用户名: 密码: 验证码:
摄影测量数据GPU并行处理若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对海量摄影测量影像数据快速处理的迫切要求,以GPU为核心部件搭建紧凑型GPU集群计算平台,并基于CUDA开发环境,研究摄影测量数据处理算法的GPU并行处理技术。论文完成的主要工作与创新点如下:
     1.简要总结了并行计算平台的发展历史及趋势,归纳了处理任务并行化的方法和遥感影像并行处理的基本模式;详细论述了GPU的硬件体系架构、软件编程模型、性能分析模型及性能优化的基本原则与常用策略;给出了论文研究所采用的两个实验平台。
     2.建立了云雾遮挡条件下降质图像的成像辐射模型,引入“暗原色先验(Dark Channel Prior)”知识作为约束条件,实现了单幅影像云雾去除技术;针对大气透射率内插优化复杂耗时的弊端,提出了一种基于积分图像盒式滤波的大气透射率边缘保持内插GPU细粒度并行计算方法,实现了大幅面遥感影像云雾快速去除预处理。
     3.提出了一种基于CUDA的遥感影像几何纠正GPU-CPU协同处理方法,实现了重采样操作的GPU细粒度并行,并根据算法的执行特点和GPU的并行架构,采用合理的任务划分与执行配置方案提高GPU线程的Warp占有率;利用共享存储器和纹理存储器分别对坐标变换系数和原始影像数据的访问模式进行优化,隐藏全局存储器的访问延迟,充分发挥GPU的并行计算优势。
     4.在总结分析真正射影像制作流程和现有遮挡检测方法的基础上,提出了一种基于阴影测试技术的遮挡区域快速检测方法,并利用三维图形绘制流水线的模板缓存和深度缓存实现遮挡检测的GPU硬件加速。
     5.提出了一种基于CUDA的SURF特征匹配GPU细粒度并行处理方法,通过合理的GPU线程组织方案及其原子运算来保证特征点提取的正确性;针对特征点匹配、误匹配点对滤除和相对方位元素求解等过程中的密集矩阵运算,采用分块计算模式来隐藏全局存储器的访问延迟,提高GPU的并行加速效率。
     6.提出了一种基于CUDA的灰度密集匹配GPU细粒度并行处理方法,重点研究了匹配代价计算的数据访问优化策略、相关系数匹配的并行粒度划分方案和半全局匹配的代价聚合GPU线程组织方案,并进一步探讨了多基线匹配的实现模式及其并行处理方法。
     7.设计了一种适用于摄影测量数据整体处理任务的松耦合GPU集群系统架构,通过合理的任务划分方案和积极有效的组织调度策略来开发集群节点之间的粗粒度数据并行性;利用缓存机制提高数据访问效率,进一步开发节点内部GPU与CPU之间的流水线并行性;通过大区域的面阵影像和线阵影像几何纠正试验,证明了GPU集群系统强大的数据处理能力,并分析了制约其性能进一步提升的瓶颈所在。
Based on GPU Cluster Platform, this thesis makes a comprehensive study on the parallel processing technologies and methods of photogrammetry algorithms to meet the rapid processing requirements of massive photogrammetry data. Its aim is to resolve the key problems of GPU Cluster construction and application, and explore the technical methods and optimization strategies of photogrammetry data processing. The main work and innovation of this paper is as follows:
     1. Principle of parallel computing, development history and trend of parallel computer, parallelism between multi-processing tasks, and basic parallel processing modes of photogrammetry images are briefly analyzed and summarized. And the GPU’s hardware framework, software programming model, performance analysis model, optimization principle and basic strategies are discussed in detail, which provides the theoretical basis for fine granularity parallel processing through single GPU card. And moreover, two experimental platforms are given.
     2. Based on the degraded image radiation model in bad weather condition and Dark Channel Prior, a novel and effective haze removal method for single image is introduced, tested and analyzed. Aiming at the complex and time-consuming disadvantages of initialized atmosphere transmission’s interpolating and refining, a fast and edge-preserving interpolating method is proposed based on Guided Image Filter. Based on integral image and box filter, fine granularity parallel computing through single GPU card is realized.
