用户名: 密码: 验证码:
自激型汽车摆振动态过程的建模和仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,汽车摆振是某些车辆在一定条件下转向轮绕主销的持续摆动现象。摆振的影响因素众多,机理复杂,很难在车辆设计开发初期对其进行预测和控制,是底盘设计中很难解决的问题之一。
     国内外把摆振分为强迫型摆振和自激型摆振,强迫型摆振主要研究外界周期性激励力引起的共振现象,自激型摆振认为是系统中非线性环节所引起的振动现象,如轮胎侧偏非线性、轮胎松弛效应、转向系干摩擦、间隙等。自激型摆振的研究,通常是建立简化的摆振数学模型,计算系统的固有振动模态,或者是利用稳定性判据进行稳定性分析。摆振动态过程的仿真是研究自激型摆振的一个重要途径,可以用于汽车设计开发初期对自激型摆振进行预测和控制,目前国际上有关自激型摆振动态过程仿真的研究比较少。现有的汽车动力学模型缺少影响自激型摆振的关键环节,导致模型不能对自激型摆振的动态过程进行仿真。
     基于上述现状,本文在对自激型摆振关键环节研究的基础上,试图应用动态仿真的方法探索自激型摆振的仿真,重点研究了自激型摆振动态过程建模的关键问题、车辆仿真系统的平衡方法、自激型摆振动态过程的仿真及关键影响因素的分析。
     第一,自激型摆振动态过程建模的关键问题研究。车辆系统中的一些关键环节对自激型摆振有重要影响,为了使模型自身具备仿真自激型摆振的能力,需要在模型中对这些关键环节进行准确建模。(1)转向系统左右车轮的协调能力对摆振有很大影响,本文建立起转向系统完备动力学模型,左右车轮、转向节、转向横拉杆、齿条组成了一个完整的动力学系统,转向系统阿克曼机构实现力输入,建立起左右车轮间的力学联系,实现了左右车轮的自适应协调;(2)转向系统静摩擦对摆振有一定的抑制能力,干摩擦的静动摩擦状态切换会引起系统特征值和固有频率的变化,借鉴D.Karnopp的摩擦模型,建立起静、动摩擦分离的转向主销干摩擦模型,准确描述了转向系统的静摩擦特性,实现了转向死区的模拟,使转向系模型具备一定的抵抗外界干扰的能力;(3)胎体的弹性特性对摆振有重要影响,本文建立了考虑胎体弹性的车轮模型,将车轮简化为轮辋和胎体,引入胎体弹簧阻尼和胎体动力学,准确描述轮胎的弹性特性,实现了轮心处的力向转向系统的动态输入,准确计算轮胎接地印迹处运动状态;(4)为使模型能在非水平路面仿真,研究了非水平路面的探测算法,建立了适用于非水平路面的探测模型,可以实时探测非水平路面轮胎接地点处的高程和法向量,使模型适用于非水平路面的仿真。
     第二,车辆仿真系统的平衡方法研究。初始状态是自激型摆振激发的必要前提,为了确定出正确的车辆模型初始状态,对车辆仿真系统的平衡方法进行了研究,提出了一种适用于全工况的平衡方法。(1)传统平衡方法,仅适用于车轮接地工况,而不能解决车轮离地的特殊工况,本文基于powell方法建立了车轮离地优化算法,把车体垂向位移自由度作为优化目标,实现了车轮离地工况的平衡问题;(2)针对传统非线性迭代算法—牛顿拉斐逊迭代法必须要计算雅克比矩阵解析表达式的特点,本文建立拟牛顿无导数迭代算法,利用替代的方式来求解系统的雅克比矩阵,从而使迭代算法不受雅克比矩阵的解析表达式很难获取的限制;(3)平衡方法把待求变量分为边界条件和初始状态,在外循环用优化方法求边界条件,在内循环用非线性迭代算法求初始状态。
     第三,自激型摆振动态过程的仿真研究。建立了整车动力学模型,对模型稳态性能的正确性进行了试验验证。通过典型摆振工况的仿真,验证了模型具备仿真自激型摆振动态过程的能力;分析了一些关键环节的建模对自激型摆振动态过程仿真的重要性;对影响自激型摆振的关键因素进行了仿真分析,包括:外界激励大小、胎体弹性、转向系统惯量、主销后倾角、车速等,得出以下结论:(1)外界激励必须足够大,自激型摆振才可能被激发;(2)胎体的弹性越小,越容易产生自激型摆振;(3)转向系统的惯量越大,越容易产生自激型摆振;(4)转向系统的刚度越大,越不容易产生自激型摆振;(5)主销后倾角越大,越容易产生自激型摆振;(6)自激型摆振有一定的速度区间,当小于或大于这个速度区间时,摆振将不会发生。所得仿真结论与工程经验相吻合,进一步验证了模型能够较为准确的仿真自激型摆振的动态过程。
It is well known that shimmy is the continued swing of front wheels around thekingpin and occurs when certain vehicles run in certain conditions. Shimmy is influenced bymany factors, and its mechanism is very complex. In the early stages of design anddevelopment it is difficult to predict and control shimmy. Shimmy is one of difficultproblems about chassis design.
