用户名: 密码: 验证码:
宫内铅、镉及拟除虫菊酯类杀虫剂暴露对婴幼儿生长发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]
     环境化学污染对儿童健康的影响正日益引起人们的重视。胎儿期是各种器官形成和发育的特殊时期,对各种环境毒物的吸收、代谢、排泄途径均与成人不同,相同的暴露水平可能对成人不产生影响,但可导致胎儿严重的发育障碍,对其一生的健康产生深远的影响。正是基于这样的背景,本课题组选择江苏省射阳县作为研究现场,以2009年6月中旬至2010年1月中旬至该县妇产科医院分娩且同意参与研究的1149对孕产妇-新生儿为研究对象,开展了宫内环境化学污染物暴露对儿童生长发育影响的前瞻性队列研究。本课题是该项研究的一部分,主要关注宫内铅、镉等重金属及拟除虫菊酯类杀虫剂暴露对新生儿及一岁幼儿生长发育的可能影响。
     [研究目的]
     1、评估研究地区铅、镉及拟除虫菊酯类杀虫剂宫内暴露的水平及特征;
     2、了解研究地区新生儿及幼儿发育的一般状况;
     3、探讨研究地区宫内铅、镉及拟除虫菊酯类杀虫剂暴露是否会对新生儿及幼儿生长发育产生不良影响,为提高当地出生人口素质提供科学依据。
     [研究内容和方法]
     1、研究地区铅、镉及拟除虫菊酯类杀虫剂宫内暴露水平及特征的评估:主要通过对产妇进行问卷调查及检测新生儿脐带血中铅、镉元素水平与孕妇尿液中三种拟除虫菊酯类杀虫剂代谢产物水平来进行;
     2、新生儿生长发育状况评估:分娩时测量其出生体重、身长、头围,并记录新生儿性别、孕周、分娩方式等基本信息及APGAR评分、有无出生缺陷;3、一岁幼儿生长发育状况的随访:待研究幼儿发育至一岁时,跟踪随访其体格及神经智力发育状况。体格测量指标有:体重、身高、头围、胸围;神经智力发育状况评估采用“0-6岁发育筛查测验”,对幼儿的运动能力、社会适应及智力进行综合评估,并计算发育商及智力指数;
     4、资料录入和统计分析:使用EPIDATA 3.1软件进行资料录入,采用SPSS 17.0软件进行统计分析。主要运用t检验、协方差分析、多因素线性回归及非参数检验等统计分析方法。
     [主要研究结果]本次研究共有1149对母亲-新生儿进入研究队列。本次研究共随访到1岁幼儿620名。
     1、本研究中1149名孕产妇主要为受教育程度较低(中学及以下87.4%)、从事体力劳动或无业(88.1%)、居住在乡村或城乡结合部(65.0%)、家庭年经济收入水平较低(5万元以下者83.4%)的人群;
     2、本研究1158名新生儿中出生缺陷发生率为6.0‰;低体重儿发生率为0.9%;早产儿发生率为0.4%,均低于我国同期平均水平;
     3、本研究中新生儿及幼儿体格发育水平接近我国同期儿童发育水平。但幼儿神经智力发育水平与同期城市幼儿相比较低,发育商异常者达7.1%,智力指数异常者达3.4%;
     4、宫内铅、镉暴露对新生儿及幼儿发育的影响:以脐血铅、镉元素水平分组,发现高镉组与低镉组间新生儿及幼儿体格发育水平有统计学差异,高镉组新生儿出生体重、身长及幼儿身高均显著低于低镉组;多元线性回归分析结果亦发现脐血镉与新生儿身高、体重及幼儿身高呈负相关;脐血铅与新生儿及幼儿发育指标间未发现统计学关联;
     5、孕妇尿中三种拟除虫菊酯类杀虫剂代谢产物均具有较高的检出率及水平。高达94.1%的孕妇尿中同时检出了三种拟除虫菊酯类杀虫剂代谢产物;代谢产物3-PBA、cis-DCCA及trans-DCCA在本研究孕妇中的检出率分别为98.8%、95.3%及98.3%;其中位数水平分别为:1.01μg/L,0.44μg/L,1.17μg/L; 1.55μg/g Cre.,0.69μg/g Cre.,1.86μg/g Cre(肌酐校正);对影响孕妇尿中拟除虫菊酯类杀虫剂代谢产物水平的单因素分析提示,孕妇尿中拟除虫菊酯代谢产物水平可能会受到文化程度、职业及室内杀虫剂使用情况的影响;
     6、孕妇尿中拟除虫菊酯代谢产物水平呈现季节变化趋势,夏秋季孕妇尿中代谢物水平显著高于冬季孕妇尿中代谢物水平;
     7、孕妇尿中拟除虫菊酯类代谢产物水平与新生儿体格发育指标、幼儿体格发育指标间未发现统计学关联;
     8、以孕妇尿中拟除虫菊酯类杀虫剂代谢物水平分组,统计分析发现:不同拟除虫菊酯暴露水平孕妇所产幼儿发育商及智力指数之间有统计学差异,随着暴露水平的增高,幼儿发育商及智力指数出现降低的趋势;以上结果提示:宫内拟除虫菊酯类杀虫剂代谢产物暴露可能会对幼儿神经智力发育产生不良影响。
     [结论]
     1、研究地区孕妇宫内镉暴露会对新生儿及幼儿体格发育产生不良影响;
     2、研究对象孕妇尿中具有较高的拟除虫菊酯类杀虫剂代谢产物检出率及水平;
     3、研究地区孕妇宫内拟除虫菊酯类杀虫剂暴露可能会对幼儿神经智力发育产生不良影响。
[Backgrounds]
     There is growing concern about the potential health effects of exposure to various environmental chemicals during pregnancy and infancy. Evidence suggests that fetuses and children are more sensitive than adults to the toxicity of many environmental chemical pollutants because of their higher cell proliferation rates, lower immunologic competence, and decreased ability to detoxify carcinogens and to repair DNA damage. We are conducting a prospective cohort study among pregnant women and newborns to examine the effects of prenatal exposure to these common toxicants on infant growth and early neurodevelopment. The study recruited 1149 mother- baby pairs delivered in the Hospital for Gynecology and Obstetrics of Sheyang County, Jiangsu Province from June 2009 to January 2010. As a part of research project, this paper is principally concerned with effects of heavy metals such as lead and cadmium, and pyrethroid pesticides.
     [Objectives]
     1、To evaluate the levels and characteristic of lead, cadmium in umbilical cord blood and pyrethroid pesticides in maternal urine;
     2、To acquire the profile of physical and mental development of local neonates and 1 year old infants;
     3、To investigate the impact of prenatal lead, cadmium and pyrethroid exposure on physical and mental development of neonates and 1 year old infants and provide clues to improve local child health care.
     [Methods]
     1. Personal interview:A 30-min questionnaire was administered by a trained interviewer after delivery. The questionnaire elicited demographic information, occupational history, residential history, medication information, history of active and passive smoking, alcohol use and pesticide use during pregnancy. Socioeconomic information related to income and education was also collected.
