用户名: 密码: 验证码:
农业机器系统优化模型与水稻种植区典型系统评价的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业机器系统是指作物、土壤和农业机器等组成的一个大系统,其中农业机器的功能是在特定的气候、土壤等作业条件下,完成作物生产作业工序要求的各项任务,国内农业机器的作业成本通常要占到农业生产总成本的30-50%,因此,农业机器系统优化问题的研究具有重要的理论和实践意义。
     很多学者对农业机器系统进行了研究,但目前还存在一些问题有待解决,如农业机器选型尚局限于选型方法的研究,缺乏能指导生产实践的应用性成果;农业机器折旧成本的估计缺乏科学依据,一般都用直线折旧法来计算折旧费用,与农业机器实际价值转移规律并不一致。维修保养费的估计没有充分考虑机器类型、机龄、累积作业小时和作业工序等因素的显著影响,导致估计值与实际值有很大差异;农业机器的可下地概率一般根据经验来估计,没有充分考虑当地气候条件和土壤条件等特殊性,导致估计值与实际值有很大偏差;农业机器关键作业的适时性损失尚无应用性成果,优化时一般限定某项作业在规定时间段内完成,与实际作业情况有差异;优化配备中一般也没有考虑农业机器完好率的影响等。
     本文首先对农业机器产品的满意度进行了调查与分析,研究结论可为选型提供重要依据。其次根据农场实际数据对农业机器系统优化的几个关键子模型进行了研究,即残值系数模型、可下地概率相关模型和作业成本预测模型,并在这些模型的基础上构造了新的农业机器系统优化配备模型。最后对水稻种植区典型的农业机器系统进行了比较分析与评价,评价结果对各稻区有重要的指导意义。
     在对农业机器产品的满意度进行调查与分析时,采用美国社会心理学家R.A.Likert提出的李克特量表(Likert Scale)设计了问卷,采用广泛调查法获得了满意度分析的样本数据,产品范围涉及到50个生产厂家生产的轮式拖拉机、联合收获机、插秧机、秸秆还田机和条播机五大类产品中的150个具体产品,调查对象均为熟悉被调查产品的管理人员、服务人员和机手,共在江苏省13个地级市和省农机局直属机关发放调查问卷11102份,现场回收有效问卷9982份,保证了样本数据的真实性和可靠性,并用SAS软件进行了数据处理。研究结果表明,五大类农业机器产品质量满意度的次序为:拖拉机、秸秆还田机、条播机、联合收获机和插秧机;五大类农业机器产品中,拖拉机、秸秆还田机、条播机、联合收获机和插秧机满意度在“基本满意”以上的产品数比例分别为91.23%、100%、94.12%、87.10%和81.82%,而在“比较满意”以上的产品数比例分别为84.12%、91.18%、88.24%、41.94%和72.73%,说明拖拉机、秸秆还田机和条播机的满意度比较高,而联合收获机和插秧机的满意度相对来说还比较低;试验还得出了全部50个生产厂家的满意度排序、五大类13个系列产品的满意度排序,同一厂家不同型号联合收获机的满意度之间还呈现出显著的相关性(相关系数为0.9061)。本研究成果已在江苏省得到了具体应用。
     在对残值系数模型的研究中,采集了江苏省大丰市的上海农场近15年的128个样本数据,随机抽取其中116个样本来构造模型,并用其它12个样本进行了验证试验,结果表明,双平方根模型为6个备选模型中的最佳残值系数模型(调节平方和为0.8367),残值系数模型中机龄是决定实际残值系数的主要因素,对比分析表明,预测模型中12个验证样本中的8个样本的预测偏差在以±10%内,验证样本中最大预测偏差为17.50%;而在ASABE模型中12个验证样本中仅有3个样本的预测偏差在±10%以内,验证样本中最大预测偏差为47.59%;说明新建立的拖拉机残值系数模型达到了满意的精度,可以用来预测我国同类条件下大中型拖拉机的残值系数。
     在对农业机器可下地概率相关模型进行研究时,采集了近15年的历史气象数据,并建立了蒸发量和降雨量模型,结果表明,农场上半年和下半年的蒸发量模型都达到了较高的预测精度(调节平方和分别为0.7985和0.7167),平均温度和日照小时数对蒸发量均有显著影响,在同样温度和日照小时数条件下,上半年的蒸发量比下半年的蒸发量大。实证分析表明,蒸发量模型的预测精度是满意的,随机抽取的12个验证样本中,9个样本的预测偏差在±20%以内;用马尔科夫模型来预测降雨量这样一个随机过程是合理的,2006年、2007年多数月份的模型预测结果与实际月降雨量是一致的,从而为今后充分利用农业气象信息提供了一种新的方法与手段。最后建立了月降雨量与可下地概率的经验关系,为实践中根据预测的月降雨量来估计当月农业机器的可下地概率提供了依据。
     在对农业机器作业成本预测模型进行研究时,根据农场的实际情况,农业机器的总作业成本主要包括折旧费、维修保养费、油料费用、人员工资和管理费5项成本,采集了7台JDT-654拖拉机机组历史年的相关数据,并用SAS进行了建模分析,结果表明,本文提出的建立农业机器作业成本预测模型的一般方法是可行的;根据农场实际数据建立的拖拉机残值系数、JDT-654拖拉机累积维修保养费系数的回归方程均达到了较高的预测精度(调节平方和分别为0.8367和0.8840),可以用来科学预测拖拉机的折旧成本和维修保养成本;实证分析中6号JDT-654拖拉机组成的犁耕机组和旋耕机组作业成本的预测偏差分别为-2.11%和-5.92%,这台拖拉机所有机组的总作业成本的预测偏差为-3.88%,证实了模型的可行性。典型机组的经济性分析表明,与纽荷兰110-90拖拉机和JDT-654拖拉机组成的犁耕机组和旋耕机组在5年内的单位面积平均作业成本分别为316.47元·hm-2、139.65元·hm-2和242.24元·hm-2、122.64元·hm-2,纽荷兰110-90犁耕机组和旋耕机组5年内平均作业成本要JDT-654拖拉机同类机组分别高126.62%和97.52%;JM-1605收获机5年内的单位面积作业成本为168.03元·hm-2,并在3年到4年间平均作业成本达到最低值。
     在建立农场农业机器系统优化配备模型时,首先假定已建立了农业机器作业成本中5项成本预测的子模型,选择农业机器系统总作业成本最小为目标,主要约束条件包括作业量约束、拖拉机或联合收获机工作时间约束、作业工序先后顺序约束、特定机型选择约束、有效作业时间约束和变量非负约束等,构造了农业机器系统优化配备的非线性规划模型。本模型的主要特点是模型中各项成本是用预测模型来估计的,提高了预测精度,充分考虑了田间作业工序的先后顺序要求,允许用户选择目标机型等。
     在对我国三大稻区水稻生产的典型农业机器系统方案进行比较分析时,系统介绍了三大稻区的典型农业机器系统方案,并安排了农业机器系统方案的比较试验,这些系统方案的种植方式包括常规育秧手工插秧、机械插秧、机械直播、和机械钵苗行栽等,试验的品种为当地种植面积较大的6个品种,采集了不同试验方案中的各项成本,如种子、化肥、水费等物质成本,农业机器作业成本和劳动力成本,测定了主要水稻产量指标如样本穗数、样本粒数、样本实粒数、平均千粒质量、理论平均产量和实际平均产量等,还测定作业环节消耗工时等数据,以评价不同种植方式的农业机器系统方案在“省工、节本、增效”方面的实施效果。结果表明,南方一季稻区三种不同农业机器系统方案的水稻生产总成本的排序为:常规育秧手插方案>机械直播方案>机械插秧方案,常规育秧手插方案、机械直播方案和机械插秧方案中农业机器作业成本占总成本的比重平均值分别为28.56%、43.20%和42.91%;南方双季稻区早杂交稻机插秧方案比常规育秧手插方案的总成本降低11.46%,其中常规育秧手插方案和机械插秧方案中农业机器作业成本占总成本的比重分别为33.92%和48.88%;而晚杂交稻机插秧方案比常规育秧手插方案的总成本降低9.47%,其中常规育秧手插方案和机械插秧方案中农业机器作业成本占总成本的比重分别为30.72%和43.30%;北方稻区常规稻手插和机械钵苗行栽两种方案的总成本比较接近,常规育秧手插方案和机械钵苗行栽方案中农业机器作业成本占总成本的比重分别为18.69%和25.70%;在南方二稻区,机械插秧方案平均增产7.53%、平均省工41.44%,平均增加效益46.78%,在所有方案中“省工、节本、增效”效果最为显著,是一项值得在大部分稻区推广应用的种植方案;机械直播方案产量平均下降6.34%,平均省工31.30%,而对效益的影响因品种不同而表现出差异性,常规稻效益略有下降,杂交稻平均增效8.50%;机械钵苗行栽方案平均增产8.95%、省工64.29%,增加效益22.57%,是北方稻区值得进一步示范和推广的一种水稻种植技术。以上研究结论对中国各主要稻区明确今后水稻生产机械化的发展方向有一定的参考价值。
     最后本文还提出了农业机器系统优化有待进一步深入解决的几个问题。