     Shimmy is divided by domestic and foreign experts into compulsive shimmy andself-excited type. For compulsive shimmy, the main research is about the resonancephenomenon caused by external periodic excitation forces. For the self-excited type shimmy,the limit cycle oscillation phenomenon is caused by the nonlinear components in the system,such as tire cornering nonlinear features, tire relaxation effects, steering stem friction,clearance, etc. By shimmy study research found that self-excited type shimmy simplifiedshimmy mathematical model for eigenvalue analysis to identify the natural vibration modesof the system or the stability criterion for stable analysis and the research on self-excitedtype to shimmy dynamic process simulation is relatively small. The existing vehicledynamics models lack the impact of self-excited type shimmy key link, the model cannotsimulate the dynamic process of self-excited type shimmy.
     Based on the above-mentioned status quo, on the basis of the key aspects of research onself-excited type shimmy, try to apply dynamic simulation method to explore the self-excitedtype shimmy simulation, focusing on the key issues of self-excited type to shimmy dynamicprocess modeling, the balance of the dynamics simulation system, self-excited shimmy dynamic process simulation and the key factors.
     First, the key issues of self-excited type shimmy dynamic process modeling. Some ofthe key aspects of the vehicle systems have important implications for self-excited typeshimmy, in order to make the model have the ability to simulation of self-excited typeshimmy, needing accurate modeling of these key links in the model.(1) The coordinationability of left and right steering wheels has a great impact on shimmy. This paper hasestablished a complete dynamic model of the steering system. Left and right wheels, axles,steering tie rod, rack form a complete dynamical systems. Ackerman agencies achieve theforce input to establish about the mechanical contact between the wheels, adaptivecoordination of left and right wheels.(2) Static friction in steering system has the ability toinhibit shimmy. Dry friction static and dynamic friction state switching can cause changes inthe system eigenvalues and the natural frequency of system. Drawing D.Karnopp the frictionmodel to establish static and dynamic friction separation of steering kingpin dry frictionmodel that accurately describes the static friction characteristics of the steering system andachieve the simulation of the dead zone, so that the steering system model to have a certainability to resist outside interference.(3) The elastic characteristics of the carcass has animportant impact on shimmy. This paper established a wheel model respecting carcassflexibility. Simplifying the wheel rim and carcass, the introduction of the carcass springdamping and carcass dynamics, an accurate description of the elastic characteristics of thetire, achieve the force at the wheel center input to the steering system dynamics andaccurately calculate the tire ground imprinted at the state of motion.(4) In order to modelsimulation in non-level road, non-level road detection algorithm, this paper establishesdetection model for non-level road, real-time detection of the elevation and the normalvector of the point of contact of tire and non-level road, make the model applicable to thesimulation of non-level road.
     Second, research the equilibrium method for dynamic simulation system. The initialstate is a necessary prerequisite to stimulate self-excited type shimmy. In order to determinethe correct vehicle model the initial state, the balance of the dynamics simulation system were studied and proposed a balanced approach in full working condition.(1) Traditionalstatic balance method applies only to the wheel ground contact, while the special conditionsthat the wheels are off the ground cannot be solved. On base of the Powell method establishoptimization algorithm about wheels off the ground conditions, body vertical displacementdegrees of freedom are as the optimization objective to achieve the balance of the wheelfrom the ground conditions.(2) Owing to the Jacobian matrix analytic expression must becalculated in the traditional non-linear iterative algorithm-Newton Raphson iterativemethod. This paper established a quasi-Newton non-derivative iteration method, the use ofalternative means to solve the system Jacobian matrix, so that the iterative algorithm is notdifficult to obtain the limit of the analytical expressions of the Jacobian matrix.(3) Balancedapproach divided the unknown variables into the boundary conditions and initial state, theouter loop optimization method for solving the boundary conditions, the Inner loop with anonlinear iterative algorithm for the initial state.