     2. Biologic sample collection and analysis:Maternal spot urin and umbilical cord blood were collected. We assessed exposure to heavy metals by the cord blood lead and cadmium measurements, and exposure to pyrethroid pesticides by the three urinary metabolites of pyrethroid measurements (3-PBA, cis-DCCA and trans-DCCA).
     3. Measures relevant to birth outcomes and physical development:Birth weight, birth length, and head circumference were measured immediately after parturition. Information included date of delivery; gestational age at birth, infant sex, APGAR score and malformations were also recorded.
     4. Follow-up study:After the newborns reached 12 months of age, they were invited to participate in the survey; their weight, height, head circumference and breast circumference were measured as indicators of physical development. Mental development in infancy and early childhood were evaluated using the DST scale.
     5. Statistical analysis:Epidata 3.1 software was used for the import of data, and SPSS 17.0 software was applied for Statistical analysis. Measures of lead, cadmium and pyrethroid were In-transformed to normalize the distribution and stabilize the variance. The Student's t-test was used to compare the maternal and cord blood chemical levels in different groups. We used multiple linear regression to analyze the association between lead, cadmium, pyrethroid level and birth outcomes or child development, adjusting for potential confounders.
     [Results]
     A total of 1,149 pregnant women who gave birth at local maternity hospital took part in this investigation and 620 one year old infants in followed-up study.
     1、Of the 1,149 pregnant women,77.0% were under 25 years old; 87.4% of their educational level were no more than middle school; 65.0% of them lived in countryside or rural area and 57.3% participated in physical labor before or during pregnancy; 83.4% of them family annual income was below 50,000 yuan; Close to half (45.5%) of women self-reported that they or their household member had applied commercially available indoor insecticides during pregnancy;
     2、The prevalence of birth defects in our study was 6.0 per 1000 births, low-weight was 0.9% and premature infants was 0.4%; Which were all below the national average level; physical development level of newborns and one year infants were normal, whereas,7.1% and 3.4% of them had low scores in developmental quotient and mental index respectively;
     3、Significantly negative correlations were found between cord blood cadmiuneexposure and physical development of neonates and infants; Generally, elevated cord blood cadmium levels were significantly associated with decreased birth weight and reduced length, but not with head circumference and breast circumference; Whereas, no sifnificant correlations were found between cord blood lead level and fetus development and later infant development. The results aboved were verified by multiple linear regression analysis;
     5、Three pyrethroid metabolites were detected synchronously in spot urin samples from 94.1% of mothers with median unadjusted (μg/L) and creatinine-adjusted (μg/g Cre.) were 1.01 and 1.55 for 3-PBA,0.44 and 0.69 for cis-DCCA,1.17 and 1.86 for trans-DCCA respectively. The median values of urinary metabolites in our study were about 4 to 10 times higher as those of general population from the developed countries. Single factor variance analysis showed that pyrethroid metabolites level in maternal urine samples may be affected by educational level, career and the usage condition of indoor pesticide;
     6、Interestingly, we found there was a temporal season variation tendency in different months. Especially the levels of urinary metabolites in summer were significant higher than those in winter;
     7、Covariance analysis showed with the increasing of urine pyrethroid metabolites level, the infant's performance score of DST scale decreased,which suggested that prenatal pyrethroid exposure may associated with poor mental development of infant.
