用户名: 密码: 验证码:
基于接触几何的微纳米尺度下的粘着研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微纳米装置和仪器的快速发展,微纳米尺度下的粘着变得越来越重要。小尺度的机械系统有较高的表面积-体积比,所以更多地受到表面效应而非惯性效应的影响。粘着力是微机电系统(MEMS)在制造和使用中失效的一个主要原因。MEMS的进一步实用化和微型化,都迫切地需要研究和控制粘着力。本文在接触几何的基础上,建立了单峰接触粘着模型,利用原子力显微镜研究了两表面间的粘着、特殊结构表面的粘着和类金刚石膜的减粘效应。本文的主要研究内容如下:
     (1)精确的接触几何对于粘着的量化计算至关重要,为此本文建立了单峰接触粘着模型。在粗糙峰和随机表面光滑性假设的基础上,通过微分几何曲面论获得每一点的主曲率。在曲面当前点的一级近似下,把曲面与粗糙峰的接触等价地转化成一个刚性平面和弹性椭圆抛物面间的接触。这种转化保持了原有的接触区间隙和弹性变形性质。随后,通过连续介质接触力学理论和Hamaker方法,用数值方法来求解曲面上每一点的接触面积和粘着力。最后本文给出了两个算例,说明模型在一定程度上是可行的。
     (2)为了研究两平面间的粘着和避免针尖磨损,本文采用针尖直径约为1.7μm的平头探针。实验采用的样品是硅片、石英和蓝宝石。实验分别在潮湿的空气中、高纯干燥氮气中(手套箱中)、蒸馏水中和氯化钾溶液中进行。研究表明,真实接触面积只占表观接触面积的很小一部分。热力学表面自由能并不能预测两表面间粘着力的大小。用原子力显微镜测量粘着力的稳定性和重复性取决于样品特征、测量参数和环境。不同环境下,对粘着力有影响的相互作用和因素有所不同,各相互作用和因素之间相互耦合决定了最终的粘着力。
     (3)为了研究温度对粘着的影响,实验采用的接触几何是平面与粗糙表面的接触。实验分别在潮湿的空气中和高纯干燥氮气中进行。样品温度从30°C变化到200°C。结果表明,200°C以内的温度对探针微悬臂的法向弹性系数的影响基本可以忽略。在这个温度范围内,每一温度下的粘着力分布都是正态的。在高纯干燥氮气中,粘着力随着温度的升高而持续下降。但在潮湿的空气环境下,随温度的升高,粘着力先增大,在约100°C时达到最大值,接着开始下降。在下降的过程中,开始较为缓慢,在150°C附近,粘着力急剧下降,并在高温区保持较平稳的状态。
     (4)在潮湿的空气中和高纯干燥氮气中,我们研究了尖探针、平头探针和小球探针与周期性绝缘表面接触时的粘着行为。结果表明:粘着行为极大地依赖于接触几何、表面形貌和环境,并且这三个因素是共同作用来决定最终的粘着力的。在同一点的多次测量中,多峰接触时的粘着力都出现了分层的现象。在手套箱中不除静电的情况下和在空气中,粘着力在各层逐渐增加,并有层间跳跃的现象。粘着力的增加起因于静电荷的积累和毛细弯月面半径的增大。静电荷只有在接触-分离之后才增加,并且具有累加效应,当达到饱和后,粘着力将表现得平稳。在手套箱中除静电的情况下,粘着力各层的变化不大。在利用小球探针时,我们还发现粘着来源的不同会导致同一点粘着力在区间段上的波动情况不同。具体情况是:有静电时,波动较小;去静电时,波动最大;空气中,波动最小。
     (5)在空气中和高纯干燥氮气中,基于不同的接触几何,我们研究了掺杂金属的类金刚石(DLC)膜的减粘效应。结果发现,在不同的接触几何和环境下,DLC膜都可以有效地减小粘着力和磨损。粘着力的减小原因是表面能的降低和DLC膜对水的接触角的增大。粘着力的减小幅度与接触几何、DLC膜的粗糙度、与DLC膜配对的材料特性和所处的环境都密切相关。并且,这些因素是共同作用来决定最后的粘着力减小幅度的。
With the rapid development of micro-scale/nano-scale devices and instruments, theadhesion in these scales becomes more and more important. The small-scale mechanicalsystems have high surface-area-to-volume ratios. Therefore, these systems are moreinfluenced by surface effects rather than inertia effects. The adhesion force is the chief factorof the failures of micro electro mechanical systems (MEMS) in the manufacture and in use.Meanwhile, in order to further the practicability and miniaturization of MEMS, it is urgent todevelop a sophisticated understanding and control of adhesion between solid-solid surfaces.In this thesis, a single-asperity adhesion model is established based on contact geometry.Meanwhile, the adhesion behaviors between two surfaces, the adhesion of special surfacestructure and the effect of reducing adhesion of diamond-like carbon (DLC) films are studiedby using an atomic force microscopy (AFM).