     Third, the study of dynamic process simulation for self-excited shimmy. Establishvehicle dynamics model, experimental verification of the correctness of the modelsteady-state performance. Through the simulation of typical operating conditions, verify themodel with the simulation of self-excited type shimmy dynamic process capacity, analyzethe importance of some key aspects of modeling self-excited type shimmy through dynamicprocess simulation, conduct simulation and analysis about the key factors of self-excitedtype shimmy, including: the size of outside incentives, carcass elasticity, inertia of thesteering system, caster angle, vehicle speed, the following conclusions are summed up:(1)Outside incentives must be large enough, the self-excited type shimmy can be excited.(2)The smaller of the elasticity of the carcass is, the more prone to self-excited type shimmy.(3)The greater the inertia of the steering system is, the more prone to self-excited type shimmy.(4) The greater the Kingpin inclination is, the more prone to self-excited type shimmy.(5)Self-excited type shimmy has certain speed range, shimmy will not occur when less than thisspeed range. The obtained simulation conclusions and engineering experience is consistent,further validate the model more accurate simulation of self-excited type shimmy dynamic process.
引文
[1] Jocelyn l Pritchard. An Overview of Landing Gear Dynamics, NA-SA/TM-1999-209143[R]. U.S.Army Research Laboratory Vehicle Technology Directorate Langley Research Center.1999.
    [2]宋健.导向轮轮胎和定位参数对汽车摆振影响的研究及整车横向动力学优化分析[D].北京:清华大学,1987.
    [3]何渝生,魏克严,洪宗林,孙祥根.汽车振动学[M].北京:人民交通出版社,1990.
    [4]管迪华,何泽民,肖田元,孔明树.汽车转向轮振动的研究[J].汽车技术,1984.
    [5]林逸.非独立悬架汽车转向轮自激型摆振的分岔特性分析[J].机械工程学报,2004.
    [6]姜红军,独立悬架轻型汽车转向轮摆振分析及其控制的初步研究[D].长春:吉林工业大学,1993.
    [7]清华大学汽车教研室,南京汽车制造厂设计科.汽车转向轮的摆振以及结构参数对摆振的影[J].机械工程学报,1979,10:127~137.
    [8]管迪华等.汽车转向轮摆振的仿真计算研究[J].汽车工程,1982,4(1、2).
    [9] Knothe K, BOHM F. History of Stability of Railway and Road Vehicle[J]. Vehicle SystemDynamics,1999,31(5):283~323.
    [10] Sharp R, Jones C. A Comparison of Tire Representation in a Simple Wheel ShimmyProblem[J].Vehicle System Dynamics,1980,9(1):45~47.
    [11] Paeejka H B. Analysis of Tire Properties[R]. In: Clark S K. Mechanics of Pneumatic Tires: NewEdition. Washington D. C: NHTSA,1981,721~870.
    [12] Sannikov V. Excitation of Lateral Vibrations of a Rolling Pneumatic Tire with Cyclical Braking[J].MECH SOL,1989,24(3):15~21.
    [13] Pacejka H B, Bakker E. The Magic Formula Tyre Model[J]. Supplement to Vehicle SystemDynamics,1993,27:1~18.
    [14] Willumeit H P, BOHMF. Wheel Vibration and Transient Tyre Force[J]. Vehicle System Dynamics,1995,24(6-7):525~550.
    [15] Pacejka H B. Analysis of the Dynamic Response of a Rolling String-Type Tire Model to LateralWheel-Plane Vibration[J]. Vehicle System Dynamics,1975,1:37~66.
    [16] Broulhiet, G. The Suspension of the Automobile Steering Mechanism: Shimmy and Tramp[J], BullSoc. Ing. Civ. Fr.78, pp.540-554, July1925.
    [17] Fromm, H. Brief Report on the History of the Theory of Shimmy[J]. NACA TM1365, pp.181,1954.
    [18] Maier, E. and Renz, M. Tests On Shimmy with the Nose Landing Gear of the Me309and theFKFS Trailer[R]. N-579AAF, Air Material Command, Wright Field Technical Intelligence, Dayton,Ohio,1947.