     3. A fast GPU-CPU cooperate geometric rectification algorithm is presented based on CUDA, which realizes fine granularity parallel processing of re-sampling through a single GPU card. And on the basis of GPU’s hardware framework and software programming model, three performance optimization strategies are proposed to make full use of GPU’s high parallel computing advantages: using reasonable task partition and executing scheme to increase GPU threads’Warp occupancy; using high bandwidth shared memory optimization technology to reduce accessing times of coordinate transform coefficients in low-speed global memory; replacing global memory with texture memory to reduce the original image’s accessing time.
     4. Through the analysis of the True Ortho-photo generation flow and existing occluded area detecting methods, a fast occlusion detecting method based on shadow-testing technology is proposed. And based on Z-Pass algorithm, GPU hardware accelerating method is realized through Stencil Buffer and Depth Buffer of 3D pipeline to draw the occluded areas.
     5. After analyzing the SURF (Speeded-Up Robust Features) detecting, describing and matching principle, a corresponding fine granularity parallel processing method through a single GPU card is proposed. A reasonable thread organizing scheme and Aomic Calculation of GPU is used to ensure the correctness of detected SURF points. A partition computing pattern is used in intensive matrix computing of feature matching, false matches filtering and relative orientation elements computing to make full use of GPU’s parallel computing advantagethrough reducing accessing times to low bandwidth global memory.
     6. After analyzing the parallelism of dense gray level matching, a GPU fine granularity parallel processing method is proposed. And some optimization strategies are discussed in detail, which include accessing optimization of matching searching zone data, parallel processing granularity of correlate matching, GPU thread organizing scheme of cost aggregation step in semi-global matching. Moreover, multi-baseline matching mode and parallel processing method is further discussed.
     7. The logical framework, hardware and software configuration scheme and corresponding process flow of the loose couping GPU Cluster is designed. Based on reasonable coarse granularity task decomposing schemes and efficient task organizing and dispatching strategy, coarse granularity parallelism between multi GPU cards in GPU Cluster Platform is developed. And inside computing nodes, data buffer technology is used to improve data accessing efficiency and to develop stream parallelism between GPU and CPU. Massive data rapid processing ability of GPU Clsuter System is proved, and its bottleneck is analyzed through geo_rectification experimentes of large zone frame images and line array images.
引文
[1]李德仁.摄影测量与遥感学的发展展望[J].武汉大学学报信息科学版,2008,33(12):1211-1215.
    [2]龚健雅.对地观测数据处理与分析研究进展[M].武汉:武汉大学出版社.2007.
    [3]张永生.现场直播式地理空间信息服务的构思与体系[J].测绘学报,2011,40(1):1-4.
    [4]李德仁.对地观测与抗震救灾[J].测绘科学,2009,34(1):8-10.
    [5]李德仁、陈晓玲、蔡晓斌.空间信息技术用于汶川地震救灾[J].遥感学报,2008,6(12):841-851.
    [6]张祖勋、郭大海、柯涛、王建超.抗震救灾中航空摄影测量的应急响应[J].遥感学报,2009,12(5):852-857.
    [7]张祖勋、柯涛、郭大海、王建超.数字摄影测量网格在汶川大地震中的快速响应[J].中国工程科学,2009,11(6):54-62,89-93.
    [8]陈军、何超英、朱武、彭震中、金舒平.汶川地震救灾的基础地理信息综合应急服务[J].地理信息世界,2008,6:7-11.
    [9]王平,王殿琦等.飞向汶川—5.12地震灾害航空遥感调查[M].北京:科学出版社,2009.
    [10]杨升.汶川地震对建立测绘应急保障体系的启示[J].测绘,2009,32(2):51-53.
    [11]杨健、赵忠明、黄铁青、龚建华、王忠武.汶川地震遥感图像处理与灾害分析[J].中国体视学与图像分析,2008,13(3):151-157.
    [12]张力.航空数字摄影测量传感器系统新进展[J].地理信息世界,2009 (3):37-49.
    [13]万幼川,张永军.摄影测量与遥感学科发展现状与趋势[J].工程勘察,2009(6):6-12.