Farm machinery system is composed of a number of factors such as crop, soil and farm machinery etc., the function of which is to perform field operations relating to crop production in specific weather and soil conditions. Research show that field operations by farm machinery may account to 30-50% of total cost for crop production in China, making the task of optimization of farm machinery system significant both in theory and practice.
     Though a number of researches have been conducted on the farm machinery systems, some key problems still remain unresolved. One of which is how to correctly select suitable farm machineries, as most studies were limited to theories and lacking enough operational approaches to provide guidance to farmers. The second problem is the determination of the depreciation cost, of which the linear model of depreciation cost were generally adopted, deviating largely from the real situation for most types of farm machinery. The third is the repair and the maintenance cost, here attention were not enough paid to the application of machinery information, such as machinery type, age, cumulated working hours and field working procedure etc. The forth is the machinery field workable probability, which were occasionally judged empirically other than enough consideration on the local weather and soil conditions. Another problem is the lack of operations from timeliness cost of key operations, due to the unavailable experience function of timeliness cost for most regions, in most cases key field operations were limited to perform in fixed period. The last problem is the ignorance of the reliability degree of farm machinery upon optimization.
     The customer satisfaction degrees of farm machinery were firstly surveyed and analyzed, yielding results that can be applied as a basis for farm machinery selection. After that a number of sub-models based on real farm data were studied, which include value index model for farm machinery and those relating to machinery field workable probability and field operation cost forecast. Again the provision of these sub-models facilitated the optimization of a renovated model. For the purpose of evaluation of the new models, field tests were conducted on typical rice production systems with different features and evaluations were performed on each rice production regions in China.
     In order to analyze customer satisfaction of different farm machinery products, a questionnaire was designed in accordance to Likert scale. And then totally 9982 questionnaires were collected from Jiangsu Province, sources of which came from managers, extension workers and drivers familiar or expertise in this area. The investigation covered five types and 150 specific products made from 50 different manufacturers. The five types of farm machinery include tractor, straw-return rotary tiller, planter, combine harvester, and rice transplanter. Their grades, distribution and ite correlations to customer satisfaction were analyzed in SAS software. Results show that customer satisfactions on the five types of farm machinery products were ranked, from high to low, as tractor, straw-return rotary tiller, planter, combine, and rice transplanter, respectively. The corresponding rates of products number related to the customer satisfaction surpassed the "general satisfaction" to 91.23%,100%,94.12%,87.10%and 81.82%, respectively. And those higher than the "relative satisfaction" were 84.12%, 91.18%,88.24%,41.94% and 72.73%, respectively. The detailed analysis yielded the ranks of customer satisfactory for each manufacturer and each 13 different series products, showing that the customer satisfaction correlation for combines manufactured by the same manufacturer was 0.9061. These achievements have already been successfully used to manage farm machinery in Jiangsu province.