     (1) The precise contact geometry is crucial to the quantification of adhesion force. Thesingle-asperity adhesion model is established based on contact geometry. On the basis ofsmoothness assumption of the asperity and surface, the principal curvatures of a point on thesurface are obtained by using the surface theory of differential geometry. By using the firstapproximation of the surface, the contact between a parabolic-shaped asperity andarbitrary-shaped surface patch is transformed into the contact between an elastic ellipticparaboloid and a rigid flat surface. The gaps between the asperity and surface of two kinds ofcontacts are the same when applying normal load, and the elastic properties are not changedafter transformation. By using the theories of continuous medium contact mechanics andHamaker approach, the contact area and adhesion force of each point on the surface areobtained by using numerical methods. At last, two examples are given to show theeffectiveness of the model.
     (2) In order to study the adhesion between two solid surfaces and prevent wear, a flat tipwith a diameter~1.7μm is used. The adhesion forces of some surface have been determinedby recording the force-displacement curves with the AFM. The adhesion measurements werecarried out under ambient conditions, in a nitrogen-filled glove box, under distilled water, and under potassium chloride (KCl) solution. The outcome shows that the real contact areawithout the applied load is only a small proportion of the apparent contact area. The adhesionforce between solid surfaces cannot be predicted by the theory of thermodynamic surface freeenergy. The measurement stability and repeatability of adhesion by the AFM depend on thesurface characterization, measurement methods and the environment. Under differentenvironments, there are different interactions and factors affecting the adhesion force, and thedominant interactions and factors may be different too. The various interactions and factorsare mutually coupled to determine the final adhesion force.
     (3) In order to study the influence of temperature on the adhesion, the contact geometryof smooth surface and rough surface is selected. The adhesion measurements were carried outunder ambient conditions and in a nitrogen-filled glove box. The substrate temperaturechanges from30°C to200°C. The results show that when the temperature is less than200°C,the influence of temperature on the normal spring constant can be ignored. In this temperaturerange, the adhesion distribution for each temperature exhibits a Gaussian-like distribution. Inthe glove box, the mean adhesion force decreases with increasing temperature. However, inhumid environment, with increasing temperature, the mean adhesion force first increases andreaches the maximum at~100°C, then begin to decline. At about150°C, the mean adhesionforce decreases dramatically, and remains relatively stable in the high temperature state.
     (4) Under ambient conditions and in a nitrogen-filled glove box, the adhesion of aninsulating periodic structure is studied by using a sharp tip, a flat tip and a ball tip. Theoutcomes show that the adhesion behaviors are largely dependent on the contact geometry,surface topography and the environment. And these factors are mutually coupled with eachother to determine the final adhesion. When numerous measurements are carried out on thesame location, the adhesion of multi-asperity contact exhibits stratification phenomena. In theglove box (without static charge removal) and under ambient conditions, the adhesion force indifferent layers increases with the increasing measurement number, and jumps betweendifferent layers. The increase of adhesion is attributed to the increase of electrostatic chargesand the increase scale of the capillary meniscus. The electrostatic charges will increase only after contact and separation and have an additive effect. When the charges are saturated, theadhesion behavior becomes stable. In the glove box (with static charge removal), the adhesionforce in different layers changes slightly. By using the ball tip, we found that the difference ofinteraction of adhesion will lead to the different adhesion fluctuation situations on the samespot. That is: when there are some changes, the fluctuation is small; by removing the changes,the fluctuation is the largest; under ambient conditions, the fluctuation is the smallest.
     (5) Under ambient conditions and in a nitrogen-filled glove box, the effect of reducingadhesion of metal-doped diamond-like carbon (DLC) films is studied based on differentcontact geometries. The outcome shows that the DLC film can effectively reduce adhesionand wear for different contact geometries under different environments. The reduction ofadhesion is attributed to the decrease of surface energy and the increase of the contact angle towater. The reduction ratio is closely related to contact geometry, the roughness of DLC film,material characteristics paired to DLC film and the environment. And these factors aremutually coupled to determine the final reduction ratio.