    [14]董仁才、刘明、徐卫华、王学志、欧阳志云.多源数据融合技术在汶川地震生态环境影响应急评估中的应用[J].生态学报,2008,28(12):5795-5800.
    [15]张永生,戴晨光等.天基多源遥感信息融合[M].北京:科学出版社, 2005.
    [16] A.F.Habib, J.Kersting, T.M.McCaffrey, A.M.Y.Jarvis. Integration of LiDAR and airborne imagery for realistic visualization of 3D urban environments[A]. The International Archives of the Photogrammetry, Remote Sensing and Spatital Information Sciences(Part B2)[C]. 2008: 617-624.
    [17] Anna M.Y.Jarvis. Intergration of Photogrammetric and LiDAR data for accurate reconstruction and visualization of urban environments [OL]. http://www.geomatics.ucalgary.ca/research/publications.
    [18] Xiaoye Liu, Zhenyu Zhang, Jim Peterson, Shobhit Chandra. LiDAR-Derived High Quality Ground Control Information and DEM for Image Orthorectification[J]. Geoinformatica, 2007 (11): 37-53.
    [19] F.Rottensteiner, Ch.Briese. Automatic generation of building models from LiDAR data and the integration of aerial images [A]. ISPRS, Vol.XXXIV. Dresden, 2003.
    [20] Charles K.TOTH, Dorota A.GREJNER-BRZEZINSKA. Complementarity of LiDAR and Stereo Imagery for Enhanced Surface Extraction [A]. ISPRS, Vol.XXXIII, Part B3. Amsterdam, 2000.
    [21]程亮、龚健雅、韩文泉. LiDAR与影像集成的真实感建筑物三维重建研究进展[J].测绘科学,2009,34(1):21-24..
    [22] J.Vallet, J.Skaloud.Development and Experiences with a Fully-Digital Handheld Mapping System Operated From A Helicopter[OL].
    [23] J.Vallet, J.Skalound, O.Koelbal, B.Merminod.Development of A Helicopter-Based Integrated System for Avalanche Mapping and Hazard Management[OL].
    [24] J.Skaloud.Helimap: Rapid Large Scale Mapping Using Handheld LiDAR/CCD/GPS/INS Sensors on Helicopters[OL].
    [25] Kyoungah Choi, Impyeong Lee, Sung Woong Shin, Kiseok Ahn. A project oerview for the development of a light flexible rapid mapping system for emergency response [A]. ISPRS 2008, Vol.XXXVII, Part B5: 915-920.
    [26] Kevin V.Stefanik, Jason C.Gassaway, Kevin Kochersberger, A.Lynn Abbott. UAV-Based Stereo Vision for Rapid Aerial Terrain Mapping [J]. GIScience and Remote Sensing, 2011,48(1): 24-29.
    [27]我国无人机遥感新突破—QuickEye(快眼)面向全国应急服务破冰运营[J].河北遥感,2009(3):28-28.
    [28]杨靖宇、张永生、邹晓亮、董广军.利用暗原色先验知识实现航空影像快速去雾[J].武汉大学学报信息科学版,2010,35(11):1292-1295.
    [29] M.Downey,U.Tempelmann.The Photogrammetric Load Chain for ADS Image data[C].ISPRS.Beijing, China:2008.
    [30]刘航冶.基于集群的摄影测量并行处理若干关键技术研究[D].郑州:解放军信息工程大学.2010.
    [31] Bignone, F. Processing of stereo scanner: from stereo plotter to pixel factory[R], ISTAR, France, 2003.
    [32]史照良,沈泉飞,曹敏.像素工厂中真正射影像的生产及其精度分析[J].测绘科学技术学报,2007,24(5):332-335.
    [33] Inpho.INPHO's Photogrammetric System V5.2. http:// www.inpho.de/ index.php? seite = news_ detail&navigation=0&root=165&system_id=10019&com=detail&kanal=html.2010-08-29.
    [34] PCI Geomatics.GeoImaging Accelerator (GXL).http:// www.pcigeomatics.com/ index.php? option = com_content&view=article&id=24&Itemid=5.2010-08-29.