     To develop new residue value index models for medium tractors,128 tractor auction sales data in the past 15 years in Shanghai State Farm were collected. From them sub 116 samples were randomly selected as regression samples, and the remaining 12 data were designated as testing data. Different Box-Cox transformations and regression methods were carried out in SAS, showing that the double square root model was best one among the 6 proposed explanatory models for tractor age and average yearly working hours. Tractor age was the main factor for determining tractor residue value index. The test on the real data also show that the forecasting errors of the model were within±10%for 8 of the 12 tested samples, the maximum one is-17.15%, and that of ASABE model were within±10%only for 3 of the 12 tested samples, the maximum one is 47.59%. This proved that such models can supply satisfactory forecasting results in similar situations.
     Field workable probability of farm machinery was predicted with weather data from the last 15 years and then it was linked to models developed. The results show that evaporation models of the first half year and the second half year were satisfactory (adjusted sum square were 0.7985 and 0.7167 respectively). Both average daily temperature and daily sunshine hours affect evaporation dramatically, with the evaporation in the first half year slighter higher under the same temperature and sunshine hours. The real data test also show the forecast errors of the models, ranging in±20% for 9 of the 12 tested samples. Markvo model was a reasonable tool for the forecast of monthly rainfall, mainly due to its randomized procedure. The application of this model revealed a good fit of the forecasted rainfall with the real ones for most of the months in 2006 and 2007. Thus it is a good way to make use of weather information. Finally, empirical relationship between rainfall and machinery field workable probability was provided, and thereby machinery field workable probability can be forecasted with monthly rainfall data.
     To develop forecasting models of operation cost for farm machinery, it was necessary to forecast different cost items, such as depreciation cost, repair and maintenance cost, fuel consumption cost, labor cost and management cost. Data related to 7 sets of working units of JDT654 tractor was further collected, from which forecasting models for five field operation cost items of farm machinery were derived. Results show that the proposed methods for the development of forecasting models were feasible, with 0.8367 for adjusted sum square and 0.8840 for depreciation cost model relating to repair and maintenance, respectively. Forecasting errors were-2.11% and-5.92% for ploughing implement and rotary tiller, respectively. The average forecasting error for the two implements was-3.88%. Case study show an average operation cost for ploughing implement and roatry tiller powered by tractor 110-90 and tractor JDT-654 were 316.47,139.65 yuan per hectare and 242.24,122.64 yuan per hectare respectively, in the first five years. The average cost of them were 126.62% and 97.52% higher, respectively, while the average operation cost of combine JM-1605 was 168.03 yuan per hectare in the first five years, a value being the least one among machineries with age of 3 to 4 years.
     The development of a non-linear optimization model for farm machinery systems was base on the provision of a number of, say five, sub-models. Optimization objective of the model was to achieve the least machinery field operation cost, with constraints of the quantity of field work, working hours of working units or combines, field operation sequences, target for select some specific machinery, available working hours and non-negative variables. Thus the main advantages of the model were to allow the use of sub-models to forecast individual cost items, to consider the sequences of machinery field operation, and to select special model machinery etc.. The optimization results were achieved by using LINDO software.
     In order to evaluate typical farm machinery systems of rice production in the three main rice planting regions in China, i.e. the one-season rice production region of South China(OSSC), two-season rice production region of South China(TSSC) and rice production region of North China(NC), a brief introduction of these typical systems was followed with a series field tests. Rice planting methods include traditional manual transplanter(TMT), rice mechanized transplanter(MT), rice mechanized direct seeding(MDS) and rice mechanized potted-seedling transplanter(MPST). Variables used in the test include 6 types of rice seeds, seed cost, fertilizer and chemical cost, water cost, machinery field operation cost, labour cost, as well as main rice yield indexes of sample fringes, sample grains, sample fruit grains, average weight per thousand grains, average theoretical yields, average real yields, labour hours for each field operation etc.. Based on the data, evaluation were assigned to the effects of labour saving, cost saving and benefit increasing. So that the ranking list for each total operation cost was provided, from high to low, as TMT, MDS and MT. Their average machinery field operation costs account to 28.56%,43.20% and 42.91% in OSSC, respectively. The highest total operational costs were TMT and MT, either for early and for late rice production, with a respective difference of 11.46% and 9.47%. Average machinery field operation costs account to 33.92%,30.72% and 48.88%,43.30% respectively in TSSC. Total operation costs for the system with TMT and MPST are close, their respective average machinery field operation costs account to 18.69% and 25.70% in NC. Compared with the system of TMT, MT was recommended for both OSSC and TSSC. ough rice yields and net profit are increased by 7.53% and 46.78%in average, and labor hours is reduced by 41.44% in average. Rough rice yields are decreased by 6.34% and labor hours is reduced by 31.30% in average for the system with MDS, their net profit are close or increased by 8.5% for traditional rice and cross one respectively. The system with MPST is recommended in NC, compared to the system with TMT. Rough rice yields and net profit were increased by 8.95% and 22.57% respectively, and labor hours reduced by 64.29%. These results served as a good guideline for the selection of farm machinery system for different rice planting regions in China.
     Finally, some suggestions are also given for further research.
引文
[1]吴湘淦,张松明.农业机械应用学原理[M].北京:中国农业机械出版社,1990.
    [2]陈济勤.农业机器应用管理学[M].北京:中国农业出版社,1997.
    [3]高焕文.高等农业机械化管理学[M].北京:中国农业大学出版社,1998.