     [Conclusions]
     Our research suggested that:
     1、There was a significant association between elevated cord blood cadmium with reduced physical growth of newborns and one year old infants;
     2、There were high detectable rate and levels of pyrethroid metabolites in pregnant women's urine sample in this population;
     3、Exposure to elevated levels of pyrethroid pesticides was associated with reduced infant's mental development in this population.
引文
1.颜崇淮,沈晓明.环境化学污染与儿童健康[J].中国儿童保健杂志,2007,15(4):334-336.
    2. 张玉洋.国内外对有毒污染物的研究概况[J].黑龙江环境通报,2004,28(2):6-7.
    3. Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals [J]. Lancet,2006,368:2167-2178.
    4.中国提高出生人口素质、减少出生缺陷和残疾行动计划(2002-2010年)[J].中国生育健康杂志,2002(3):98-101.
    5.曹露露,颜崇淮,沈晓明.孕期化学污染物暴露对胎儿及儿童生长发育的影响.中国儿童保健[J],2008(16)4:433-435.
    6.隋颖.持久性有机污染物对人类健康的危害[J].预防医学论坛,2006,12(4):502-504.
    7. Hertz-Picciotto I, Charles MJ, James RA, et al. In utero polychlorinated biphenyl exposures in relation to fetal and early childhood growth[J]. Epidemiology,2005, 16(5):648-656.
    8. Eskenazi B, M arks AR, Bradman A, et al. In utero exposure to dichlorodiphenyltrichloroethane(DDT) and dichlorodiphenyldichl0r0ethylene (DDE) and neurodevelopment among young Mexican American children[J]. Pediatrics,2006,118(1):233-241.
    9. Ribas-Fito N, Torrent M, Carrizo D, et al. Exposure to hexachlorobenzene during pregnancy and children's social behavior at 4 years of age[J]. Environ Health Perspect,2007,115(3):447-450.
    10. Tang D, Li TY, Liu JJ. PAH-DNA adducts in cord blood and fetal and child development in a Chinese cohort[J]. Environ Health Perspect,2006,114(8):129 7-1300.
    11. Choi H, Jedrychowski W, Spengler J. International studies of prenatal exposure to polycyclic aromatic hydrocarbons and fetal growth[J]. Environmental Health Perspectives,2006,114(11):1744-1750.
    12. Perera FP, Rauh V, Whyatt RM. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children[J]. Environmental Health Perspectives,2006,114(8): 1287-1292.
    13. Bell M L, Ebisu K, Belanger K. Ambient air pollution and low birth weight in Connecticut and Massachusetts[J]. Environmental Health Perspectives,2007, 115(7):1118-1124.
    14. Roza SJ, Verburg BO, Jaddoe Vw. Effects of maternal smoking in pregnancy on prenatal brain development[J]. Eur J Neurosci,2007,25(3):611-617.
    15. Chen PC, Pan JJ, Wang JD. Parental exposure to lead and small for gestational age births[J]. Am J Ind Med,2006,49(6):417-422.
    16. Canfield RL, Henderson CR, Cory-Slechta DA, et al. Intellectual im pairm ent in children with blood lead concentrations below 10 microg per deciliter[J]. N Engl J Med,2003,348(16):1517-1526.
    17. Davidson Pw, Myers GJ, Cox C, et al. Methylmercury and neurodevelopment: longitudinal analysis of the Seychelles child development cohort[J]. Neurotoxicol Teratol,2006,28(5):529-535.
    18. Yang CY, Chang CC, Tsai SS, et al. Arsenic in drinking water and adverse pregnancy outcome in an ars-en-iasisandemic area in northeastern Taiwan[J]. Environ Res,2003,91(1):29-34.
    19. Hafeman D, FactoPLitvak P, Cheng z, et al. Association between manganese exposure through drinking water and infant mortality in Bangladesh[J]. Environ Health Perspect,2007,115(7):1107-1112.
    20. Zhang YL, Zhao YC, Wang JX, et al. Effect of environmental exposure to cadmium on pregnancy outcom e and fetal growth:a study on healthy pregnant women in China[J]. J Environ Sci Health A Tox Hazard Subst Environ Eng,2004, 39(9):2507-2515.
    21. Navas-Acien A, Schwartz B S, Rothenberg S J, et al. Bone lead levels and blood pressure endpoints:a meta-analysis[J]. Epidemiology,2008,19(3):496-504.
