用户名: 密码: 验证码:
生长抑素受体介导的靶向治疗对非小细胞肺癌耐药的逆转作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:检测人非小细胞肺癌(non-small cell lung cancer,NSCLC)组织SSTR2和SSTR5的表达,并分析其与患者病理分期、预后的关系;合成奥曲肽紫杉醇偶联物,检测人非小细胞肺癌细胞株生长抑素受体(Somatostatin Receptors,SSTRs)的表达,并验证不同结构的奥曲肽紫杉醇偶联物是否对其具有靶向治疗作用;采用不用方式诱导建立非小细胞肺癌耐药细胞株,并检测奥曲肽紫杉醇偶联物对其耐药的逆转作用;探讨奥曲肽紫杉醇偶联物逆转耐药的可能机制。研究奥曲肽紫杉醇偶联物在体外及体内作用于NSCLC后对其多药耐药相关基因表达的影响,探讨其是否能延缓或降低肿瘤耐药的产生。
     方法:免疫组化检测人非小细胞肺癌组织SSTR2和SSTR5的表达;采用RT-PCR从mRNA水平检测人非小细胞肺癌细胞株A549和H157 SSTRs的表达;采用MTT和流式细胞术检测奥曲肽紫杉醇偶联物对两细胞株的毒性和凋亡的影响;同时采用MTT检测偶联物能否逆转不用方式诱导建立的耐药细胞株对紫杉醇的耐药作用;流式细胞术分析耐药细胞株的周期分布,实时定量PCR检测其SSTRs和多药耐药相关基因的表达,探讨偶联物逆转耐药的可能机制;实时定量PCR检测紫杉醇及其偶联物在体外及体内作用于A549细胞后其多药耐药相关基因的表达。
     结果:SSTR2和SSTR5在NSCLC组织的表达率分别为62.7%和61.0%,在癌旁组织的表达率分别为为13.33%(2/15)和20.00%(3/15)。SSTR2、SSTR5蛋白表达与NSCLC的TNM分期有密切关系(P<0.05),其表达增高提示预后较好,生存期长;但与患者的年龄、性别、吸烟与否、病理类型、肿瘤大小和淋巴结转移均无明显关系(P>0.05)。
     A549细胞检测到SSTR1~SSTR5 mRNA的表达,而H157细胞除有SSTR1和SSTR4 mRNA的表达外,其他受体均未检测到mRNA的表达。对于SSTR2和SSTR5阳性的A549细胞,奥曲肽紫杉醇偶联物能明显抑制肿瘤细胞的活性,并具有浓度和时间依赖性,同时能诱导细胞凋亡,其作用与紫杉醇类似;而对于SSTR2和SSTR5阴性的H157细胞,偶联物较紫杉醇表现出更低的细胞毒性和诱导凋亡能力。
     成功建立了A549-P、A549-PS和A549-S三种非小细胞肺癌紫杉醇耐药细胞系,其耐药指数分别为6.48、77.84和9.98,并伴有细胞形态、生长增殖和细胞周期的改变;A549-S的MDR-1、MRP-1、BCRP均有不同程度的升高;A549-PS的MDR-1和A549/P的MRP-1也升高,而其他耐药基因则下调。奥曲肽紫杉醇偶联物能显著抑制耐药细胞株的活性,其作用强于紫杉醇。
     紫杉醇在体外及体内作用于A549细胞后,MDR-1、MRP-1的表达均增高。而PTX-OCT作用后,其MDR-1、MRP-1的表达明显低于PTX组。2PTX-OCT在体外作用后,MDR-1、MRP-1的表达低于PTX组,但高于PTX-OCT处理组:而在体内,2PTX-OCT处理组MDR-1、MRP-1的表达与PTX-OCT组类似。BCRP的相对表达改变不明显。
     结论:NSCLC组织具有较高的SSTR2、SSTR5表达率,而癌旁正常组织表达较低;并且其表达提示NSCLC预后好,生存期长;且与癌恶变程度相关,有可能作为判断NSCLC预后的指标。奥曲肽紫杉醇偶联物对SSTR2和SSTR5阳性的肿瘤细胞具有与紫杉醇相似的抗肿瘤活性;而对SSTR2和SSTR5阴性的肿瘤细胞则具有更弱的毒性;表现出一定的靶向治疗作用。奥曲肽紫杉醇偶联物能够抑制不同方式诱导的紫杉醇耐药株的活性,从而在一定程度上逆转NSCLC对紫杉醇的耐药。而且,PTX-OCT作用后,肿瘤多药耐药基因的增高低于PTX所致的多药耐药基因的升高,因此,可能会降低或延缓NSCLC耐药性的产生。总之,我们的实验结果表明,以生长抑素受体为靶点的药物在NSCLC的靶向治疗和耐药逆转及延缓耐药的产生中具有重要的应用前景。
OBJECTIVE: The clinical relevance of the somatostatin receptor subtype 2 (SSTR2) and somatostatin receptor 5 (SSTR5) is well defined in neuroendocrine tumors but their expression and role in human non-small cell lung cancer (NSCLC) is not yet well studied. We investigated the expression of SSTR2 and SSTR5 in human NSCLC and its adjacent normal tissues, and explored their correlations with clinical staging and prognosis. The somatostatin analogue octreotide was conjugated to paclitaxel and two conjugates were synthesized: PTX-OCT and 2PTX-OCT. Furthermore, targeted therapy effect of the conjugates on paclitaxel-resistant NSCLC cell lines induced by different methods was evaluated and the possible mechanisms underlying anti-paclitaxel resistance were elucidated. Also we analyzed the expression of multidrug resistance related genes of NSCLC cells after treatment with paclitaxel and its octreotide conjugates in vitro and in vivo to find out whether the conjugates had low induction of drug resistance.