    [4]中华人民共和国农业机械化促进法[M].北京:法律出版社,2004.
    [5]张宝文.农业机械化是现代农业的基础[EB/OL]江苏省农业机械信息网,2008.
    [6]徐顺年.深入贯彻党的十七大精神促进江苏农机化事业又好又快发展[J],农业装备,2007,2:5-10
    [7]徐顺年.发展现代农机建设现代农业[J].农业装备技术,2007,33(2):5.
    [8]徐顺年.江苏省农机化发展的战略思考[J].江苏农机化,2006(6):4-6.
    [9]张宝文.发展农业机械化是推进我国经济社会现代化的迫切需要[EB/OL]江苏省农业机械信息网,2008.
    [10]张宝文.在全国农业工作会议农机专业会上的讲话[EB/OL]江苏省农业机械信息网,2008.
    [11]李中才.农业机器系统状态仿真及更新决策的研究[D].东北农业大学,2005.
    [12]石玉梅.兵团国营农场农业机器系统优化配置研究[D].石河子大学,2007.
    [13]高云杰,陈志辉.大中型农机具选型的因素分析[J].农机化研究,2006(5):221.
    [14]Hughes H. A. Machinery complement selection based on time cons traints [J]. Transactions of the ASAE.1976,19(8):812-814
    [15]Singh, Dvinda. A heuristic agricultural field machinery selection algorithm for multi-crop farms [J]. Transactions of the ASAE.1979,22(4):763-770
    [16]Massimo Lazzari, Fabrizio Mazzetto. A PC model for selecting multi-cropping farm machinery systems[J]. Computers and elections in Agriculture.1996, (14):43-59
    [17]Nanseki-T. A Decision Support System for Agricultural Technology and Farm Planning[J]. Tohoku-Nogyo-Shikenjo-Kenkyu-Shiryo.1998, (21)
    [18]H T Sogaard, C G Sorensen. A model of optimal selection of machinery sizes within the farm machinery system[J]. Sixth International conference on computers in Agriculture.1999,588-596
    [19]高洪伟.稻麦收获机型选型及其决策支持系统的研究[D].南京农业大学,2004.
    [20]张东兴.江苏省国营机械化小农场机器系统优化[D].北京农业工程大学,1988.
    [21]王福林.黑龙江省国营农场麦豆收获的机械化系统分析[D].东北农学院,1988.
    [22]王金武.三江平原水稻田间生产机械化系统分析与综合优化设计研究[D].东北农业大学,2001.
    [23]张欣莉.投影寻踪及其在水文水资源中的应用[D].成都:四川大学
    [24]付强,王立,宋艳芬.对模糊综合评判决策模型的认识及改进[J].农机化研究,2002(2):27-29.
    [25]许永花,孙勇.基于RAGA的PPC模型在农机选型中的应用[J].农机使用与维修,2003(1):5.
    [26]付强,杨广林,金菊良.基于PPC模型的农机选型与优序关系研究[J].农业机械学报,2003,34(1):101-103,107.
    [27]李军政.洞庭湖区农田动力机器系统的优化配备研究[D].湖南农业大学,2004.
    [28]王晓燕,乔金友,吴志跃.模糊综合评判法与参数投影寻踪评价模型在农机选型中的对比研究[J].农业系统科学与综合研究,2004,20(1):74-76.
    [29]周雷.基于ANP支持下的农机产品设计选型决策方法研究[J].中国农机化,2006(6):79-82.
    [30]M. Chandrasekhara, Reddy Seema, P. Anji Prasad. Economics of Paddy Processing in Prakasam District of Andhra Pradesh[J]. Andhra Agricultural Journal.2005,52(1):258-262.
    [31]J. R. Molenhuis. Farm machinery costs[J]. Fruit & Vegetable magazine.2004,60(5):3-4.
    [32]Machinery Management [M]. John Deere Publishing,1992. (3).
    [33]农业机械统计报表[R],江苏省农垦集团总公司,2006.
    [34]M. Alam, M.M. Hossain and M.A. Awal. Selection of farm power by using a computer programme[J]. Agricultural mechanization in Asia, Africa and Latin America.2001,32(1):65-68.
    [35]Gajendra Singh, B K Pathak. A decision support system for mechanical harvesting and transportation of sugarcane in Thailand [J]. Computers and Electronics in Agriculture, 1994(11):173-182.
    [36]Edmundo J. HETZ. et al. Optimization of Machinery System [J]. Agricultural mechanization in Asia, Africa and Latin America,1986,17(1):68-76.
    [37]Edwards, W. and M. Boehlje. Machinery selection considering timeliness losses[J]. Transactions of the ASAE,1980,23(4):810-815.821.
    [38]Rotz, C.A., H.A. Muhtar and J.R. Black. A multiple crop machinery selection algorithm[J]. Transactions of ASAE,1983,26(6):1644-1649.
    [39]D.A. Bender, D.E. Kline and B.A. McCarl. Postoptimal liner programming analysis of farm machinery[J]. Transactions of ASAE,1990,33(1):15-20.
    [40]郭风祥,温英莲,孙福辉.内蒙古东部垄作地区农业机器系统配备方案的探讨[J].内蒙古农牧学院学报,1993,14(4):20-30.
    [41]石玉梅.兵团国营农场农业机器系统优化配置研究[D].石河子大学,2007.
    [42]Chen, L.H. Microcomputer model for budgeting and scheduling crop production operations[J]. Transactions of the ASAE,1986,29(4):908-911.
    [43]Kishor M Butani, Gajendra Singh. Decision support system for selection of agricultural machinery with a case study in India[J]. Computers and Electronics in Agriculture,1994(10):91-104.
    [44]Aderoba,A. Farm power/ machinery selection model for mechanized farms in developing countries[J]. Agricultural Mechanization in Asia, Africa and Latin America,1989,20(3):69-72.