    [35] ERDAS.LPS eATE. http://www.erdas.com/tabid/84/currentid/3149/default.aspx. 2010-0829.
    [36]张剑清、柯涛、孙明伟、段延松.并行计算在航空摄影测量中的应用与实现—数字摄影测量网格(DPGrid)并行计算技术研究[J].测绘通报,2008,12:11-15.
    [37]张祖勋.从数字摄影测量工作站(DPW)到数字摄影测量网格(DPGird)[J].武汉大学学报信息科学版,2007,32(7):565-571.
    [38]马伟锋、岑岗、李君、沈占锋.高性能遥感图像处理与空间信息网格建模[J].计算机工程,2006,32(5):283-285.
    [39]史岗、张福新、胡伟武、韩承德.软件DSM机群上并行大规模地理图像处理系统ParGIP[J].计算机研究与发展,2003,40(1):53-59.
    [40]金海、章勤、王乘、周海芳、曾海标.中国教育科研网格图像处理网格应用平台设计规范[M].北京:清华大学出版社,2006:163-165.
    [41] NVIDIA. Moore’s Prediction: CUDA is the Only Ultimate CPU (II) [EB/OL].[2008-07]. http://space. itpub.net/14741601/viewspace-410810.
    [42] NVIDIA. CUDA 2.0 for WINDOWS CUDA 2.0 Programming guide [EB/OL]. [2008-06-07]. http:// developer.download.nvidia.com/compute/cuda/2.0/doc/NVIDIA_CUDA_Programming_guide_2.0.pdf.
    [43] NVIDIA. CUDA 2.0 for WINDOWS CUDA 2.0 Reference Manual [EB/OL]. [2008-06-12]. http:// developer.download.nvidia.com/compute/cuda/2.0/docs/CudaReferenceMannual_2.0.pdf.
    [44]张舒、褚艳利. GPU高性能运算之CUDA[M].北京:中国水利水电出版社,2009.
    [45]吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504.
    [46]陈飞国、葛蔚、李静海.复杂多相流动分子动力学模拟在GPU上的实现[J].中国科学B辑:化学, 2008,38(12):1120-1128.
    [47]夏健明,魏德敏.用GPU加速求解线性方程组的高斯消元法[J].计算机工程与设计,2009,30(19):4447-4450.
    [48]张繁、王章野、姚建、吴韬、彭群生.应用GPU集群加速计算蛋白质分子场[J].计算机辅助设计与图形学学报,2010,22(3):412-419.
    [49]肖汉、张祖勋.基于GPGPU的并行影像匹配算法[J].测绘学报, 2010,39(1):46-51.
    [50]陈文光、武永卫.MPI与OpenMP并行程序设计(译)[M].北京:清华大学出版社,2004:7-11.
    [51]杨靖宇.遥感影像GPU并行处理技术与实现方法[MD].郑州:解放军信息工程大学,2008.
    [52]李文.高效的图像恢复算法及并行处理技术[D].北京:中国科学院博士论文,2001.
    [53] Sergio Sanchez, Gabriel Martin, Antonio Plaza, Chein-I Chang. GPU Implementation of Fully Constrained Linear Specatral Unmixing for Remotely Sensed Hyperspectral Data Exploitation [A].SPIE 2010 Vol.7810.
    [54] Aydm Buluc, John R. Gilbert, Ceren Budak. Gaussian Elimination Based Algorithms on the GPU[A].
    [55] Plaza. A,Chang.C.I.High Performance Computing in Remote Sensing[M].UK:Chapman & Hall/CRC Press.2007.
    [56] Volodymyr V. Kindratenko, Jeremy J. Enos, Guochun Shi, Michael T. Showerman, Galen W. Arnold, John E. Stone, James C.Phillips, Wen-mei Hwu. GPU Clusters for High-Performance Computing[A].
    [57] Z. Fan, F. Qiu, A. Kaufman, S. Yoakum-Stove. GPU Cluster for High Performance Computing [A]. ACM/IEEE conference on Supercomputing, 2004.