引文
[1] Zaghloul U., Papaioannou G., Bhushan B., et al. On the reliability of electrostaticNEMS/MEMS devices: Review of present knowledge on the dielectric charging andstiction failure mechanisms and novel characterization methodologies[J].Microelectronics Reliability,2011,51(9-11):1810-1818
    [2] Van Spengen W.M., Modli ski R., Puers R., et al. Failure mechanisms inMEMS/NEMS devices[M]. In:Bhushan B. Springer Handbook of Nanotechnology.Heidelberg:Springer,2010:1761-1782
    [3] Zhao Y.P., Wang L.S., Yu T.X. Mechanics of adhesion in MEMS—a review[J]. JournalofAdhesion Science and Technology,2003,17(4):519-546
    [4]田文超,贾建援. MEMS亟待解决的七个问题[J].仪器仪表学报,2004,(S2):95-97
    [5] Walraven J.A. Failure mechanisms in MEMS[A]. International test conference[C].Charlotte, NC, USA:lnstituteof Electrical and Electronic Engineers,2003:828-833
    [6] Van Spengen W.M., Puers R., De Wolf I. On the physics of stiction and its impact onthe reliability of microstructures[J]. Journal of Adhesion Science and Technology,2003,17(4):563-582
    [7] Cooper K., Eichenlaub S., Gupta A., et al. Adhesion of alumina particles to thin films[J].Journal of the Electrochemical Society,2002,149(4): G239-G244
    [8]周仲荣,雷源忠,张嗣伟.摩擦学发展前沿[M].北京:科学技术出版社,2006
    [9] Butt H.J., Cappella B., Kappl M. Force measurements with the atomic force microscope:Technique, interpretation and applications[J]. Surface Science Reports,2005,59(1-6):1-152
    [10] Israelachvilli J. Intermolecular and surface forces[M]. Singapore:Elsevier Pte Ltd,2011:253-255
    [11] Hamaker H.C. The London-van der Waals attraction between spherical particles[J].Physica,1937,4(10):1058-1072
    [12] Loskill P., Haehl H., Thewes N., et al. Influence of the subsurface composition of amaterial on the adhesion of staphylococci[J]. Langmuir,2012,28(18):7242-7248
    [13] AdamsonA.W., GastA.P. Physical chemistry of surfaces[M]. New York:Wiley,1997
    [14] Melrose J. Applicability of the Kelvin equation to vapor/liquid systems in porousmedia[J]. Langmuir,1989,5(1):290-293
    [15] Senden T.J., Drummond C.J. Surface chemistry and tip-sample interactions in atomicforce microscopy[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,1995,94(1):29-51
    [16] Drummond C.J., Senden T.J. Examination of the geometry of long-range tip—sampleinteraction in atomic force microscopy[J]. Colloids and Surfaces A: Physicochemicaland EngineeringAspects,1994,87(3):217-234
    [17] Hartley P.G., Larson I., Scales P.J. Electrokinetic and direct force measurementsbetween silica and mica surfaces in dilute electrolyte solutions[J]. Langmuir,1997,13(8):2207-2214
    [18] Vakarelski I.U., Ishimura K., Higashitani K. Adhesion between silica particle and micasurfaces in water and electrolyte solutions[J]. Journal of Colloid and Interface Science,2000,227(1):111-118
    [19] Bergstr m L. Hamaker constants of inorganic materials[J]. Advances in Colloid andInterface Science,1997,70:125-169
    [20] Larson I., Drummond C.J., Chan D.Y., et al. Direct force measurements betweendissimilar metal oxides[J]. The Journal of Physical Chemistry,1995,99(7):2114-2118
    [21] Janshoff A., Neitzert M., Oberd rfer Y., et al. Force spectroscopy of molecularsystems-single molecule spectroscopy of polymers and biomolecules[J]. AngewandteChemie International Edition,2000,39(18):3212-3237
    [22] Bhushan B. Nanoscale tribophysics and tribomechanics[J]. Wear,1999,225(1):465-492
    [23] Bhushan B. Nanotribology, nanomechanics, and materials characterization [M].In:Bhushan B. Springer Handbook of Nanotechnology. Heidelberg:Springer,2010:789-856
    [24] Sugawara Y., Ohta M., Konishi T., et al. Effects of humidity and tip radius on theadhesive force measured with atomic force microscopy[J]. Wear,1993,168(1):13-16
    [25] Jones R., Pollock H.M., Cleaver J.A., et al. Adhesion forces between glass and siliconsurfaces in air studied by AFM: Effects of relative humidity, particle size, roughness,and surface treatment[J]. Langmuir,2002,18(21):8045-8055
    [26] Xiao X.D., Qian L.M. Investigation of humidity-dependent capillary force[J]. Langmuir,2000,16(21):8153-8158
    [27] He M.Y., Blum A.S., Aston D.E., et al. Critical phenomena of water bridges innanoasperity contacts[J]. Journal of Chemical Physics,2001,114(3):1355-1360
    [28] Farshchi-Tabrizi M., Kappl M., Cheng Y., et al. On the adhesion between fine particlesand nanocontacts: an atomic force microscope study[J]. Langmuir,2006,22(5):2171-2184