    [45]Khan, S., Chaudhry, M.S. and Sherif, S.M. A computer program for agricultural machinery management-Selection of a particular tractor size[J]. Agricultural Machanization in Asia, Africa and Latin America,1984,15(3):11-13.
    [46]A. F. Kheiralla, Azmi Yahya, M. Zohadie. Modelling of power and energy requirements for tillage implements operating in Serdand sandy clay loam, Malaysia[J]. Soil & tillage research,2004, 78:21-34.
    [47]Kemal Esengun, Gulistan Erdal, Orhan Gunduz. An ecomomic analysis and energy use in stake-tomato production in Tokat province of Turkey[J]. Renewable energy,2007,32:1873-1881.
    [48]Claus G. Sorensen, Villy Nielsen. Operational analyses and model comparison of machinery systems for reduced tillage[J]. Biosystems engineering,2005,92(2):143-155.
    [49]Donnel Hunt. Farm Power and Machinery Management[M]. The Iowa State University Press.1983: 255-273.
    [50]叶继昌,王登峰,杨印生,等.农业机械性能评价与选型专家系统的设计[J].农业机械学报,1995,26(1):11-14.
    [51]戴有忠,脱宝珍.用特尔菲法预测湖南双峰县农机配备趋向[J].东北农业大学学报,1983(4):57-65.
    [52]张清华,李玉生,西亮.农业机器配备模型的进一步改进研究[J].黑龙江八一农垦大学学报,1996,8(4):57-63.
    [53]周应朝.华北一年两熟地区农田机器系统优化配备研究[D].北京农业工程大学,1987.
    [54]M Q F Barata, S A Tatizana. Economic optimisation of harvest and crop renewal of sugarcane[C]. Seventh International Conference on Computers In Agriculture:117-122.
    [55]Bahattin Cetin. Optimal farm plans for tractor capacity and analysis of tractor use in vegetable farms, Bursa province, Turkiye[J]. Agricultural mechanization in Asia, Africa and Latin America. 2000,31(4):72-74.
    [56]Krutz, G.W., R.F. Combs and S.D. Parsons. Equipment analysis with farm management models[J]. Transactions of the ASAE,1980,23(1):25-28.
    [57]刘学,曹卫彬,石玉梅,等.利用EXCEL求解农业机器系统优化配备量[J].农机化研究,2008,(2):92-94.
    [58]程耀.友谊农场五分场一队田间作业机器选型配备优化设计[D].东北农学院,1984.
    [59]王福林.黑龙江省国营农场麦豆收获的机械化系统分析[D].东北农学院,1988.
    [60]H T Sogaard, C G Sorensen. A model for optimal selection of machinery sizes within the farm machinery system[J]. Biosystems engineering,2004,89(1):13-28.
    [61]Ghassan AL-Soboh, A.K. Srivastava, T.H. Burkhardt and J.D. Kelly. A mixed-integer liner programming (MILP) machinery selection model for navybean production systems[J]. Transactions of the ASAE,1986,29(1):81-89.
    [62]Philip Doganis, Haralambos Sarimveis. Optimal scheduling in a yogurt production line based on
    mixed integer linear programming[J]. Journal of food engineering,2007,80:445-453.
    [63]E. A. Camarena, C. Gracia, J. M. Cabrera Sixto. A mixed integer linear programming machinery selection model for multifarm systems[J]. Biosystems engineering,2004,87(2):145-154.
    [64]韩宽襟.国营农场种植业机器作业系统的优化与模拟[D].北京农业工程大学,1990.
    [65]R.S. Parmar, R.W., McClendon and W.D. Potter. Farm machinery selection using simulation and genetic algorithms[J]. Transactions of the ASAE,1996,39(5):1905-1909.
    [66]Wendell Bowers. Machinery Management[M]. Litho in U.S.A. Deere & Company:Lori J. Lees, 1992:35-36.
    [67]Jing Wu, Gregory M. Perry. Estimating farm equipment depreciation:which functional form is best? [J]. American Journal of Economics,2004,86(2):483-491.
    [68]G. M. Perry, A. Bayaner, C. J. Nixon. The effort of usage and size on tractor depreciation[J]. American Journal of Economics,1990,72(2):317-325.
    [69]McNeill, R.C. Depreciation of farm tractors in British Columbia[J], Canadian Journal of Agricultural Economics,27(feb 1979):53-58.
    [70]Cross, T., G.M. Perry. Depreciation Patterns for Agricultural Machinery[J]. American Journal of Economics,77(1995):194-204.
    [71]Weersink, A., S. Stauber. Optimal Replacement Interval and Depreciation Methods for Grain Combine[J], Western Journal of Agricultural Economics 13(1988):18-28.
    [72]Unterschultz, J., G Mumey. Reducing investment risk in tractors and combines with improved terminal asset value forecasts[J]. Canadian Journal of Agricultural Economics,1988(13):18-28.
    [73]Leatham, D.J., T.G.Baker. Empirical estimates of effects of inflation on salvage value, cost, and optimal replacement of tractors and combines[J]. North Central Journal of Agricultural economics, 3(1981):109-117.
    [74]Reid, D.W., G.L. Bradtord. On optimal replacement of farm tractors[J], American Journal of Economics,65(May 1983):326-331.
    [75]Perry, G.M., C.J. Nixon. Optimal tractor replacement. What matters? [J], rev. Agr. Econ,13(Jan 1991):119-128.
    [76]Watts, M.J., G.A. Helmers. Machinery costs and inflation[J], Western Journal of Agricultural Economics,1981,6(2):129-145.
    [77]T. L. Cross, G. M. Perry. Remaining value functions for farm equipment[J]. Applied engineering in agriculture,1996,12(5):547-553.
    [78]ASAE standards D497.5. Agricultural machinery management data[S]. St. Joseph, Mich:ASABE, 2006.
