A. D. M., Eu2+luminescence in hexagonalaluminates containing large divalent or trivalent cations [J]. J. Electrochem. Soc.,1976,123:691–697
    [287] Iyi N., G bbels M., Crystal Structure of the New Magnetoplumbite-Related Compoundin the System SrO–Al2O3–MgO [J]. J, Solid State Chem.,1996,122:46–52
    [288] Thorington L., Temperature Dependence of the Emission of an Improved Manganese-Activated Magnesium Germanate Phosphor [J]. J. Opt. Soc. Am.,1950,40:579-583
    [289] Sakamoto H., Hitomi T., Sensitized Luminescence in Mn-Activated Alkaline EarthAluminate Phosphors [J]. Jpn. J. Appl. Phys.,1967,6:1315-1322
    [290] Yang X., Liu J., Yang H., et al. Synthesis and characterization of new red phosphors forwhite LED applications [J]. J. Mater. Chem.,2009,19(22):3771–3774
    [291] Bandi V. R., Grandhe B. K., Jang K., et al. Citric based sol–gel synthesis andluminescence characteristics of CaLa2ZnO5:Eu3+phosphors for blue LED excited whiteLEDs [J]. J. Alloys. Compd.,2012,512(1):264-269
    [292] Pan Y. X., Liu G. K., Influence of Mg2+on luminescence efficiency and chargecompensating mechanism in phosphor CaAl12O19:Mn4+[J]. J. Lumin.,2011,131:465–468
    [293] Shu W., Jiang L. L., Xiao S., et al. GeO2dopant induced enhancement of red emissionin CaAl12O19:Mn4+phosphor [J]. Mater. Sci. Eng. B.,2012,177:274-277
    [294] JCPDS cards (No:82-1399and26-879).
    [295] Singh V., Natarajan V., Zhu J. J., Luminescence and EPR investigations of Mnactivated calcium aluminate prepared via combustion method [J]. Opt. Mater.,2007,30(3):468-472
    [296] Srivastava A. M., Brik M. G., Ab initio and crystal field studies of the Mn4+-dopedBa2LaNbO6double-perovskite [J]. J. Lumin.,2012,132:579-584
    [297] Brik M.G., Srivastava A.M., On the optical properties of the Mn4+ion in solids [J]. J.Lumin.,2013,133:69-72
    [298] Zhang D., Wang C. H., Liu Y. L., et al. Green and red photoluminescence fromZnAl2O4:Mn phosphors prepared by sol–gel method [J]. J. Lumin.,2012,132:1529-1531
    [299] Zhou B., Lin H., Chen B. J., et al. Superbroadband near-infrared emission in Tm-Bicodoped sodium-germanium-gallate glasses [J]. Opt Express.,2011,19(7):6522-6527
    [300] Myoung N., Fedorov V., Mirov S., et al. Temperature and concentration quenching ofmid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals [J]. J. Lumin.,2012,132:600-604
    [301] Zhu X., Jain R., Watt-level Er-doped and Er-Pr-codoped ZBLAN fiber amplifiers at the2.7–2.8μm wavelength range [J]. Opt. Lett.,2008,33(14):1578-1582
    [302] Li K., Wang G., Zhang J., et al. Broadband similar to2μm emission in Tm3+/Ho3+co-doped TeO2-WO3-La2O3glass [J]. Solid State Commun.,2010,39-40:1915-1920
    [303] Shen Y., Yao B., Duan X., et al.103W in-band dual-end-pumped Ho:YAG laser [J]. Opt.Lett.,2012,37(17):3558-3560
    [304] Winterstein A., Manning S., Ebendorff-Heidepriem H., Wondraczek L., Luminescencefrom bismuth-germanate glasses and its manipulation through oxidants [J]. Opt MaterExpress.,2012,2(10):1320-1325
    [305] Okhrimchuk A., Butvina L., Dianov E., et al. Near-infrared luminescence ofRbPb2Cl5:Bi crystals [J]. Opt. Lett.,2008,33(19):2182-2184
    [306] Zhang N., Qiu J., Dong G., et al. Broadband tunable near-infrared emission of Bi-dopedcomposite germanosilicate glasses [J]. J. Mater. Chem.,2012,22:3154-3160
    [307] Sun H., Sakka Y., Shirahata N., et al. Experimental and theoretical studies ofphotoluminescence from Bi-8(2+) and Bi-5(3+) stabilized by [AlCl4](-) in molecularcrystals [J]. J. Mater. Chem.,2012,22(15):12837
    [308] Jiang X., Su L., Guo X., et al. near-infrared to mid-infrared photoluminescence ofBi2O3-GeO2binary glasses [J]. Opt. Lett.,2012,37(20):4260-2
    [309] St ber W., Fink A., Bohn E. J., Controlled Growth of Monodisperse Silica Spheres inthe Micron Size Range [J]. J. Colloid Interface Sci.,1968,26:62-67
    [310] http://www.eosystems.com/pdf/PBS_PBSE_Spectral_Resposivity.pdf.
    [311]http://images.search.yahoo.com/search/images?_adv_prop=image&fr=yfp-t-701&va=atmosphere+absorption+spectrum.
    [312] Li C., Song Z., Qiu J., et al. Broadband yellow-white and near infrared luminescencefrom Bi-doped Ba10(PO4)6Cl2prepared in reductive atmosphere [J]. J. Lumin.,2012,132:1807-1811
    [313] Sun H., Yang J., Fujii M., et al. Highly fluorescent silica-coated bismuth-dopedaluminosilicate nanoparticles for near-infrared bioimaging [J]. Small.,2011,7(2):199-203
    [314] Sun H., Hosokawa A., Miwa Y., et al. Strong Ultra-broadband Near-InfraredPhotoluminescence from Bismuth-Embedded Zeolites and Their Derivatives [J]. Adv.Mater.,2009,21:3694-3698
    [315] Zorenko Y., Gorbenko V., Voznyak T., et al. Luminescence spectroscopy of the Bi3+single and dimmer centers in Y3Al5O12:Bi single crystalline films [J]. J. Lumin.,2012,130:1963-1969
    [316] Cao R., Peng M., Qiu J., Luminescence from Bi2+-doped BaSO4for White LEDs [J].Opt. Express.,2012,20(22): A977-A983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700