     METHODS: Immunohistochemical staining(S-P method) with specific antibodies was used to detect the expression of SSTR2 and SSTR5 in patients with NSCLC. The mRNA expression of somatostatin receptors (SSTRs) in human NSCLC cell line A549 and H157 cells was detected by reverse transcription-polymerase chain raction (RT-PCR). And the cell viability and apoptosis of A549 and H157 cells treated with paclitaxel and the paclitaxel-octreotide conjugates were measured by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and flow cytometry, respectively. Real-time PCR was also performed to evaluate the relative expression of multidrug related gene of A549 cells, A549 paclitaxel-resistant cells characterized by 3 different approaches, and A549 cells treated by paclitaxel and its octreotide conjugates in vitro and in vivo.
     RESULTS: The positive rates of SSTR2 and SSTR5 expression were 62.7% and 61.0% repectively in patients with NSCLC, which were higher than their expression in adjacent normal tissues (13.33% and 20.00%, respectively). The expression of SSTR2 and SSTR5 was significantly correlated with TNM stage and longer survival (P<0.05), but there was no relationship between the expression of SSTR2 and SSTR5 and other clinical characteristics of patients with NSCLC (P>0.05).
     The mRNA expression of 5 SSTR subtypes was all detected in A549 cells, while only mRNA expression of SSTR1 and SSTR4 was detected in H157 cells. Paclitaxel and the octreotide-paclitaxel conjugates effectively inhibited the growth of A549 cells in a concentration- and time-dependent manner.The conjugates were less cytotoxic than paclitaxel in SSTR2 and SSTR5-negative H157 cell. Three NSCLC paclitaxel-resistant cell lines A549-P、A549-PS and A549-S were established, and the resistance indexes (RI) were 6.84, 77.84 and 9.98,respectively. The mRNA expression of MDR-1, MRP-1 and BCRP were up-regulated in A549-S, and the mRNA expression of MDR-1 in A549-PS and MRP-1 in A549-P were also up-regulated. The paclitaxel-octreotide conjugates effectively inhibited the growth of paclitaxel-resistant cells, and showed more cytotoxic effect than paclitaxel. Paclitaxel obviously induced the elevated expression of MDR-1、MRP-1 mRNAs in A549 cells and xenografted tumors, which was very higher than PTX-OCT and 2PTX-OCT treated groups.
     CONCLUSION: The expression of SSTR2 and SSTR5 was high in NSCLC tissues and low in adjacent normal tissues and the high expression of SSTR2 and SSTR5 in NSCLC was correlated with good prognosis and long survival. Both paclitaxel and its octreotide conjugates effectively inhibited the growth of SSTR2 and SSTR5 positive NSCLC cells in a concentration- and time-dependent manner, while the conjugates were less cytotoxic than paclitaxel in SSTR2 and SSTR5 negative NSCLC cells, which showed a SSTRs-mediated targeted therapy effect. The octreotide-paclitaxel conjugates more effectively inhibited the growth of paclitaxel-resistant cell lines and thus partially reversed the drug resistance to paclitaxel in NSCLC. Also octreotide-paclitaxel conjugates showed a low induction of multidrug resistance compared with treatment with paclitaxel in vitro and in vivo. Our results suggested that the octreotide-paclitaxel conjugates had a significant prospect in the targeted therapy mediated by SSTRs as well as reversing paclitaxel resistance and overcoming acquired paclitaxel resistance in human NSCLC.
引文
[1] Dalm VA, Hofland LJ, Lamberts SW. Future clinical prospects in somatostatin/cortistatin/somatostatin receptor field. Mol Cell Endocrinol, 2008, 286:262-277.
    