    [58] H, Takizawa and H. Kobayashi. Hierarchical parallel processing of large scale data clustering on a PC cluster with GPU co-processing [J]. Supercomput, 2006, 36: 219-234.
    [59] Gabriel Noaje. CPU-GPU Cluster Design, Experimentations, Performances [R]. 2008.
    [60] Hirschmuller. H, Scharstein. D. Evaluation of stereo matching costs on image with radiometric differences. IEEE Transactions on Pattern Analysis and Machine Intelligence 31 (2009): 1582-1599.
    [61] John Congote, Javier Barandiaran, Inigo Barandiaran, Oscar Ruiz. Realtime Dense Stereo Matching with Dynamic Programming in CUDA[J]. CEIG09, San Sebastian, 2009.
    [62]肖艳青,刘党辉,孙朋.图像立体匹配研究进展[J].测控技术,2009,28(8):1-5,10.
    [63]张永生、巩丹超.高分辨率遥感卫星应用—成像模型、处理算法及应用技术[M] .北京:科学出版社,2004.
    [64]王珺.计算机立体视觉算法研究与实现[MD].大连:大连理工大学,2009.
    [65] Y.Boykow, O.Veksler, R.Zabih. Fast approximate energy minimization via graph cuts [A]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11): 1222-1239.
    [66] J.Sun, N.N.Zheng, H.Y.Shum. Stereo matching using belief propagation. IEEE Transcations on Pattern Analysis and Machine Intelligence, 2003, 25(&): 787-800.
    [67] P.F.Felzenszwalb, D.P.Huttenlocher. Efficient Belief Propagation for Early Vision [A]. International Journal of Computer Vision, 2006.
    [68] S.Forstmann, J.Ohya, Y.Kanou, A.Schmitt, S.Thusering. Real-time stereo by using dynamic programming [C]. Proc. Of CVPR Workshop on Real-time 3D Sensors and Their Use, 2004.
    [69] Gong M L, Yang Y H. Fast stereo matching using reliability-based dynamic programming and consistency constraints [C]. Procedings of the Nith IEEE International Conference on Computer Vision, 2003, (1): 610-617.
    [70] Middlebury Stereo Website. Http://www.vision.middlebury.edu/stereo/.
    [71] G.Egnal. Mutual information as a stereo correspondence measure [R]. Comp. and Inf. Science, U. of Pennsylvania, 2000.
    [72] Hirschmuller. H. Stereo Processing by Semi-Global Matching and Mutual Information. IEEE Transactions on Pattern Analysis and Machine Intelligence 30 (2008): 328-341.
    [73] Hirschmuller. H, Scholten. F, Hirzing. G. Stereo Vision Based Reconstruction of Huge Urban Areas from an Airborne Pushbroom Camera (HRSC). In 27th DAGM Symposium, Vienna, Austria, 2005: 58-66.
    [74] Hirschmuller. H. Stereo Processing by Semi-Global Matching and Mutual Information. IEEE Transactions on Pattern Analysis and Machine Intelligence 30 (2008): 328-341.
    [75] Ernst. I, Hirschmuller. H. Mutual Information based Semi-Global Stereo Matching on the GPU[A]. In: 4th International Sysmposium on Visual Computing (ISVC08) (C),USA,2008.
    [76] K. Zhu, M. Butenuth, P.dAngelo. Computational Optimized 3D Reconstruction System For AirborneImage Sequences[A].
    [77] Matthias Heinrichs, Volker Rodehorst, Olaf Hellwich. Efficient Semi-Global Matching for Trinocular Stereo[C]. In International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences (PIA07), 2007.
    [78] Okutomi, M., Kanade, T. A Multiple-baseline Stereo[C]. PAMI, Vol. 15, No.4,pp. 353-363,1993.
    [79] Ku. J. S. Lee, K. M. Lee, S. U. Multi-image Matching for a General Motion Stereo Camera Model. PaREC, Vol. 34, pp. 1701-1712, 2001.
    [80] Pateraki M, Adaptive Multi-image Matching for DSM Generation from Airborne Linear Array CCD Data [D]. Institute of Echnology Zurich, ETH Zurich.2005.