    [29] Wei Z., He M., Zhao W., et al. Thermodynamic analysis of liquid bridge for fixedvolume in atomic force microscope[J]. Science China-Physics Mechanics&Astronomy,2013,56(10):1962-1969
    [30] Leite F.L., Bueno C.C., Da Roz A.L., et al. Theoretical models for surface forces andadhesion and their measurement using atomic force microscopy[J]. InternationalJournal of Molecular Sciences,2012,13(10):12773-12856
    [31] Huang W.H., Baró A.M., Sáenz J.J. Electrostatic and contact forces in force microscopy[J]. Journal of Vacuum Science&Technology B,1991,9(2):1323-1328
    [32] Burnham N.A., Colton R.J., Pollock H.M. Interpretation of force curves in forcemicroscopy[J]. Nanotechnology,1993,4(2):64-80
    [33] Terris B., Stern J., Rugar D., et al. Localized charge force microscopy[J]. Journal ofVacuum Science&TechnologyA,1990,8(1):374-377
    [34] Yamauchi T., Tabuchi M., Nakamura A. Size dependence of the work function in InAsquantum dots on GaAs (001) as studied by Kelvin force probe microscopy[J]. AppliedPhysics Letters,2004,84(19):3834-3836
    [35] Chang M.N., Chen C.Y., Wan W.W., et al. The influence of the annealing sequence onp+/n junctions observed by scanning capacitance microscopy[J]. Applied PhysicsLetters,2004,84(23):4705-4707
    [36] Misra R.P., Das S., Mitra S.K. Electric double layer force between charged surfaces:effect of solvent polarization[J]. The Journal of Chemical Physics,2013,138(11):114703-114703
    [37] Chan D.Y.C., Mitchell D.J. The free energy of an electrical double layer[J]. Journal ofColloid and Interface Science,1983,95(1):193-197
    [38] Hogg R., Healy T., Fuerstenau D. Mutual coagulation of colloidal dispersions[J].Transactions of the Faraday Society,1966,62:1638-1651
    [39] Butt H.J. Electrostatic interaction in scanning probe microscopy when imaging inelectrolyte solutions[J]. Nanotechnology,1992,3(2):60-68
    [40] Parsegian V.A., Gingell D. On the electrostatic interaction across a salt solutionbetween two bodies bearing unequal charges[J]. Biophysical Journal,1972,12(9):1192-1204
    [41] Bowen W.R., Hilal N., Lovitt R.W., et al. Direct measurement of interactions betweenadsorbed protein layers using an atomic force microscope[J]. Journal of Colloid andInterface Science,1998,197(2):348-352
    [42] Vinckier A., Gervasoni P., Zaugg F., et al. Atomic force microscopy detects changes inthe interaction forces between GroEL and substrate proteins[J]. Biophysical Journal,1998,74(6):3256-3263
    [43] Kado S., Yamada K., Kimura K. AFM observation of cation complexation ofdibenzocrown ethers adsorbed on highly oriented pyrolytic graphite[J]. Langmuir,2004,20(8):3259-3263
    [44] Tsao Y.H., Yang S., Evans D.F., et al. Interactions between hydrophobic surfaces.Dependence on temperature and alkyl chain length[J]. Langmuir,1991,7(12):3154-3159
    [45] Christenson H.K., Claesson P.M. Direct measurements of the force betweenhydrophobic surfaces in water[J]. Advances in Colloid and Interface Science,2001,91(3):391-436
    [46] Tsao Y.-H., Evans D.F., Wennerstrom H. Long-range attractive force betweenhydrophobic surfaces observed by atomic force microscopy[J]. Science,1993,262(5133):547-550
    [47] Tsao Y.H., Evans D.F., Wennerstroem H. Long-range attraction between a hydrophobicsurface and a polar surface is stronger than that between two hydrophobic surfaces[J].Langmuir,1993,9(3):779-785
    [48] Horn R.G., Israelachvili J. Direct measurement of forces due to solvent structure[J].Chemical Physics Letters,1980,71(2):192-194
    [49] Horn R.G., Israelachvili J.N. Direct measurement of structural forces between twosurfaces in a nonpolar liquid[J]. The Journal of chemical physics,1981,75(3):1400-1411
    [50] Hertz H. On the contact of elastic solids[J]. Journal für die reine und angewandteMathematik,1881,92:156-171
    [51] Johnson K.L. Contact mechanics[M]. Cambridge university press,1987
    [52] Johnson K.L., Kendall K., Roberts A.D. Surace energy and the contact of elasticsolids[J]. Proceedings of the Royal Society A-Mathematical Physical and EngineeringSciences,1971,324:301-313
    [53] Bradley R.S. The cohesive force between solid surfaces and the surface energy ofsolids[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal ofScience,1932,13(86):853-862
    [54] Derjaguin B.V., Muller V.M., Toporov Y.P. Effect of contact deformations on theadhesion of particles[J]. Journal of Colloid and Interface Science,1975,53:314-325