    22. Odabasi E, Turan M, Tekbas F, et al. Evaluation of secondary causes that may lead to bone loss in women with osteoporosis:a retrospective study[J]. Arch Gynecol Obstet,2009,279(6):863-867.
    23. Smith D J, Mielke H W, Heneghan J B. Subchronic lead feeding study in male rats[J]. Arch Environ Contam Toxicol,2008,55(3):518-528.
    24. Gulson B. Stable lead isotopes in environmental health with emphasis on human investigations[J]. Sci Total Environ,2008,400(1-3):75-92.
    25. Kruger K, Saulez M N, Neser J A, et al. Acute lead intoxication in a pregnant mare[J]. J S Afr Vet Assoc,2008,79(1):50-53.
    26. Cleveland L M, Minter M L, Cobb K A, et al. Lead hazards for pregnant women and children:part 1:immigrants and the poor shoulder most of the burden of lead exposure in this country. Part 1 of a two-part article details how exposure happens, whom it affects, and the harm it can do[J]. Am J Nurs,2008,108(10):40-49,50.
    27. Cleveland L M, Minter M L, Cobb K A, et al. Lead hazards for pregnant women and children:part 2:more can still be done to reduce the chance of exposure to lead in at-risk populations[J]. Am J Nurs,2008,108(11):40-47,47-48.
    28. Kutlu T, Karagozler A A, Gozukara E M. Relationship among placental cadmium, lead, zinc, and copper levels in smoking pregnant women[J]. Biol Trace Elem Res, 2006,114(1-3):7-17.
    29. Roomi M W, Columbano A, Ledda-Columbano G M, et al. Induction of the placental form of glutathione S-transferase by lead nitrate administration in rat liver[J]. Toxicol Pathol,1987,15(2):202-205.
    30. Wang, Y.Y., et al. The effects of lead exposure on placental NF-kappa B expression and the consequences for gestation 1[J]. Re Prod Toxieo,2009,27(2): P.190-195.
    31. Llanos, M.N. and A.M. Ronco.Fetal growth restriction is related to placental levels of cadmium, lead and arsenic but not with antioxidant activities[J]. ReProd Toxicol,2009.27(1):P.88-92.
    32.金泰廙,孔庆瑚,叶葶葶等.镉致人体健康损害的环境流行病学研究[J].环境与职业医学,2002,19:10-16.
    33. Leazer TM, Liu Y, Klaassen CD. Cadmium absorption and its relationship to divalent metal transporter21 in the pregnant rat[J]. Toxicol Appl Pharmacol,2002, 185,18-24.
    34. Hernandez M, Schuhmacher M, Fernandez JD, et al. Urinary cadmium levels during pregnancy and postpartum:a longitudinal study[J]. Biol Trace Elem Res, 1996,53:205-212.
    35. Bhatacharyya MH, Whelton BD, Peterson DP. Gastrointestinal absorption of cadmium in mice during gestation and lactation[J]. Toxicol Appl Pharmacol,1982, 66:368-375.
    36. Ali M M, Murthy R C, Chandra S V. Developmental and longterm neurobehavioral toxicity of low level in-utero cadmium exposure in rats[J]. Neurobehav Toxicol Teratol,1986,8(5):463-468.
    37. Thacther RW, Lester ML, McAlaster R, et al. Eeffcts of low levels of cadmium and lead on conngitive functioning in children. Arch Environ Health[J].1982, 37(3):159-166.
    38. Hideo Kaneko and Junshi Miyamoto. Pyrethroid Chemistry and Metabolism. Handbook of pesticide toxicology (Second Edition) [M]. Academic Press,2001, 263-1288.
    39.金泰廙.《职业卫生与职业医学》第6版,人民卫生出版社.
    40. Leng, G., K.H. Kuhn, and H. Idel. Biological monitoring of pyrethroid metabolites in urine of pest control operators[J]. Toxicol Lett,1996,88:215-220.
    41. Leng, G., A. Leng, K.H. Kuhn, J. Lewalter, and J. Pauluhn. Human dose-excretion studies with the pyrethroid insecticide cyfluthrin:urinary metabolite profile following inhalation[J]. Xenobiotica,1997,27:1273-1283.
    42.胡文静,屈艾,仇敬运,张相萍,丁铁林.环境物质拟除虫菊酯毒理学研究进展[J].环境科学管理,2007,(32)10:52-54,57.
    43. Han, Y., Y. Xia, J. Han, J. Zhou, S. Wang, P. Zhu, R. Zhao, N. Jin, L. Song, and X. Wang. The relationship of 3-PBA pyrethroids metabolite and male reproductive hormones among non-occupational exposure males[J]. Chemosphere,2008, 72:785-790.
    44. Meeker, J.D., D.B. Barr, and R. Hauser. Human semen quality and sperm DNA damage in relation to urinary metabolites of pyrethroid insecticides[J]. Human Reproduction,2008,23:1932-1940.