    [81] Pateraki, M., Baltsavias, E. P., Recke, U. Experiences on Automatic Image Matching for DSM Generation with ADS40 Pushbroom Sensor Data[J]. IAPRS, Vol. 35, Part B2, pp. 83-92, 2004.
    [82]江万寿.航空影像多视匹配与规则建筑物自动提取方法研究[D].武汉:武汉大学.2004.
    [83] Zhang Li, Automatic Digital Surface Model (DSM) Generation from Linear Array Images [D]. Swiss Federal Institute of Technology Zurich for the degree of Doctor of Technical Sciences, 2005.
    [84]范大昭.多线阵影像匹配生成DSM的理论与算法[D].郑州:解放军信息工程大学.2007.
    [85]张永生,范大昭,纪松.用于ADS40传感器的多视觉立体匹配算法模型[J] .测绘科学技术学报,2007,24(2):83-86.
    [86]袁修孝,明洋.一种综合利用像方和物方信息的多影像匹配方法[J].测绘学院,2009,38(3):216-222.
    [87] Mikolajcyk K, Schmid C. A Performance Evaluation of Local Descriptors [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2005, 27(10):1615-1630.
    [88]李晓明、郑链、胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,6(10):885-892.
    [89] Lowed D G. Distinctive Image Feature from Scale-Invariant Keypoints [J]. International Journal of Computer Vision, 2004, 60(2):91-110.
    [90] Lowed D G. Object Recognition from Local Scale-Invariant Features [C]. International Conference on Computer Vision, Corfu, Greece, 1999.
    [91] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features. In ECCV, 2006.
    [92] H. Bay, B. Fasel, and L. van Gool. Interactive museum guide: Fast and robust recognition of museum objects. In Proceedings of the rst international workshop on mobile vision, May 2006.
    [93] Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool. Speeded-Up Robust Features (SURF) [J]. Compute Vis. Image Underst. 2008, 110(3): 346-359.
    [94] Timothy B.Terriberry, Lindley M.French, John Helmsen. GPU accelerating speedup robust features[A]. 3DPVT’08, Atlanta, Georgia, 2008.
    [95] F.C.Crow. Summed_Area tables for texture mapping [C]. In Proceedings of the 11th ananual conference on Computer graphics and interactive techniques, ACM 1984, New York, NY.
    [96] Torsten Sommer. Interest Point Detection and Matching on SIMD Architectures [R]. 2010.
    [97]刘军.GPS/IMU辅助机载线阵CCD影像定位技术研究[D].郑州:解放军信息工程大学,2007.
    [98]李诉卉、陈良健.整合房屋、道路及地形模型之航空影像真实正射校正[J].航测与遥测学刊,2008,13(2):101-116.
    [99]钟成、黄先锋、李德仁、李卉.真正射影像生成的多变性反演成像遮挡检测方法[J].测绘学报,2010,39(1):59-65.
    [100]谢文寒、周国清.城市大比例尺真正射影像阴影与遮挡问题研究[J].测绘学报,2010,(1):52-59.
    [101]沈潇.三维场景实时阴影算法的研究与实现[MD].重庆:重庆大学,2006.
    [102] Williams,L. Casting curved shadows on curved surface [J]. Computer Graphics, 1978, (12): 270-274.
    [103] F. Crow. Shadow algorithms for computer graphics [A]. In Proceedings of SIGGRAPH 1977[C].1977:242–248.
    [104] C. Everitt and M. Kilgard. Practical and robust stenciled shadow volumes for hardware-accelerated rendering [EB/OL]. http://developer.nvidia.com. 2002.
    [105]戴晨光.空间数据融合与可视化的理论及算法[D].郑州:解放军信息工程大学,2008.
    [106] OpenGL体系结构审核委员会等. OpenGL编程指南(第四版)[M].北京:人民邮电出版社, 2005.
    [107] Amhar, F., J. Josef, and D.Ries. The Generating of True Orthophotos using a 3D Building model in conjunction with a conventional DTM[J]. International Archives of Photogrammetry and Remote Sensing, 1998, 32(4):16-22.