    [55] Maugis D. Adhesion of spheres: The JKR-DMT transition using a Dugdale model[J].Journal of Colloid and Interface Science,1992,150:243-269
    [56] Dugdale D.S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics andPhysics of Solids,1960,8(2):100-104
    [57] Grierson D.S., Flater E.E., Carpick R.W. Accounting for the JKR-DMT transition inadhesion and friction measurements with atomic force microscopy[J]. Journal ofAdhesion Science and Technology,2005,19(3-5):291-311
    [58] Johnson K.L., Greenwood J.A. An adhesion map for the contact of elastic spheres[J].Journal of Colloid and Interface Science,1997,192(2):326-333
    [59] Johnson K.L. Mechanics of adhesion[J]. Tribology International,1998,31(8):413-418
    [60] Maugis D. Extension of the Johnson-Kendall-Roberts theory of the elastic contact ofspheres to large contact radii[J]. Langmuir,1995,11(2):679-682
    [61] Carpick R.W., Ogletree D.F., Salmeron M. A general equation for fitting contact areaand friction vs load measurements[J]. Journal of Colloid and Interface Science,1999,211(2):395-400
    [62] Schwarz U.D. A generalized analytical model for the elastic deformation of an adhesivecontact between a sphere and a flat surface[J]. Journal of Colloid and Interface Science,2003,261(1):99-106
    [63] Yao H., Ciavarella M., Gao H. Adhesion maps of spheres corrected for strength limit[J].Journal of Colloid and Interface Science,2007,315(2):786-790
    [64] Sun W.F., Zeng Q.H., Yu A.B., et al. Calculation of normal contact forces between silicananospheres[J]. Langmuir,2013,29(25):7825-7837
    [65] Rabinovich Y.I., Adler J.J., Ata A., et al. Adhesion between nanoscale rough surfaces I.Role of asperity geometry[J]. Journal of Colloid and Interface Science,2000,232(1):10-16
    [66] Rabinovich Y.I., Adler J.J., Ata A., et al. Adhesion between nanoscale rough surfacesII. Measurement and comparison with theory[J]. Journal of Colloid and InterfaceScience,2000,232(1):17-24
    [67] Yang C., Tartaglino U., Persson B. A multiscale molecular dynamics approach tocontact mechanics[J]. The European Physical Journal E,2006,19(1):47-58
    [68] Rumpf H., Bull F.A. Particle technology[M]. London:Chapman and Hall1990
    [69] Cooper K., Ohler N., Gupta A., et al. Analysis of contact interactions between a roughdeformable colloid and a smooth substrate[J]. Journal of Colloid and Interface Science,2000,222(1):63-74
    [70] Xie H.Y. The role of interparticle forces in the fluidization of fine particles[J]. PowderTechnology,1997,94(2):99-108
    [71] Beach E.R., Tormoen G.W., Drelich J., et al. Pull-off force measurements betweenrough surfaces by atomic force microscopy[J]. Journal of Colloid and Interface Science,2002,247(1):84-99
    [72] Jaiswal R.P., Kumar G., Kilroy C.M., et al. Modeling and validation of the van derWaals force during the adhesion of nanoscale objects to rough surfaces: A detaileddescription[J]. Langmuir,2009,25(18):10612-10623
    [73] Jaiswal R.P., Beaudoin S.P. Approximate scheme for calculating van der Waalsinteractions between finite cylindrical volume elements[J]. Langmuir,2012,28(22):8359-8370
    [74] Henry C., Minier J.P., Lefevre G. Numerical study on the adhesion and reentrainmentof nondeformable particles on surfaces: the role of surface roughness and electrostaticforces[J]. Langmuir,2012,28(1):438-452
    [75] Laitinen O., Bauer K., Niinimaki J., et al. Validity of the Rumpf and the Rabinovichadhesion force models for alumina substrates with nanoscale roughness[J]. PowderTechnology,2013,246:545-552
    [76] MarmurA. Tip-surface capillary interactions[J]. Langmuir,1993,9(7):1922-1926
    [77] de Lazzer A., Dreyer M., Rath H.J. Particle-surface capillary forces[J]. Langmuir,1999,15(13):4551-4559
    [78] Halsey T.C., Levine A.J. How sandcastles fall[J]. Physical Review Letters,1998,80(14):3141
    [79] Sirghi L., Nakagiri N., Sugisaki K., et al. Effect of sample topography on adhesiveforce in atomic force spectroscopy measurements in air[J]. Langmuir,2000,16(20):7796-7800
    [80] Rabinovich Y.I., Adler J.J., Esayanur M.S., et al. Capillary forces between surfaces withnanoscale roughness[J]. Advances in Colloid and Interface Science,2002,96(1-3):213-230
    [81] Jang J., Sung J., Schatz G.C. Influence of surface roughness on the pull-off force inatomic force microscopy[J]. The Journal of Physical Chemistry C,2007,111(12):4648-4654
    [82] Butt H.J., Kappl M. Normal capillary forces[J]. Advances in Colloid and InterfaceScience,2009,146(1-2):48-60