    45. Meeker, J.D., D.B. Barr, and R. Hauser.2009. Pyrethroid insecticide metabolites are associated with serum hormone levels in adult men[J]. Reproductive Toxicology,27:155-160.
    46. Xia Y, Han Y, Wu B, et al. The relation between urinary metabolite of pyrethroid insecticides and semen quality in humans[J]. Fertil Steril,2008,89(6):1743-1750.
    47. Diel, F., B. Horr, H. Borck, and T. Irman-Florjanc. Pyrethroid insecticides influence the signal transduction in T helper lymphocytes from atopic and nonatopic subjects[J]. Inflammation Research,2003,52:154-163.
    48.2009年中国卫生统计年鉴.
    49.耿庆妍,岳晓红,徐大宁.个性化教育对婴幼儿体格及智能发育影响[J].中国公共卫生,2010,26(8):1013-1014.
    50.马迎华.出生前低水平铅暴露对子代发育的影响[J].环境与健康杂志,1999(1):62-63.
    51.陶勇,白雪涛,张洪桥,等.出生前后铅暴露对婴幼儿生长发育的影响[J].卫生研究,2001(2):102-104.
    52. Baghurst P A, Mcmichael A J, Vimpani G V, et al. Determinants of blood lead concentrations of pregnant women living in Port Pirie and surrounding areas[J]. Med J Aust,1987,146(2):69-73.
    53. Mcmichael A J, Vimpani G V, Robertson E F, et al. The Port Pirie cohort study: maternal blood lead and pregnancy outcome[J]. J Epidemiol Community Health, 1986,40(1):18-25.
    54. Bellinger D, Leviton A, Rabinowitz M, et al. Weight gain and maturity in fetuses exposed to low levels of lead[J]. Environ Res,1991,54(2):151-158.
    55.刘昔荣,秦锐,赵人,等.孕中期低水平铅暴露对新生儿神经行为发育的影响[J].中国儿童保健杂志,2002(1):1-3.
    56.李敏,杨秀群,陈淑明,等.脐带血铅含量与新生儿出生体重关系的探讨[J].中国儿童保健杂志,2000(3):165-166.
    57. Gerr F, Letz R, Stokes L, et al. Association between bone lead concentration and blood pressure among young adults[J]. Am J Ind Med,2002,42(2):98-106.
    58. Ronchetti R, van den Hazel P, Schoeters G, et al. Lead neurotoxicity in children: is prenatal exposure more important than postnatal exposure?[J]. Acta Paediatr Suppl,2006,95(453):45-49.
    59. Chen A, Schwarz D, Radcliffe J, et al. Maternal IQ, child IQ, behavior, and achievement in urban 5-7 year olds[J]. Pediatr Res,2006,59(3):471-477.
    60. Davis D W, Burns B M, Wilkerson S A, et al. Visual perceptual skills in children born with very low birth weights[J]. J Pediatr Health Care,2005,19(6):363-368.
    61. Nigg J T, Knottnerus G M, Martel M M, et al. Low blood lead levels associated with clinically diagnosed attention-deficit/hyperactivity disorder and mediated by weak cognitive control[J]. Biol Psychiatry,2008,63(3):325-331.
    62. Papanikolaou N C, Hatzidaki E G, Belivanis S, et al. Lead toxicity update. A brief review[J]. Med Sci Monit,2005,11(10):A329-A336.
    63. Guilarte T R, Toscano C D, Mcglothan J L, et al. Environmental enrichment reverses cognitive and molecular deficits induced by developmental lead exposure[J]. Ann Neurol,2003,53(1):50-56.
    64. Needleman H L, Leviton A, Bellinger D. Lead-associated intellectual deficit[J]. N Engl J Med,1982,306(6):367-367.
    65. Jedrychowski W, Perera F P, Jankowski J, et al. Very low prenatal exposure to lead and mental development of children in infancy and early childhood:Krakow prospective cohort study[J]. Neuroepidemiology,2009,32(4):270-278.
    66. Nampoothiri L P, Gupta S. Biochemical effects of gestational coexposure to lead and cadmium on reproductive performance, placenta, and ovary[J]. J Biochem Mol Toxicol,2008,22(5):337-344.
    67. Staessen J A, Vyncke G, Lauwerys R R, et al. Transfer of cadmium from a sandy acidic soil to man:a population study[J]. Environ Res,1992,58(1):25-34.
    68. Savolainen H. Cadmium-associated renal disease[J]. Ren Fail,1995,17(5): 483-487.
    69. Kuriwaki J, Nishijo M, Honda R, et al. Effects of cadmium exposure during pregnancy on trace elements in fetal rat liver and kidney[J]. Toxicol Lett,2005, 156(3):369-376.
    70. Jarup L, Berglund M, Elinder C G. et al. Health effects of cadmium exposure--a review of the literature and a risk estimate[J]. Scand J Work Environ Health,1998, 24 Suppl 1:1-51.