    [108] Habib, A.F., E.M. Kim, and C.J. Kim. New methodologies for true orthophoto generation [J]. Photogrammetric Engineering and Remote Sensing, 2007,73(1):25-36.
    [109] Bert Wolf. A New Approach of Generating True Orthoimages From Urban Areas [A].
    [110] Jorg Albertz, Bert Wolf. Generating True Orthoimages From Urban Areas Without Height Information.
    [111]陈国良.并行计算机体系结构[M].北京:高等教育出版社.2002.
    [112]陈国良,安虹等.并行算法实践[M].北京:高等教育出版社,2004.
    [113]托马斯·布劳恩,斯特凡·法伊尔等著,李俊山等译.并行图像处理[M].西安:西安交通大学出版社.2003.
    [114] Downton A, Crookes D. Parallel Architectures for Image Processing [J]. Electronics and Communication Engineering Journal, 1998, 10(3):139-151.
    [115] MPI.A Message Passing Interface.http://www.mpi-forum.org/.
    [116] MPICH.High-performance and Widely Portable MPI.http://www.mcs.anl.gov/mpi/mpich/.
    [117] OpenMP,A API for multi-platform shared-memory parallel programming.http://www.openmp.org/.
    [118]贺辉,彭望琭,匡锦瑜.自适应滤波的高分辨率遥感影像薄云去除算法[J].地球信息科学学报,2009,11(3):305-311.
    [119]武凤霞、王章野、彭群生.最小失真意义下雾化图像复原[J].系统仿真学报,2006,18(1): 363-365.
    [120]王鸿南、钟文、汪静、夏德深.图像清晰度评价方法研究[J].中国图形图像学报,2004,7(9):828-831.
    [121]徐贵力、刘小霞、田裕鹏、程月华、李鹏.一种图像清晰度评价方法[J].红外与激光工程,2009,1(38):180-184.
    [122] Srinivasa G N, Shree K N. Vision and Atmosphere[J]. Interactional Journal of Computer Vision, 2002,48(3): 233-254.
    [123] Oakley J P T. Enhancement of Color Miages in Poor Visibility Conditions[C]. Proceedings of IEEE International Conference on Image Processing. Vancouver, Canada: IEEE Press, 2000: 788-791.
    [124] Narasimhan S G, Nayar S K. Contrast Restoration of Weather Degraded Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724.
    [125] Narasimhan S G, Nayar S K. Interactive Weathering of an Image Using Physical Model[C]. Proceedings of the ICCV Workshop on Color and Photometric Methods in Computer Vision. [S.I.]: IEEE Computer Society, 2003,25(6): 713-723.
    [126] R.Tan. Visibility in bad weather from a single image. CVPR, 2008.
    [127] R.Fattal. Single image dehazing. In SIGGRAPH 2008:1-9.
    [128] Kaiming He, Jian Sun, Xiaoou Tang. Single Image Haze Removal Using Dark Channel Prior. CVPR 2009.
    [129] A. Levin, D. Lischinski, Y. Weiss. A Closed form solution to natural image matting. CVPR 2006.
    [130] Jean-Philippe Tarel, Nicolas Hautiere. Fast Visibility Restoration from a Single Color or Gray Level Image [A].
    [131] C.Tomasi, R.Manduchi. Bilateral Filtering for Gray and Color Images [A]. ICCV, 1998: 839-846.
    [132] Kaiming He, Jian Sun, Xiaoou Tang. Guided Image Filtering[A].
    [133]张力、张祖勋、张剑清. Wallis滤波在影像匹配中的应用[J].武汉测绘科技大学学报,1999,24(1):24-27.
    [134]王密,潘俊.一种数字航空影像的匀光方法[J].中国图像图形学报,2004,9(6):744-748
    [135]韩博,周秉锋. GPGPU性能模型及应用实例分析[J].计算机辅助设计与图形学学报,2009,21(9):1219-1226.
    [136] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, Jack Dongarra. From CUDA to OpenCL: Towards a Performance-portable Solution for Multi-Platform GPU Programming[J]. Parallel Computing, 2010(8): 1-12.