    [79]吴建民.小型拖拉机最佳更新期的动态研究[J].农业工程学报,1998,14(2):78-81.
    [80]王福林.农业机器折旧中的双倍余额递减法改进研究[J].农业机械学报,2003,34(4):66-70.
    [81]韩正晟.农业机器动态折旧研究[J].农业机械学报,1996,27(3):98-103.
    [82]李永华,郜林平.新准则下再析累计折旧与固定资产减值准备[J].中国管理信息化,2008,11(1):51-53.
    [83]代宏霞,蓝文永,林样友.固定资产正态动态折旧模型的构建[J].统计与决策,2007,9:152-153.
    [84]张东兴,高焕文.一个确定机器可下地概率的实用模型[J].北京农业工程大学学报,1990,10(4):7-15.
    [85]McClendon, R.W., M.E. Wetzstein, D.M. Edwards and L.H. Chen. Risk efficiency of machinery selection for double cropping via simulation[J]. Transactions of the ASAE,1987,30(5): 1259-1265.
    [86]Whitson, R.E, R.D. Kay, A.W. Lepori and E.M. Rister. Machinery and crop selection with weather risk[J]. Transactions of the ASAE,1981,24(2):288-291,195.
    [87]A. de Toro, P. A. Hansson. Analysis of field machinery performance based on daily soil workability status using discrete event simulation or on average workday[J]. Agricultural systems,2004,79: 109-129.
    [88]C. A. Rotz, T. M. Harrigan. Predicting suitable days for field machinery operations in a whole farm simulation[J]. applied engineering in agriculture,2005,21(4):563-571.
    [89]Jing Wu, Gregory M. Perry. Estimating farm equipment depreciation:which functional form is best? [J]. American Journal of Economics,2004,86(2):483-491.
    [90]G. M. Perry, A. Bayaner, C. J. Nixon. The effort of usage and size on tractor depreciation[J]. American Journal of Economics,1990,72(2):317-325.
    [91]Cross, T., G.M. Perry. Depreciation Patterns for Agricultural Machinery[J]. American Journal of Economics,77(1995):194-204.
    [92]Unterschultz, J., G. Mumey. Reducing investment risk in tractors and combines with improved terminal asset value forecasts[J]. Canadian Journal of Agricultural Economics,1988(13):18-28.
    [93]D. R. Buckmaster. Benchmarking tractor costs[J]. Applied engineering in agriculture,2003,19(2): 151-154.
    [94]S. A. AL-Suhaibani, M. F. Wahby. Tractor repair and maintenance in Saudi Arabia[J]. Applied engineering in agriculture,1999,15(6):591-596.
    [95]Konda, I., D. L. Larson. Tractor repair and maintenance costs and management polices in Borkina Faso. ASAE Paper No.90-8503. St. Joseph, Mich.:ASAE.
    [96]Ward, S. M., P. B. McNulty, M. B. Cunney. Repair costs of 2 and 4 WD tractors[J]. Transactions of the ASAE,1985,28(4):1074-1076.
    [97]R. D. Grisso, M. F. Kocher, D.H. Vaughan. Predicating tractor fuel consumption[J]. Applied engineering in agriculture,2004,20(5):553-561.
    [98]K. U. Kim, L. L. Bashford, B. T. Sampson. Improvement of tractor performance[J]. Applied engineering in agriculture,2005,21(6):949-954.
    [99]Robert D. Grisso, Gary T. Roberson, David H. Vaughan. Methods for Fuel Predication for Specific Tractor Models[C]. ASABE Paper No.061089, St. Joseph, Mich.2006
    [100]朱奎林;张清华.JD-4450型拖拉机经济使用寿命的研究[J].黑龙江八一农垦大学学报,1995,8(1):58-66.
    [101]王福林.个体无大修农业机器经济寿命计算问题的探讨[J].农业机械学报,1995,26(4):134-138.
    [102]王福林.个体有大修农业机器经济寿命计算问题的探讨[J].农业机械学报,1997,28(2):121-126.
    [103]王福林.农业机器经济寿命计算的研究现状及其分析[J].农业机械学报,1995,26(2):111-115.
    [104]郝庆,王桂侠.农机经济寿命计算问题的探讨与商榷[J].农业机械学报,1998,29(3):168-171.
    [105]吴建民.小型拖拉机最佳更新时期的动态研究[J].农业工程学报,1998,14(2):78-81.
    [106]吴建民.农业机器经济寿命的动态研究[J].农业工程学报,2000,16(4):28-31.
    [107]Hunt, D.R Machinery management in areas of labor surplus. IN International Conference on System Theory and applications Proceedings[C]. Punjab Agricultural University, Ludhiana India, 1981.
    [108]Chancellor, W.J. and V. cervinka. Timeliness coefficients for rice and and factors affecting their value[J]. Transactions of ASAE,1979,22(2):810-815,821.
    [109]Huan-wen, G. and D.R.Hunt. Optimum combine fleet selection with power-based models[J]. Transactions of ASAE,1985,28(2):364-368.
    [110]孟繁琪,万鹤群.农田作业适时性对农机配备的影响[J].农业机械学报,1983(1):97-103.
    [111]李振卿,作业的适时性函数及作业期较佳分布的确定[J].农业机械学报,1986(4):69-76.
    [112]曹锐.农机配备中适时作业期限合理延迟天数的确定方法[J].农业机械学报,1986(1):92-98.
    [113]王金武.三江平原水稻田间生产机械化系统分析与综合优化设计研究[D].东北农业大学,2001.
    [114]余友泰.农业机械化工程[M],北京:中国展望出版社,1997.
    [115]柯仁.关于设备完好率的思考[J],设备管理与维修,1994,15(2):6-8.