    71. Kobayashi E, Suwazono Y, Dochi M, et al. Influence of consumption of cadmium-polluted rice or Jinzu River water on occurrence of renal tubular dysfunction and/or Itai-itai disease[J]. Biol Trace Elem Res,2009,127(3): 257-268.
    72. Voors A W, Shuman M S. Liver cadmium levels in North Carolina residents who died of heart disease[J]. Bull Environ Contam Toxicol,1977,17(6):692-696.
    73. Nogawa K, Tsuritani I, Kido T, et al. Mechanism for bone disease found in inhabitants environmentally exposed to cadmium:decreased serum I alpha, 25-dihydroxyvitamin D level[J]. Int Arch Occup Environ Health,1987,59(1): 21-30.
    74. Lui E, Fisman M, Wong C, et al. Metals and the liver in Alzheimer's disease. An investigation of hepatic zinc, copper, cadmium, and metallothionein[J]. J Am Geriatr Soc,1990,38(6):633-639.
    75. Armstrong B G, Kazantzis G. Prostatic cancer and chronic respiratory and renal disease in British cadmium workers:a case control study[J]. Br J Ind Med,1985, 42(8):540-545.
    76. Slotkin T A, Kavlock R J, Cowdery T, et al. Functional consequences of prenatal methylmercury exposure:effects on renal and hepatic responses to trophic stimuli and on renal excretory mechanisms[J]. Toxicol Lett,1986,34(2-3):231-245.
    77. Christensen M M, Keith I, Rhodes P R, et al. A guinea pig model for study of bladder mast cell function:histamine release and smooth muscle contraction [J]. J Urol,1990,144(5):1293-1300.
    78. Nagymajtenyi L, Schulz H, Desi I. Behavioural and functional neurotoxicological changes caused by cadmium in a three-generational study in rats[J]. Hum Exp Toxicol,1997,16(12):691-699.
    79. Shen H M, Dong S Y, Ong C N. Critical role of calcium overloading in cadmium-induced apoptosis in mouse thymocytes[J]. Toxicol Appl Pharmacol, 2001,171(1):12-19.
    80. Sorell T L, Graziano J H. Effect of oral cadmium exposure during pregnancy on maternal and fetal zinc metabolism in the rat[J]. Toxicol Appl Pharmacol,1990, 102(3):537-545.
    81. Kuhnert P M, Kuhnert B R, Bottoms S F, et al. Cadmium levels in maternal blood, fetal cord blood, and placental tissues of pregnant women who smoke[J]. Am J Obstet Gynecol,1982,142(8):1021-1025.
    82. Kuhnert P M, Kuhnert B R, Erhard P, et al. The effect of smoking on placental and fetal zinc status[J]. Am J Obstet Gynecol,1987,157(5):1241-1246.
    83. Kuhnert B R, Kuhnert P M, Debanne S, et al. The relationship between cadmium, zinc, and birth weight in pregnant women who smoke[J]. Am J Obstet Gynecol, 1987,157(5):1247-1251.
    84. Laudanski T, Sipowicz M, Modzelewski P, et al. Influence of high lead and cadmium soil content on human reproductive outcome[J]. Int J Gynaecol Obstet, 1991,36(4):309-315.
    85. Nishijo M, Nakagawa H, Honda R, et al. Effects of maternal exposure to cadmium on pregnancy outcome and breast milk[J]. Occup Environ Med,2002, 59(6):394-396,397.
    86. Heudorf, U., and J. Angerer. Metabolites of pyrethroid insecticides in urine specimens:current exposure in an urban population in Germany[J]. Environmental Health Perspectives,2001,109:213-217.
    87. Schettgen, T., U. Heudorf, H. Drexler, and J. Angerer. Pyrethroid exposure of the general population-is this due to diet[J]. Toxicology Letters,2002,134:141-145.
    88. CDC. Fourth National Report on Human Exposure to Environmental Chemicals. 2009.
    89. Fortin, M.C., M. Bouchard, G. Carrier, and P. Dumas. Biological monitoring of exposure to pyrethrins and pyrethroids in a metropolitan population of the Province of Quebec, Canada[J]. Environmental Research,2008, (107)3:343-350.
    90. Berkowitz, G.S., J. Obel, E. Deych, R. Lapinski, J. Godbold, Z. Liu, P.J. Landrigan, and M.S. Wolff. Exposure to indoor pesticides during pregnancy in a multiethnic, urban cohort[J]. Environmental Health Perspectives,2003,111: 79-84.
    91. Ueyama, J., A. Kimata, M. Kamijima, N. Hamajima, Y. Ito, K. Suzuki, T. Inoue, K. Yamamoto, K. Takagi, I. Saito, K. Miyamoto, T. Hasegawa, and T. Kondo. Urinary excretion of 3-phenoxybenzoic acid in middle-aged and elderly general population of Japan[J]. Environmental Research,2009,109:175-180.