    [137] Fatahalian K, Sugerman J, Hanrahan P. Understanding the efficiency of GPU algorithms for matrix- matrix multiplication[C]. Proceedings of ACM SIGGRAPH/Eurographics Conference on Graphics Hardware, Grenoble, 2004:133-137.
    [138] He B S, Govindaraju N K, Luo Q. Efficient gather and scatter operations on graphics processors[C]. Proceedings of the ACM/IEEE Conference on Supercomputing, Reno, 2007:1-12.
    [139]张永生.遥感图像信息系统[M] .北京:科学出版社,2000:50-60.
    [140]蒋艳凰,杨学军,易会战.卫星遥感图像并行几何校正算法研究[J].计算机学报,2004,27(7):944-951.
    [141]刘军,王冬红.基于Level 0产品的ADS40正射影像快速生成[J].遥感学报,2007,11(2):247-251.
    [142]刘军、张永生、王冬红、徐卫明. INS/DGPS支持的机载线阵推扫影像几何校正[J].遥感学报,2006,10(1):21-26.
    [143] U.Thoma, F.Kurz, D.Rosenbaum, R.Mueller, P.Reinartz. GPU_Based Orthorectitifcation of Digital Airborne Camera Images in Real Time [A]. ISPRS. Vol.XXXVII, PartB, Beijing, 2008.
    [144]刘双,申闫春,狄翠萍. GPU在实时阴影绘制中的应用[J].计算机技术与发展,2009,19(11):226-229.
    [145]张祖勋,张剑清.数字摄影测量学[M].武汉:武汉测绘科技大学出版社.1997.
    [146]孙浩、王程、王润生.局部不变特征综述[J].中国图象图形学报,2011,16(2):141-151.
    [147]高宏伟、李斌、梁英、陈亮、赵亚威.立体视觉中误匹配滤波方法的研究[J].计算机工程,2008,34(20):210-212.
    [148]张洁玉、白小晶、徐丽燕、陈强、夏德深.基于空间分布描述符的SIFT误匹配校正方法[J].中国图象图形学报,2009,14(7):1369-1377.
    [149] Anna Brook, Eyal Ben-Dor. Automtic Registration of Airborne and Spaceborne Images by Topology Map Matching with SURF Processor Algorithm [J]. Remote Sens, 2011, 3: 65-82.
    [150] Algimantas MALICKAS. Feature Matches Filtering Using Geometric Invariants in Image Registration Tasks [J]. Informatica, 2001, 12(3): 385-412.
    [151] Torr P H S, Murray D W. The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix[J] . International Journal of Computer Vision, 1997, 24 (3) : 271-300.
    [152] Fischler, M.A. and Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM , 24(6): 381–395, 1981.
    [153] S. Birchfield, Tomai. A pixel dissimilarity measure that is insensitive to image sampling. IEEE Transactions on Pattern Analysis and Machine Intelligence [A], 1998, 20(4): 401-406.
    [154] Engin Tola, Vincent Lepetit, Pascal Fua. A Fast Local Descriptor for Dense Matching[A].
    [155]段新华、王宏勇、丁汨.集群作业管理系统的关键技术分析及比较[J].计算机技术与发展,2009,19(2):87-90.
    [156]李全枝、梁正友.集群资源管理系统PBS及其应用[J].微计算机发展,2005,15(4):4-7.
    [157]郭绍忠、黄永忠、余丽琼.机群作业管理系统Condor综述[J].信息工程大学学报,2004,5(1):73-76.
    [158]叶庆华.基于服务的集群作业管理系统设计与实现[MD].北京:中国科学院研究生院,2002.
    [159] Bayucan A. Portable Batch System OpenPBS Release 2.3 Administrator Guide[EB/OL]. 2000: Veridian Information Stolution, Http://www.phspro.com.
    [160] Condor Team. Condor– High Throughput Computing [EB/OL]. 2008, Http://www.cs.wisc.edu/condor/.
    [161] LSF Team. LSF Administrator’s Guide [EB/OL]. 2007, Http://www.platform.com/products.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700