    [19] Moreland,W.J. Landing Gear Vibration[R]. AF Technical Report No.6590, October1951.
    [20] Pacejka, H. B. Analysis of the Shimmy Phenomenon[J]. ARCHIVE: Proceedings of the Institutionof Mechanical Engineers, Automotive Division1947-1970Volume180:251-268.
    [21] Ho F.H, Lai J.L. Parametric Shimmy of a Nose gear[J]. Journal of Aircraft, Vol.7, pp.373-375,1970.
    [22] Podgorski W.A, Krauter A.I, Rand R.H. The Wheel Shimmy Problem: Its Relationship to Wheeland Road Irregularities[J],Vehicle System Dynamics, Netherlands, pp.9-41,March1975.
    [23] G. Dodlbacher. Mathematical Investigation to Reduce Steering Wheel Shimmy[J]. VehicleSystem Dynamics,1979,8(2):86-90.
    [24] Paul B.Hackert. Simulation and Investigation of Shimmy on a Light Truck Independent FrontSuspension[C]. SAE paper933043.
    [25] Kimura, T. et al. Analysis of steering shimmy accompanied by sprung mass vibration on light dutytruck-Fundamental mechanism[J]. JSAE,1996.17(3): p.301-306.
    [26] Fujio Momiyama, Ichiro Kageyama. A Conviction Concerning Shimmy Phenomena andVerification by Numerical/Experimental Analysis[J]. Vehicle System Dynamics,1998,29(1):322-338.
    [27] Zhuravlev, V.P. and D.M. Klimov, The Causes of the Shimmy Phenomenon[J]. Doklady Physics,2009.54(10): p.475-478.
    [28]管迪华等.汽车转向轮摆振的仿真计算研究[J].汽车工程,1982.
    [29]管迪华等.汽车转向轮振动的研究[J].汽车工程1984.
    [30]宋健,管迪华.前轮定位参数与轮胎特性对前轮摆振影响的研究[J].汽车工程,1990.
    [31]郭孔辉.轮胎动态侧偏特性对汽车摆振的影响[J].汽车技术,1995.
    [32]宋健,钱珠声,管迪华.独立悬架汽车摆振的研究[J].汽车技术,1996.
    [33]詹文章,林逸.轿车转向轮告诉摆振研究[J].公路交通科技,2000.
    [34]林逸,李胜.非独立悬架汽车转向轮自激型摆振的分岔特性分析[J].机械工程学报,2004.
    [35]胡寿松.自动控制原理(第三版)[M].北京:国防工业出版社,1994.
    [36]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    [37] L.Segel. On the Lateral Stability and Control of the Automobile as Influences by the Dynamics ofthe Steering System[J]. Transactions of ASME: Journal of Engineering for Industry, August1996.
    [38] M.Kanmel Salaani. Modeling and Implementation of Steering System Feedback for the NationalAdvanced Driving Simulation[C]. SAE.2002-01-1573.
    [39] M.Kanel Salaani, Gary J.Heydinger, Paul A.Grygier. Closed Loop Steering System Model for theNational Advanced Driving Simulator[C]. SAE.2004-01-1072.
    [40] Carsim Version8.02. user help.2009.
    [41] Zbigniew Lozia, Dariusz Zardecki. Vehicle Dynamics Simulation with Inclusion of Freeplay andDry Friction in Steering System[C]. SAE2002-01-0619.
    [42] Zbigniew Lozia, Dariusz Zardecki. Dynamics of Steering System with Freeplay and DryFriction-Comparative Simulation Investigation for2WS and4WS Vehicles[C]. SAE.2005-01-1261.
    [43] W.Keith Adams, Richard W. Topping. The Steering Characterizing Functions(SCFs) and Their Usein Steering System Specification, Simulation, and Synthesis[C]. SAE.2001-01-1353.
    [44]陈家瑞.汽车构造(第三版)[M].北京:机械工业出版社,2002.
    [45]管欣,张威,林柏忠.车辆实时动态仿真模型的研究[J].江苏大学学报(自然科学版),2004(05):203-207.
    [46]王鹏.汽车实时动力学仿真中转向回正特征建模方法研究[D].长春:吉林大学汽车工程学院,2008.
    [47]管欣,海辰光,詹军,姬鹏.用于车辆动力学仿真的转向系模型的开发[J].吉林大学学报(工学版),2010.