    92. Shafer T J, Meyer D A, Crofton K M. Developmental neurotoxicity of pyrethroid insecticides:critical review and future research needs[J]. Environ Health Perspect, 2005,113(2):123-136.
    93. Barr D B, Olsson A O, Wong L Y, et al. Urinary concentrations of metabolites of pyrethroid insecticides in the general U.S. population:National Health and Nutrition Examination Survey 1999-2002[J]. Environ Health Perspect,2010, 118(6):742-748.
    94. Arcury, T.A., J.G. Grzywacz, S. Isom, L.E. Whalley, Q.M. Vallejos, H. Chen, L. Galvan, D.B. Barr, and S.A. Quandt. Seasonal variation in the measurement of urinary pesticide metabolites among Latino farmworkers in eastern North Carolina[J]. International Journal of Occupational & Environmental Health,2009, 15:339-350.
    1. Kisicki, J.C., Seip, C.W., and Combs, M.L. A rising dose toxicology study to determine the no-observable effect levels (NOEL) for erythrocyte acetylcholinesterase (AChE) inhibition and cholinergic signs and symptoms of chlorpyrifos at three dose levels. Dow AgroSciences LLC.1999.
    2. Richardson RJ, Moore TB, Kayyali US, Randall JC. Chlorpyrifos:assessment of potential for delayed neurotoxicity by repeated dosing in adult hens with monitoring of brain acetylcholinesterase, brain and lymphocyte neurotoxic esterase, and plasma butyrylcholinesterase activities[J]. Fundam Appl Toxicol.1993,21(1):89-96.
    3. Abou-Donia MB, Wilmarth KR, Abdel-Rahman A A, Jensen KF, Oehme FW, Kurt TL. Increased neurotoxicity following concurrent exposure to pyridostigmine bromide, DEET, and chlorpyrifos[J]. Fundam Appl Toxicol.1996,34(2):201-22.
    4. Chambers, J.E., and Chambers, H.W. Oxidative desulfuration of chlorpyrifos, chlorpyrifos-methyl, and leptophos by rat brain and liver[J]. J. Biochem. Toxicol.1989, 4:201-203.
    5. Chambers, H.W. Organophosphorus compounds; An overview. In Organophosphates: Chemistry, Fate and Effects (J. Chambers and P. Levi, Ed.) [M]. Academic Press, New York, 1992, pp.11-12.
    6. Pope, C.N., and Chakraborti, T.K. Dose-related inhibition of brain and plasma cholinesterase in neonatal and adult rats following sublethal organophosphate exposures[J]. Toxicology, 1992,73:35-43.
    7. Pope, C.N., and Liu, J. Age-related differences in sensitivity to organophosphorus pesticides. Environ. Toxicol[J]. Pharmacol.1997,4:309-314.
    8. Pope, C.N., Chakraborti, T.K., Chapman, M.L., Farrar, J.D., and Arthun, D. Comparison of In vivo Cholinesterase Inhibition in Neonatal and Adult Rats by Three Organophosphorothioate Insecticides. NTIS/PB92-110550,110513. Govt Reports Announcements& Index Issue 02, 1992.1991.
    9. Chakraborti, T.K., Farrar, J.D., and Pope, C.N. Comparative neurochemical and neurobehavioral effects of repeated chlorpyrifos exposures in young and adult rats[J]. Pharmacol. Biochem. Behav.1993,46:219-224.
    10. Chaudhuri, J., Chakraborti, T.K., Chanda, S., and Pope, C.N. Differential modulation of organophosphate-sensitive muscarinic receptors in rat brain by parathion and chlorpyrifos[J]. J. Biochem. Toxicol.1993,8:207-216.
    11. Ricceri, L., Markina, N., Valanzano, A., Fortuna, S., Cometa, M.F., Meneguz, A., and Calamandrei, G. Developmental exposure to chlorpyrifos alters reactivity to environmental and social cues in adolescent mice[J]. Toxicol. Appl. Pharmacol.2003,191:189-201.
    12. Slotkin, T.A., Cousins, M.M., Tate, C.A., and Seidler, F.J. Persistent cholinergic presynaptic deficits after neonatal chlorpyrifos exposure[J]. Brain Res.2001,902:229-243.
    13. Venerosi, A., Calamandrei, G., and Ricceri, L. A social recognition test for female mice reveals behavioral effects of developmental chlorpyrifos exposure[J]. Neurotoxicol. Teratol. 2006,28:466-471.
    14. Dybowski, J.A., Mortensen, S.R., and Mattsson, J.L. Comparison of chlorpyrifos (CPF) concentrations for in vitro and in vivo effects[J]. Toxicologist.2001,60:325 (abstr.1546).
    15. Hunter, D.L., Lassiter, T.L., and Padilla, S. Gestational exposure to chlorpyrifos:Comparative distribution of trichloropyridinol in the fetus and dam[J]. Toxicol. Appl. Pharmacol.1999, 158:16-23.