    [2] Huang MT, Chen ZX, Wei B, et al. Preoperative growth inhibition of human gastric adenocarcinoma treated with a combination of celecoxib and octreotide. Acta Pharmacol Sin, 2007, 28:1842-1850.
    
    [3] Dimitroulopoulos D, Xinopoulos D, Tsamakidis K, et al. Long acting octreotide in the treatment of advanced hepatocellular cancer and overexpression of somatostatin receptors: randomized placebo-controlled trial. World J Gastroenterol, 2007, 13:3164-3170.
    
    [4] Tjomsland V, El-Salhy M. Anti-tumour effects of triple therapy with octreotide, galanin and serotonin in comparison with those of 5-fluorouracil/leukovorin on human colon cancer. Int J Oncol, 2005, 27:427-432.
    
    [5] Gilbar PJ, Pharm B. The role of octreotide in symptom management in oncology and palliative care. J Oncol Pharm Pract, 2000, Vol.6, No.3, 81-91.
    
    [6] Reubi JC, Schaer JC, Markwalder R,et al.Distribution of somatostatin receptors in normal and neoplastic human tissues: recent advances and potential relevance. Yale J Biol Med, 1997, 70:471-479.
    
    [7] Tang C,Biemond I,Verspaget HW,et al.Expression of somatostatin receptors in human pancreatic tumor.Pancreas,1998,17:80-84.
    
    [8] Blum JE,Handmaker H ,Rinne NA.The utility of a somatostatin-type receptor binding peptide radiophamiaceutical(P829) in the evaluation of solitary pulmonary nodules.Chest, 1999,115:224-232.
    
    [9] Choi YS, Lin SL, Lee BS.tatus epilepticus-induced somatostatinergic hilar interneuron degeneration is regulated by striatal enriched protein tyrosine phosphatase. J Neurosci, 2007, 27, 2999-3009.
    
    [10] Burghardt B, Barabas K,Marcsek Z,et al.Inhibitory effect of a long-acting somatostatin analogue on EGF-stimulated cell proliferation in Capan-2 cells.J Physiol Paris,2000,94:57-62.
    
    [11] Aina OH, Sroka TC, Chen ML, et al. Therapeutic cancer targeting peptides.Biopolymers,2002,66:184-199.
    
    [12] Denzler B, Reubi JC.Expression of somatostatin receptors in peritumoral veins of human tumors.Cancer, 1999, 85:188-198.
    
    [13] Sharma K,Srikant CB.Induction of wild-type p53,Bax,and acidic endonuclease during somatostatin-signaled apoptosis in MCF-7 human breast cancer cells.Int J Cancer, 1998,76:259-266.
    
    [14] Ferrante E, Pellegrini C, Bondioni S,et al. Octreotide promotes apoptosis in human somatotroph tumor cells by activating somatostatin receptor type 2.Endocr Relat Cancer,2006,13:955-962.
    
    [15] O'Byrne KJ,Schally AV,Thomas A,et al.Somatostatin, its receptors and analogs,in lung cancer.Chemotherapy,2001,47:78-108.
    
    [16] Menda Y, Kahn D.Somatostatin receptor imaging of non-small cell lung cancer with ~(99m)Tc depreotide.Semin Nucl Med,2002,32:92-96.
    
    [17] Chu JJ,Chen KD,Lin YL,et al.Taxol induces concomitant hyperphosphorylation and reorganization of vimentin intermediate filaments in 9L rat brain tumor cells.J Cell Biochem,1998,68:472-483.
    