    [83] Adams G.G., Nosonovsky M. Contact modeling—forces[J]. Tribology International,2000,33(5-6):431-442
    [84] Archard J. Elastic deformation and the laws of friction[J]. Proceedings of the RoyalSociety of London Series A Mathematical and Physical Sciences,1957,243(1233):190-205
    [85] Greenwood J.A., Williamson J.B.P. Contact of nominally flat surfaces[J]. Proceedingsof the Royal Society of London Series A Mathematical and Physical Sciences,1966,295(1442):300-319
    [86] Onions R., Archard J. The contact of surfaces having a random structure[J]. Journal ofPhysics D:Applied Physics,1973,6(3):289-304
    [87] Nayak P. Random process model of rough surfaces in plastic contact[J]. Wear,1973,26(3):305-333
    [88] Bush A., Gibson R., Thomas T. The elastic contact of a rough surface[J]. Wear,1975,35(1):87-111
    [89] Greenwood J.A. A simplified elliptic model of rough surface contact[J]. Wear,2006,261(2):191-200
    [90] Greenwood J.A., Tripp J.H. The contact of two nominally flat rough surfaces[J].Proceedings of the Institution of Mechanical Engineers,1970,185(1):625-633
    [91] Prokopovich P., Perni S. Multiasperity contact adhesion model for universal asperityheight and radius of curvature distributions[J]. Langmuir,2010,26(22):17028-17036
    [92] Prokopovich P., Perni S. Comparison of JKR-and DMT-based multi-asperity adhesionmodel: Theory and experiment[J]. Colloids and Surfaces a-Physicochemical andEngineeringAspects,2011,383(1-3):95-101
    [93] You S., Wan M.P. Mathematical models for the van der Waals force and capillary forcebetween a rough particle and surface[J]. Langmuir,2013,29(29):9104-9117
    [94] Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the RoyalSociety of London,1805,95:65-87
    [95] Fowkes F.M. Attractive forces at interfaces[J]. Journal of Industrial and EngineeringChemistry,1964,56:40-52
    [96] Wu S. Calculation of interfacial tension in polymer systems[A]. Journal of PolymerScience Part C: Polymer Symposia[C]. Wiley Online Library,1971:19-30
    [97] Van Oss C.J., Chaudhury M.K., Good R.J. Interfacial Lifshitz-van der Waals and polarinteractions in macroscopic systems[J]. Chemical Reviews,1988,88(6):927-941
    [98] Van Oss C.J. Interfacial forces in aqueous media[M]. New York:Taylor&Francis,2006
    [99] Owens D.K., Wendt R.C. Estimation of the surface free energy of polymers[J]. JournalofApplied Polymer Science,1969,13(8):1741-1747
    [100]葛世荣,朱华.摩擦学的分形[M].北京:机械工业出版社,2005
    [101]王幼宁,刘继志.微分几何讲义[M].北京:北京师范大学出版社,2003
    [102] Maekawa T. Self-intersections of offsets of quadratic surfaces: Part I, explicitsurfaces[J]. Engineering with Computers,1998,14(1):1-13
    [103] Tabor D. Surface forces and surface interactions[J]. Journal of Colloid and InterfaceScience,1977,58(1):2-13
    [104] Pashley M.D., Pethica J.B., Tabor D. Adhesion and micromechanical properties ofmetal surfaces[J]. Wear,1984,100:7-31
    [105] Pietrement O., Troyon M. General equations describing elastic indentation depth andnormal contact stiffness versus load[J]. Journal of Colloid and Interface Science,2000,226(1):166-171
    [106]关佩,陈家庆. Hertz点接触问题求解方法的对比研究[J].机械科学与技术,2011,(07):1171-1178
    [107] Lai T.M., Huang P. Study on microscale adhesion between solid surfaces with scanningprobe[J]. Science China Technological Sciences,2013,56(12):2934-2952
    [108]郑华军,刘莹,周顺斌.微观粘着测试技术研究进展[J].润滑与密封,2008,202(06):99-103
    [109] Tabor D., Winterton R.H.S. The direct measurement of normal and retarded van derWaals forces[J]. Proceedings of the Royal Society of London A Mathematical andPhysical Sciences,1969,312(1511):435-450
    [110] Israelachvili J.N., Tabor D. The measurement of van der Waals dispersion forces in therange1.5to130nm[J]. Proceedings of the Royal Society of London A Mathematicaland Physical Sciences,1972,331(1584):19-38
    [111] Martin Y., Abraham D.W., Wickramasinghe H.K. High-resolution capacitancemeasurement and potentiometry by force microscopy[J]. Applied Physics Letters,1988,52(13):1103-1105
    [112] Erlandsson R., Hadziioannou G., Mate C.M., et al. Atomic scale friction between themuscovite mica cleavage plane and a tungsten tip[J]. Journal of Chemical Physics,1988,89(8):5190-5193
    [113] Guo Y.B., Wang D.G., Zhang S.W. Adhesion and friction of nanoparticles/polyelectrolyte multilayer films by AFM and micro-tribometer[J]. TribologyInternational,2011,44(7-8):906-915