    16. Mattsson, J.L., Maurissen, J.P., Nolan, R.J., and Brzak, K.A. Lack of differential sensitivity to cholinesterase inhibition in fetuses and neonates compared to dams treated perinatally with chlorpyrifos[J]. Toxicol. Sci.2000,53:438-446.
    17. Marty, M.S., Domoradzki, J.Y., Hansen, S.C., Timchalk, C., Bartels, M.J., and Mattsson, J.L. The effect of route, vehicle, and divided doses on the pharmacokinetics of chlorpyrifos and its metabolite trichloropyridinol in neonatal Sprague-Dawley rats. Toxicol. Sci[J].2007, 100:360-373.
    18. Timchalk, C., Busby, A., Campbell, J.A., Needham, L.L., and Barr, D.B. Comparative pharmacokinetics of the organophosphorus insecticide chlorpyrifos and its major metabolites diethylphosphate, diethylthiophosphate and 3,5,6-trichloro-2-pyridinol in the rat[J], Tox-icology.2007,237:145-157.
    19. Mortensen, S.R., Chanda, S.M., Hooper, M.J., and Padilla, S. Maturational differences in chlorpyrifos-oxonase activity may contribute to age-related sensitivity to chlorpyrifos[J]. J. Biochem. Toxicol.1996,11:279-287.
    20. Atterberry, T.T., Burnett, W.T., and Chambers, J.E. Age-related differences in parathion and chlorpyrifos toxicity in male rats:Target and nontarget esterase sensitivity and cytochrome P450-mediated metabolism [J]. Toxicol. Appl. Pharmacol.1997,147:411-418.
    21. Mortensen, S.R., Brimijoin, S., Hooper, M.J., and Padilla, S. Comparison of the in vitro sensitivity of rat acetylcholinesterase to chlorpyrifos-oxon:What do tissue IC50 values represent? [J] Toxicol. Appl. Pharmacol.1998,148:46-49.
    22. Howard, A.S., Bucelli, R., Jett, D.A., Bruun, D., Yang, D., and Lein, P.J. Chlorpyrifos exerts opposing effects on axonal and dendritic growth in primary neuronal cultures[J]. Toxicol. Appl. Pharmacol.2005,207:112-124.
    23. Yang, D., Howard, A., Bruun, D., Ajua-Alemanj, M., Pickart, C., and Lein, P.J. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase[J]. Toxicol. Appl. Pharmacol.2008,228:32-41.
    24. Schuh, R.A., Lein, P.J., Beckles, R.A., and Jett, D.A. Noncholinesterase mechanisms of chlorpyrifos neurotoxicity:Altered phosphorylation of Ca2+/cAMP response element binding protein in cultured neurons[J]. Toxicol. Appl. Pharmacol.2002,182:176-185.
    25. Whyatt, R.M., Camann. D.E., Kinney, P.L., Reyes, A., Ramirez, J., Dietrich, J., Diaz. D., Holmes, D., and Perera, F.P. Residential pesticide use during pregnancy among a cohort of urban minority women. Environ[J]. Health Perspect.2002,110:507-514.
    26. Perera, F.P., Rauh, V., Tsai, W.Y., Kinney, P., Camann, D., Barr, D., Bernert, T., Garfinkel, R., Tu, Y.H., Diaz, D., Dietrich, J., and Whyatt, R.M. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population[J]. Environ. Health Perspect.2003,111:201-205.
    27. Whyatt, R.M., Rauh, V.A., Camann, D., Tang, D., Kinney, P.L.,Garfinkel, R., Andrews, H., Hoepner, L., and Perera, F.P. Residential pesticide exposure, fetal growth and neurocognitive development among urban minorities[J]. Neurotoxicology (Amsterdam).2004,25:683-683.
    28. Whyatt, R.M., Rauh, V., Barr, D.B., Camann, D.E., Andrews, H.F., Garfinkel, R., Hoepner, L.A., Diaz, D., Dietrich, J., Reyes, A., Tang, D., Kinney, P.L., and Perera, F.P. Prenatal insecticide exposures and birth weight and length among an urban minority cohort[J]. Environ. Health Perspect.2004,112:1125-1132.
    29. Eskenazi, B., Harley, K., Bradman, A.,Weltzien, E., Jewell, N.P., Barr, D.B., Furlong, C.E., and Holland, N.T. Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population [J]. Environ. Health Perspect. 2004,112:1116-1124.
    30. Berkowitz, G.S., Wetmur, J.G., Birman-Deych, E., Obel, J., Lapinski, R.H., Godbold, J.H., Holzman, I.R., andWolff, M.S. In utero pesticide exposure, maternal paraoxonase activity, and head circumference[J]. Environ. Health Perspect.2004,112:388-391.
    31. Wolff, M.S., Engel, S., Berkowitz, G., Teitelbaum, S., Siskind, J., Barr, D.B., and Wetmur, J. Prenatal pesticide and PCB exposures and birth outcomes[J]. Pediatr. Res.2007,61:243-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700