    [18] Schally AV, Nagy A. Chemotherapy targeted to cancers through tumoral hormone receptors. Trends Endoerinol Metab, 2004, 15:300-310.
    
    [19] Szereday Z, Schally AV, Szepeshazi K, et al.Effective treatment of H838 Human non-small cell lung carcinoma with a targeted cytotoxic somatostatin analog, AN-238.Int J Oncol, 2003, 22:1141-1146.
    
    [20] Kiaris H, Schally AV, Nagy A,et al .A targeted cytotoxic somatostatin( SST) analogue, AN-238, inhibits the growth of H-69 small-cell lung carcinoma(SCLC) and H-157 non-SCLC in nude mice.Eur J Cancer,2001,37:620-638.
    
    [21] Schulz S, Pauli SU, Schulz S, et al. Immunohistochemical determination of five somatostatin receptors in meningioma reveals frequent overexpression of somatostatin receptor subtype sst2A. Clin Cancer Res, 2000,6:1865-1874.
    [22] Brazeaup V, Burgus R,Ling N,et al.Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone.Science, 1973,179:77-79.
    
    [23] Engstrom M, Savola JM, Wurster S.Differential efficacies of somatostatin receptor agonists for G-protein activation and desensitization of somatostatin receptor subtype 4-mediated responses. J Pharmacol Exp Ther, 2006, 316:1262-1268.
    
    [24] Peverelli E, Lania AG, Mantovani G, et al.Characterization of intracellular signaling mediated by human somatostatin receptor 5: role of the DRY motif and the third intracellular loop. Endocrinology, 2009,150:3169-3176.
    
    [25] Borie R, Fabre A, Prost F, et al.Activation of somatostatin receptors attenuates pulmonary fibrosis. Thorax, 2008, 63:251-258.
    
    [26] Kumar U, Grigorakis SI, Watt HL, et al.Somatostatin receptors in primary human breast cancer: quantitative analysis of mRNA for subtypes 1-5 and correlation with receptor protein expression and tumor pathology. Breast Cancer Res Treat, 2005, 92:175-186.
    
    [27] Vanetti M, Vogt G, H(o|¨)llt V. The two isoforms of the mouse somatostatin receptor (mSSTR2A and mSSTR2B) differ in coupling efficiency to adenylate cyclase and in agonist-induced receptor desensitization.FEBS Lett, 1993, 331:260-266.
    
    [28] Laklai H, Laval S, Dumartin L, et al.Thrombospondin-1 is a critical effector of oncosuppressive activity of sst somatostatin receptor on pancreatic cancer. Proc Natl Acad Sci U S A, 2009, 106:17769-17774.
    
    [29] van Eijck CH, Krenning EP, Bootsma A, et al. Somatostatin-receptor scintigraphy in primary breast cancer.Lancet, 1994, 343:640-643.
    
    [30] Susini C, Buscail L. Rationale for the use of somatostatin analogs as antitumor agents. Ann Oncol, 2006, 17:1733-1742.
    
    [31] Bokum AM, Hofland LJ, Hagen PM.Somatostatin and somatostatin receptors in the immune system: a review. Eur Cytokine Netw, 2000, 161-176.
    [32] Kumar M, Liu ZR, Thapa L, et al.Anti-angiogenic effects of somatostatin receptor subtype 2 on human pancreatic cancer xenografts. Carcinogenesis, 2004,25:2075-2081.
    
    [33] Buscail L, Saint-Laurent N, Chastre E, et al. Loss of sstr2 somatostatin receptor gene expression in human pancreatic and colorectal cancer. Cancer Res, 1996, 56: 1823-1827.
    
    [34] Moller LN, Stidsen CE, Hartmann B, et al. Somatostatin receptors. Biochim BiophysActa,2003, 1616: 1-84.
    
    [35] Bousquet C, Delesque N, Lopez F, et al. SST2 somatostatin receptor mediates negative regulation of insulin receptor signaling through the tyrosine phosphatase shp-1. J Biol Chem, 1998, 273: 7099-7106.
    