    [114] Zhang S., Zhang M., Li K. Adhesion force between aramid fibre and aramid fibrid byAFM[J]. Polymer Bulletin,2011,66(3):351-362
    [115] Pelin I.M., Piednoir A., Machon D., et al. Adhesion forces between AFM tips andsuperficial dentin surfaces[J]. Journal of Colloid and Interface Science,2012,376:262-268
    [116] Raj G., Balnois E., Helias M.-A., et al. Measuring adhesion forces between modelpolysaccharide films and PLA bead to mimic molecular interactions in flax/PLAbiocomposite[J]. Journal of Materials Science,2012,47(5):2175-2181
    [117] Fahs A., Louarn G. Plant protein interactions studied using AFM force spectroscopy:nanomechanical and adhesion properties[J]. Physical Chemistry Chemical Physics,2013,15(27):11339-11348
    [118] Chen L., Kim S., Wang X.D. Running-in process of Si-SiOx/SiO2pair atnanoscale—Sharp drops in friction and wear rate during initial cycles[J]. Friction,2013,1:81-91
    [119] Binnig G., Quate C.F., Gerber C. Atomic force microscope[J]. Physical Review Letters,1986,56(9):930
    [120] Gnecco E., Bennewitz R., Pfeiffer O., et al. Friction and wear on the atomic scale[M].In:Bhushan B. Springer Handbook of Nanotechnology. Heidelberg:Springer,2010:923-954
    [121] Carpick R.W., Batteas J., Boer M.P.d. Scanning probe studies of nanoscale adhesionbetween solids in the presence of liquids and monolayer films[M]. In:Bhushan B.Springer Handbook of Nanotechnology. Heidelberg:Springer,2010:951-980
    [122] Salimi A. Characterization of nano scale adhesion at solid surface of oxidized PPwax/PP blends[J]. International Journal ofAdhesion andAdhesives,2012,33:61-66
    [123] Liu D.L., Martin J., Burnham N.A. Optimal roughness for minimal adhesion[J].Applied Physics Letters,2007,91(4):043107
    [124] van Zwol P.J., Palasantzas G., De Hosson J.T.M. Influence of roughness on capillaryforces between hydrophilic surfaces[J]. Physical Review E,2008,78(3):031606
    [125] Yaqoob M.A., de Rooij M.B., Schipper D.J. On the transition from bulk to ordered formof water: a theoretical model to calculate adhesion force due to capillary and van derWaals interaction[J]. Tribology Letters,2013,49(3):491-499
    [126] Grierson D.S., Liu J., Carpick R.W., et al. Adhesion of nanoscale asperities withpower-law profiles[J]. Journal of the Mechanics and Physics of Solids,2013,61(2):597-610
    [127] Fischer H.R., Gelinck E.R.M. Determination of adhesion forces between smooth andstructured solids[J].Applied Surface Science,2012,258(22):9011-9017
    [128] Kappl M., Butt H.J. The colloidal probe technique and its application to adhesion forcemeasurements[J]. Particle&Particle Systems Characterization,2002,19(3):129-143
    [129] Ando Y. The effect of relative humidity on friction and pull-off forces measured onsubmicron-size asperity arrays[J]. Wear,2000,238(1):12-19
    [130] Ando Y. Effect of contact geometry on the pull-off force evaluated under high-vacuumand humid atmospheric conditions[J]. Langmuir,2008,24(4):1418-1424
    [131] Ferreira O.D.S., Gelinck E., de Graaf D., et al. Adhesion experiments using anAFM—Parameters of influence[J].Applied Surface Science,2010,257(1):48-55
    [132] Colak A., Wormeester H., Zandvliet H.J.W., et al. Surface adhesion and its dependenceon surface roughness and humidity measured with a flat tip[J]. Applied Surface Science,2012,258(18):6938-6942
    [133] Xie J., Xie H.F., Liu X.R., et al. Dry micro-grooving on Si wafer using a coarsediamond grinding[J]. International Journal of Machine Tools&Manufacture,2012,61:1-8
    [134] Wen S.Z., Huang P. Principles of tribology[M]. Singapore&Beijing:Wiley&TsinghuaUniversity Press,2012
    [135] Shimizu R.N., Demarquette N.R. Evaluation of surface energy of solid polymers usingdifferent models[J]. Journal ofApplied Polymer Science,2000,76(12):1831-1845
    [136] Barber A.H., Cohen S.R., Wagner H.D. Static and dynamic wetting measurements ofsingle carbon nanotubes[J]. Physical Review Letters,2004,92(18):186103
    [137] Ishida N., Inoue T., Miyahara M., et al. Nano bubbles on a hydrophobic surface in waterobserved by tapping-mode atomic force microscopy[J]. Langmuir,2000,16(16):6377-6380
    [138] Tyrrell J.W.G., Attard P. Images of nanobubbles on hydrophobic surfaces and theirinteractions[J]. Physical Review Letters,2001,87(17):176104
    [139] Yang J.W., Duan J.M., Fornasiero D., et al. Very small bubble formation at thesolid-water interface[J]. Journal of Physical Chemistry B,2003,107(25):6139-6147