    [48] Kimura, T. et al. Analysis of steering shimmy accompanied by sprung mass vibration on light dutytruck-Fundamental mechanism[J]. JSAE,1996.17(3): p.301-306.
    [49] Armstrong B, Dupont P. A survey of models, analysis tools and compensation methods for thecontrol of machines with friction[J]. Automatic,1994,30(7):1038-1183.
    [50]陆大雄.摩擦学导论[M].北京:北京出版社,1990.
    [51]松原清著.李明怀,庄志译.摩擦学—摩擦、润滑及磨损的科学技术[M].西安:西安交通大学出版社,1988.
    [52] Canudas de Wit C, Olsson H, Lischinsky P. A new model for control of systems with friction[J].IEEE Transactions on Automatic Control,1995,40(3):419-425.
    [53] Berger E J. Friction modeling for dynamic system simulation[J]. ASME Appl Mech Rev,2002,55(6):535-577.
    [54] Awrejcewic J, Olejnik P. Analysis of dynamic systems with various friction laws[J]. ASME ApplMech Rev,2005,58:380-410.
    [55] Mostaghel N, Davis T. Representations of Coulomb friction for dynamic analysis[J]. EarthquakeEngineering and Structural Dynamics,1997,26(5):85-88.
    [56] D.Karnopp. Computer simulation of stick-slip friction in mechanical dynamic systems[J]. ASMEJournal of Dynamic Systems, Measurement and Control, Mar.1985,107:100-103.
    [57] Iurian C. Identification of a system with dry friction [R]. Catalunya: University Politenica decatalunya,2005.45-49.
    [58] Ravanbod-Shirazi L, Besancon-Voda A. Friction identification using the karnopp model, applied toan electro pneumatic actuator[J]. Journal of Systems and Control Engineering,2003,217:123-138.
    [59] Schlippe V.B, Dietrich R. Shimmying of a Pneumatic Wheel[R]. NACA TM1365,1954.
    [60] H.B. Pacejka. The wheel shimmy phenomenon[D]. Delft University of Technology, December1966.
    [61] H.B. Pacejka. Tyre and Vehicle Dynamics,2002, Butterworth-Heinemann.
    [62]郭孔辉,刘蕴博.轮胎侧偏特性的半经验模型[J].汽车工程,1986(2):1~5.
    [63]郭孔辉,刘蕴博.轮胎侧偏特性的半经验模型的改进[J].长春汽车研究所学报,1986(5):1~4.
    [64]郭孔辉.用于汽车全工况动力学分析的非稳态轮胎六分力模型[J].长春:吉林工业大学,1997.
    [65] I.J.M. Besselink,H.B.Pacejka. The SWIFT tyre model: overview and application[J]. AVEC,2004:525-530.
    [66] Zegelaar, P.W.A. The Dynamic Response of Tyres to Brake Torque Variations and RoadUnevenesses[D]. Delft University of Technology, The Netherlands,1998.
    [67] Gipser M. A New Fast Tire Model for Ride Comfort Simulations[J]. International Adams UsersConference,Berlin,Germany,1999.
    [68] M.Gipser. Ftire-the tire simulation model for all applications related to vehicle dynamics[J].Vehicle System Dynamics,2007,45(1):139-151.
    [69]管迪华,彭会,范成建.轮胎模态试验分析的研究[J].汽车工程,2005.
    [70]范成建,管迪华.利用试验模态参数对轮胎包容特性的建模及试验验证[J].汽车工程,2006.
    [71]管迪华,李宝江.轮胎模态参数模型及滚动阻力模拟[J].清华大学学报(自然科学版),2011.
    [72] Hai Chenguang, Ji Peng. A new wheel model for vehicle dynamic simulation[J]. ICCET2010v6,p671-674.
    [73] Hans B. Pacejka. Tyre and Vehicle Dynamics[M]. Butterworth-Heinemann,2002.
    [74]林柏忠. SWIFT轮胎模型动力学方程的建立[R].吉林大学汽车动态模拟国家重点实验室技术报告,2004.
    [75] MSC. ADAMS用户手册[M]. MSC,2005.
    [76] Application Report Real-Time, Seventeen-Degree-of-Freedom Motor Vehicle Simulation[R].1980.
    [77]王鹏.汽车实时动力学仿真中转向回正特征建模方法研究[D].长春:吉林大学2008.