    [116]陈建,陈忠慧.浅析农机配备的理论与实际问题[J],农机化研究,1997(3):29-31
    [117]吴子岳,王耀华.农业机器完好率的灰色建模与预测[J],农业工程学报,1998,14(1):99-102.
    [118]吴子岳,王耀华.农场农业机器完好经济学的灰色研究与模块分析[D],南京农业大学,1998.6.
    [119]吴子岳,王耀华.农机经济完好率的理论模型及其应用[J],农业工程学报,1999,15(1):113-117.
    [1]徐顺年.发展现代农机建设现代农业[J].农业装备技术,2007,33(2):1.
    [2]孙洪昌,李广平,王萍萍.农机企业顾客满意度研究[J].中国农机化,2006(5):22-23.
    [3]易金根,王勇,江向阳.联合收割机的模糊综合评判[J].农业机械学报,2000,31(1):45-47.
    [4]王金武,许洪吉.农机设备维修质量评价方法的研究[J].农业机械学报,2001,32(2):83-85.
    [5]刘大维,杨印生,杨文志等.层次分析法在拖拉机总体性能评价中的应用[J].农业机械学报,1994,25(1):96-99.
    [6]付强,杨广林,金菊良.基于PPC模型的农机选型与优序关系研究[J].农业机械学报,2003,34(1):101-103,107.
    [7]风笑天.社会调查中问卷设计[M].天津:天津人民出版社,2002.
    [1]Jing Wu, Gregory M. Perry. Estimating farm equipment depreciation:which functional form is best? [J]. American Journal of Agricultural Economics,2004,86(2):483-491.
    [2]G. M. Perry, A. Bayaner, C. J. Nixon. The effort of usage and size on tractor depreciation[J]. American Journal of Economics,1990,72(2):317-325.
    [3]McNeill, R.C. Depreciation of farm tractors in British Columbia[J], Canadian Journal of Agricultural Economics,27(feb 1979):53-58.
    [4]Cross, T., G.M. Perry. Depreciation Patterns for Agricultural Machinery[J]. American Journal of Agricultural Economics,77(1995):194-204.
    [5]Weersink, A., S. Stauber. Optimal Replacement Interval and Depreciation Methods for Grain Combine[J], Western Journal of Agricultural Economics 13(1988):18-28..
    [6]Unterschultz, J., G. Mumey. Reducing investment risk in tractors and combines with improved terminal asset value forecasts[J]. Canadian Journal of Agricultural Economics,1988(13):18-28.
    [7]Leatham, D.J., T.G.Baker. Empirical estimates of effects of inflation on salvage value, cost, and optimal replacement of tractors and combines[J]. North Central Journal of Agricultural economics, 3(1981):109-117.
    [8]Reid, D.W., G.L. Bradtord. On optimal replacement of farm tractors[J], American Journal of Economics,65(May 1983):326-331.
    [9]Perry, G.M., C.J. Nixon. Optimal tractor replacement. What matters? [J], rev. Agr. Econ,13(Jan 1991):119-128.
    [10]Watts, M.J., G.A. Helmers. Machinery costs and inflation[J], Western Journal of Agricultural Economics,1981,6(2):129-145.
    [11]T. L. Cross, G. M. Perry. Remaining value functions for farm equipment[J]. Applied engineering in agriculture,1996,12(5):547-553.
    [12]ASAE standards D497.5. Agricultural machinery management data[S]. St. Joseph, Mich:ASABE, 2006.
    [13]吴建民.小型拖拉机最佳更新期的动态研究[J].农业工程学报,1998,14(2):78-81.
    [14]王福林.农业机器折旧中的双倍余额递减法改进研究[J].农业机械学报,2003,34(4):66-70.
    [15]韩正晟.农业机器动态折旧研究[J].农业机械学报,1996,27(3):98-103.
    [16]Spitzer, J. P. A primer on Box-Cox estimation[J]. The review of economics and statistics,1982,64(2):307-313.
    [17]Peggy Cavalieri. Statistics I:Introduction to ANOVA, Regression, and logistics regression[M]. SAS Institute Inc.,2000, SAS publishing:342-343.
    [1]Whitson, R.E, R.D. Kay, A.W. Lepori and E.M. Rister. Machinery and crop selection with weather risk[J]. Transactions of the ASAE,1981,24(2):288-291,195.
    [2]A. de Toro, P. A. Hansson. Analysis of field machinery performance based on daily soil workability status using.discrete event simulation or on average workday[J]. Agricultural systems,2004,79: 109-129.
    [3]C. A. Rotz, T. M. Harrigan. Predicting suitable days for field machinery operations in a whole farm simulation[J]. applied engineering in agriculture,2005,21(4):563-571.
    [4]张东兴,高焕文.一个确定机器可下地概率的实用模型[J].北京农业工程大学学报,1990,10(4):7-15.
    [5]Elliott R L. A simulation model for predicting available days for soil tillage. BS University of Illinois. 1973:30-31,52,101.
    [6]李名升,任晓霞,佟连军.马尔科夫链在环境质量预测中的应用[J].环境工程,2007,25(6):78-80,100.
    [7]张旭梅,吴捷.基于向量马尔科夫链的配送服务可靠性预测[J].系统工程学报,2007,22(3):300-304.
    [8]郭笃发.利用马尔科夫过程预测黄河三角洲新生湿地土地利用/覆被格局的变化[J].土壤,2006,38(1):42-47.
    [9]赵昕东.基于蒙特卡洛-马尔科夫链(MCMC)的ARMA模型选择[J].数理统计与管理,2006,25(2):161-165.
    [10]周秀平,黄伟军,王文圣等.模糊马尔科夫链预测模型在桂江流域径流预测中的应用[J].广西水利水电,2006(1):29-31,69.
    [1]S. A. AL-Suhaibani, M. F. Wahby. Tractor repair and maintenance in Saudi Arabia[J]. Applied engineering in agriculture,1999,15(6):591-596.