    [140] Simonsen A.C., Hansen P.L., Klosgen B. Nanobubbles give evidence of incompletewetting at a hydrophobic interface[J]. Journal of Colloid and Interface Science,2004,273(1):291-299
    [141] Serro A.P., Colaco R., Saramago B. Adhesion forces in liquid media: Effect of surfacetopography and wettability[J]. Journal of Colloid and Interface Science,2008,325(2):573-579
    [142] Nelson B.A., Poggi M.A., Bottomley L.A., et al. Temperature-dependence of waterbridge formation in atomic force microscopy[A]. ASME2003International MechanicalEngineering Congress and Exposition[C]. American Society of Mechanical Engineers,2003:629-636
    [143] Tambe N.S., Bhushan B. Scale dependence of micro/nano-friction and adhesion ofMEMS/NEMS materials, coatings and lubricants[J]. Nanotechnology,2004,15(11):1561-1570
    [144] Awada H., Noel O., Hamieh T., et al. Contributions of chemical and mechanical surfaceproperties and temperature effect on the adhesion at the nanoscale[J]. Thin Solid Films,2011,519(11):3690-3694
    [145] Shavezipur M., Gou W., Carraro C., et al. Characterization of adhesion force in MEMSat high temperature using thermally actuated microstructures[J]. Journal ofMicroelectromechanical Systems,2012,21(3):541-548
    [146] Watanabe H., Yamada N., Okaji M. Linear thermal expansion coefficient of siliconfrom293to1000K[J]. International Journal of Thermophysics,2004,25(1):221-236
    [147] Chun Hyung C. Characterization of Young's modulus of silicon versus temperatureusing a ''beam deflection'' method with a four-point bending fixture[J]. Current AppliedPhysics,2009,9(2):538-545
    [148] Rao S.S. Mechanical Vibrations[M].4th Edition. Pearson Education India,2003
    [149] Noy A. Force spectroscopy101: how to design, perform, and analyze an AFM-basedsingle molecule force spectroscopy experiment[J]. Current Opinion In ChemicalBiology,2011,15(5):710-718
    [150] Wei Z., Zhao Y.-P. Growth of liquid bridge in AFM[J]. Journal of Physics D-AppliedPhysics,2007,40(14):4368-4375
    [151] Rabinovich Y.I., Singh A., Hahn M., et al. Kinetics of liquid annulus formation andcapillary forces[J]. Langmuir,2011,27(22):13514-13523
    [152] Sirghi L. Transport mechanisms in capillary condensation of water at a single-asperitynanoscopic contact[J]. Langmuir,2012,28(5):2558-2566
    [153] Restagno F., Bocquet L., Biben T. Metastability and nucleation in capillarycondensation[J]. Physical Review Letters,2000,84(11):2433-2436
    [154] Sung B., Kim J., Stambaugh C., et al. Direct measurement of activation time andnucleation rate in capillary-condensed water nanomeniscus[J]. Applied Physics Letters,2013,103(21):
    [155] Vargaftik N.B., Volkov B.N., Voljak L.D. International tables of the surface tension ofwater[J]. Journal of Physical and Chemical Reference Data,1983,12(3):817-820
    [156] Etsion I. State of the art in laser surface texturing[J]. Journal of Tribology-Transactionsof theAsme,2005,127(1):248-253
    [157] Ando Y., Ino J. Friction and pull-off forces on submicron-size asperities[J]. Wear,1998,216(2):115-122
    [158] Zou M., Wang H., Larson P.R., et al. Ni nanodot-patterned surfaces for adhesion andfriction reduction[J]. Tribology Letters,2006,24(2):137-142
    [159] Song Y., Premachandran Nair R., Zou M., et al. Adhesion and friction properties ofmicro/nano-engineered superhydrophobic/hydrophobic surfaces[J]. Thin Solid Films,2010,518(14):3801-3807
    [160] Zhang X., Zhong X., Meng X., et al. Adhesion and friction studies of nano-texturedsurfaces produced by self-assembling Au nanoparticles on silicon wafers[J]. TribologyLetters,2012,46(1):65-73
    [161] He H., Yang H., Zhao E., et al. Nanotribological properties of silicon surfacesnanopatterned by laser interference lithography[J]. Journal of Russian Laser Research,2013,34(3):288-294
    [162] Houston M.R., Maboudian R. Stability of ammonium fluoride-treated Si (100)[J].Journal ofApplied Physics,1995,78(6):3801-3808
    [163]温诗铸,黄平.界面科学与技术[M].北京:清华大学出版社,2011
    [164] Tuinstra F., Koenig J.L. Raman spectrum of graphite[J]. The Journal of chemicalphysics,1970,53(3):1126-1130
    [165] Chen D., Wei A., Wong S., et al. Synthesis and microstructural properties of tetrahedralamorphous carbon films[J]. Journal of Non-Crystalline Solids,1999,254(1):161-166
    [166] Müller U., Hauert R. XPS investigation of Ti-O containing diamond-like carbonfilms[J]. Thin Solid Films,1996,290:323-327

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700