    [78]张威.非水平路面汽车动力学实时仿真计算的研究[D].长春:吉林大学2004.
    [79]吴振昕.基于总成结构的汽车动力学实时仿真方法的研究[D].长春:吉林大学2007.
    [80] H. Haddadpour, R.D.Firouz-Abadi, M.M.Fotouhi. Equilibrium analysis of multibody dynamicsystems using genetic algorithm in comparison with constrained and unconstrained optimizationtechniques[J]. Structural and Multidisciplinary Optimization. Volume36, Number4,381-391.2007.
    [81]王鹏涛. Powell寻优法及其应用[J].系统工程理论与实践,1997.
    [82]田福祥.机械优化设计理论与应用[M].北京:冶金工业出版社,1997.
    [83]邵陆寿.优化设计方法[M].北京:中国农业出版社,2007.
    [84]王国强,赵凯军,崔国华.机械优化设计[M].北京:机械工业出版社,2009.
    [85]孟宪颐.现代设计方法基础[M].北京:机械工业出版社,2009.
    [86]林成森.数值计算方法下册[M].北京:科学出版社,2005.
    [87]何超,刘西林,李佳珍.拟Newton法在高阶矩阵中的应用—求解最大特征值及特征向量[J].计算机工程与应用,2011.
    [88]杜迎春.拟牛顿法求解化工过程数学模型[J].计算机与应用化学,2001.
    [89]李庆扬.非线性方程组的数值解法[M].科学出版社,1997.
    [90] Broyden, C.G. Mathematics of Computation[J]. vol.19,pp.577-593.1965.
    [91] William H.Press, Saul A.Teukolsky, Willam T.Vetterling, Brian P.Flannery. Numerical Recipes inC. The Art of Scientific Computing Second Edition[M]. CAMBRIDGE UNIVERSITY PRESS,1997.
    [92] SAE J670. Vehicle Dynamics Terminology[S].2008.
    [93] Thomas D Gillespie. Fundamental of Vehicle Dynamics[M]. Society of Automotive Engineer,2002.
    [94] William F. Milliken, Douglas L. Milliken. Race Car Vehicle Dynamics[M]. SAE International,1994.
    [95] Dixon J.C. Tire Suspension and Handling[M]. Cambridge University Press,1991.
    [96]王鹏.中国首台汽车性能模拟器动力学模型的改进[D].长春:吉林大学,2005.
    [97]王鹏.2007_ASCL汽车运动动力学实时仿真模型理论手册[R].长春:吉林大学,2007.
    [98]廖抒华.动力转向系统特性及其对汽车操纵稳定性的试验与仿真研究[D].长春:吉林大学,2000.
    [99] Hai Chenguang, Ji Peng, Yu Haifeng. Analysis of influence of steering system on vehicle straightline[J]. ICIE2010, v3, p336-339.
    [100] M.米奇克.汽车动力学(C卷)[M].人民交通出版社,1997.
    [101]姬鹏,杨树凯.导向机构对悬架定位参数影响的仿真分析[J].拖拉机与农用运输车2008,02(15) P22-23.
    [102] William F. Milliken, Douglas L. Milliken. Chassis Design Principles and Analysis[M]. SAEInternational,2002.
    [103]郭孔辉,刘蕴博,杨阳.轮胎试验技术的开发研究及其在汽车性能研究中的应用[J].汽车工程,1990.
    [104]卢荡.轮胎侧倾力学特性建模及试验研究[D].长春:吉林工业大学,2003.
    [105] Konghui Guo. Development of Nonlinear Handling Tire Model [R]. Project Status Report forTask1,2004.
    [106] GB/T6232.1-94中华人民共和国国家标准汽车操纵稳定性试验方法方向盘角阶跃输入.
    [107] GB/T6232.1-94中华人民共和国国家标准汽车操纵稳定性试验方法稳态回转试验.
    [108] GB/T6232.1-94中华人民共和国国家标准汽车操纵稳定性试验方法转向轻便性试验.
    [109] GB/T6232.1-94中华人民共和国国家标准汽车操纵稳定性试验方法蛇形试验.
    [110] Pacejka, H. B. Analysis of the Shimmy Phenomenon[J]. ARCHIVE: Proceedings of the Institutionof Mechanical Engineers, Automotive Division1947-1970Volume180:251-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700