    [2]ASAE standards D497.5. Agricultural machinery management data[S]. St. Joseph, Mich:ASABE, 2006.
    [3]D. R. Buckmaster. Benchmarking tractor costs[J]. Applied engineering in agriculture,2003,19(2): 151-154.
    [4]R. D. Grisso, M. F. Kocher, D.H. Vaughan. Predicating tractor fuel consumption[J]. Applied engineering in agriculture,2004,20(5):553-561.
    [5]Konda, I., D. L. Larson. Tractor repair and maintenance costs and management polices in Borkina Faso. ASAE Paper No.90-8503. St. Joseph, Mich.:ASAE.
    [6]Ward, S. M., P. B. McNulty, M. B. Cunney. Repair costs of 2 and 4 WD tractors[J]. Transactions of the ASAE,1985,28(4):1074-1076.
    [7]K. U. Kim, L. L. Bashford, B. T. Sampson. Improvement of tractor performance[J]. Applied engineering in agriculture,2005,21(6):949-954.
    [8]Robert D. Grisso, Gary T. Roberson, David H. Vaughan. Methods for Fuel Predication for Specific Tractor Models[C]. ASABE Paper No.061089, St. Joseph, Mich.2006
    [9]朱奎林;张清华.JD-4450型拖拉机经济使用寿命的研究[J].黑龙江八一农垦大学学报,1995,8(1):58-66.
    [1]张清华,李玉生,西亮.农业机器配备模型的进一步改进研究[J].黑龙江八一农垦大学学报,1996,8(4):57-63.
    [2]周应朝.华北一年两熟地区农田机器系统优化配备研究[D].北京农业工程大学,1987.
    [3]Krutz, G.W., R.F. Combs and S.D. Parsons. Equipment analysis with farm management models[J]. Transactions of the ASAE,1980,23(1):25-28.
    [4]刘学,曹卫彬,石玉梅,等.利用EXCEL求解农业机器系统优化配备量[J].农机化研究,2008,(2):92-94.
    [5]程耀.友谊农场五分场—队田间作业机器选型配备优化设计[J].东北农学院,1984.
    [6]王福林.黑龙江省国营农场麦豆收获的机械化系统分析[J].东北农学院,1988.
    [7]H T Sogaard, C G Sorensen. A model for optimal selection of machinery sizes within the farm machinery system[J]. Biosystems engineering,2004,89(1):13-28.
    [8]Ghassan AL-Soboh, A.K. Srivastava, T.H. Burkhardt and J.D. Kelly. A mixed-integer liner programming (MILP) machinery selection model for navybean production systems[J]. Transactions of the ASAE,1986,29(1):81-89.
    [9]E. A. Camarena, C. Gracia, J. M. Cabrera Sixto. A mixed integer linear programming machinery selection model for multifarm systems[J]. Biosystems engineering,2004,87(2):145-154.
    [10]韩宽襟.国营农场种植业机器作业系统的优化与模拟[D].北京农业工程大学,1990.
    [11]R.S. Parmar, R.W., McClendon and W.D. Potter. Farm machinery selection using simulation and genetic algorithms[J]. Transactions of the ASAE,1996,39(5):1905-1909.
    [12]陈建,陈忠慧,Giorgio Castelli等.农场作物及机器设备选择系统的研究[J].农业机械学报1997,28(3):65-70.
    [1]中华人民共和国农业部.全国水稻生产机械化十年发展规划(2006-2015年)[R].2006年10月.
    [2]FAO. Statistical Year book.2004. http://www.fao.org/statistics/yearbook/vol_1_1/xls/b06.xls.
    [3]严宗卜.美国水稻生产概况[J].种子,2001(1):71-73.
    [4]包春江,李宝筏.日本水稻插秧机的研究进展[J].农业机械学报,2004,35(1):162-166.
    [5]Lkuo ANDO. Present Situation of Rice Research in Japan[J]. Farming Japan,2004,38(3):11-17.
    [6]吴崇友,金诚谦,卢晏,等.我国水稻机械种植机械发展问题探讨[J].农业工程学报,2000,16(2):21-23.
    [7]宋建农,庄乃生,王立臣.21世纪我国水稻种植机械化发展方向[J].中国农业大学学报,2000,5(2):30-33.
    [8]Yang Mingjin, Yang Ling, Li Qingdong, etc. Agricultural mechanization system of rice production of Japan and proposal for China[J],Transactions of the CSAE,2003,19(5):77-82.
    [9]袁月明,马旭.水稻种植机械化的现状及芽播机械化的展望[J].农机化研究,2004(1):41-43.
    [10]王利强,吴崇友,高连兴,等.我国水稻机械种植现状与发展机直播的研究[J].农机化研究,2006(3):28-30.
    [11]徐顺年.2005年部分水稻主产区水稻机械化[J].农业机械,2006(6):4-7.
    [12]陆为农.论水稻生产主要环节机械化的科学选择[J].农业机械,2005(5):70-73.
    [13]景启坚,薛艳凤.水稻机插与其它种植方式在产量及分蘖特性上的差异比较[J].中国农机化,2003(4):13-15.
    [14]高连兴,赵秀荣.机械化移栽方式对水稻产量及主要性状的影响[J].农业工程学报,2002,18(5):45-48.
    [15]罗锡文,谢方平,区颖刚,等.水稻生产不同栽植方式的比较试验[J].农业工程学报,2004,20(1):136-138.
    [16]宋建农,文军.对水稻体苗有序栽植机械的研究[J].中国农机化,1999,(5):38-40.
    [17]王立臣,王苹,宋建农,等2ZPY—H530型水稻钵苗行栽机试验研究[J].中国农业大学学报,2002,7(4):21-24.
    [18]宋建农,刘小伟,庄乃生,等.水稻钵苗行栽机试验[J].江苏大学学报,2006,26(3):190-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700