    [36] Ferone D, Arvigo M, Semino C, et al. Somatostatin and dopamine receptor expression in lung carcinoma cells and effects of chimeric somatostatin-dopamine molecules on cell proliferation.Am J Physiol Endocrinol Metab,2005,289:1044-1050.
    
    [37] Parkin DM, Bray F,Ferlay J,et al. Global cancer statistics. CA Cancer J Clin, 2005, 55:74-108.
    
    [38] Nayak T, Norenberg J, Anderson T, et al.A comparison of high- versus low-linear energy transfer somatostatin receptor targeted radionuclide therapy in vitro. Cancer Biother Radiopharm, 2005, 20:52-57.
    
    [39] Pinski J, Schally AV, Halmos G, et al.Effects of somatostatin analogue RC-160 and bombesin/gastrin-releasing peptide antagonists on the growth of human small-cell and non-small-cell lung carcinomas in nude mice. Br J Cancer. 1994; 70:886-892.
    
    [40] Sun ML, Wei JM, Wang XW, et al. Paclitaxel-octreotide conjugates inhibit growth of human non-small cell lung cancer cells in vitro. Exp Oncol, 2007, 29:186-191.
    
    [41] Pyronnet S, Bousquet C, Najib S, et al. Antitumor effects of somatostatin. Mol Cell Endocrinol, 2008, 286:230-237.
    
    [42] Asnacios A, Courbon F,Rochaix P,et al.Indium-111-pentetreotide scintigraphy and somatostatin receptor subtype 2 expression: new prognostic factors for malignant well-differentiated endocrine tumors.J Clin Oncol,2008,26:963-970.
    [43]de Araujo EB,Caldeira Filho JS,Nagamati LT,et al.A comparative study of ~(131)I and ~(177)Lu labeled somatostatin analogues for therapy of neuroendocrine tumours.Appl Radiat Isot,2009,67:227-233.
    [44]Bartolomei M,Bodei L,De Cicco C,et al.Peptide receptor radionuclide therapy with ~(90)Y-DOTATOC in recurrent meningioma.Eur J Nucl Med Mol Imaging,2009,36:1407-1416.
    [45]Cwikla JB,Mikolajczak R,Pawlak D,et al.Initial direct comparison of ~(99m)Tc-TOC and ~(99m)Tc-TATE in identifying sites of disease in patients with proven GEPNETs.J Nucl Med,2008,49:1060-1065.
    [46]Gabriel M,Decristoforo C,Kendler D,et al.~(68)Ga-DOTA-Tyr~3-octreotide PET in neuroendocrine tumors:comparison with somatostatin receptor scintigraphy and CT.J Nucl Med,2007,48:508-518.
    [47]Bartolomei M,Bodei L,De Cicco C,et al.Peptide receptor radionuclide therapy with ~(90)Y-DOTATOC in recurrent meningioma.Eur J Nucl Med Mol Imaging,2009,36:1407-1416.
    [48]Hanaoka H,Tominaga H,Yamada K,et al.Evaluation of(64)Cu-labeled DOTA-D-Phe(1)-Tyr(3)-octreotide((64)Cu-DOTA-TOC) for imaging somatostatin receptor-expressing tumors.Ann Nucl Med,2009,23:559-567.
    [49]Luo TY,Tang IC,Wu YL,et al.Evaluating the potential of 188Re-SOCTA-trastuzumab as a new radioimmunoagent for breast cancer treatment.Nucl Med Biol,2009,36:81-88.
    [50]Nayak TK,Norenberg JP,Anderson TL,et al.Somatostatin-receptor-targeted α-emitting ~(213)Bi is therapeutically more effective than β-emitting ~(177)Lu in human pancreatic adenocarcinoma cells.Nucl Med Biol,2007,34:185-193.
    [51]Miederer M,Henriksen G,Alke A,et al.Preclinical evaluation of the α-particle generator nuclide ~(225)Ac for somatostatin receptor radiotherapy of neuroendocrine tumors.ClinCancer Res,2008,14:3555-3561.
    [52]Szepeshazi K,Schally AV,Treszl A,et al.Therapy of experimental hepatic cancers with cytotoxic peptide analogs targeted to receptors for luteinizing hormone-releasing hormone, somatostatin or bombesin. Anticancer Drugs, 2008, 19:349-358.
    
    [53] Kidd M,Schally AV,Pfragner R,et al. Inhibition of Proliferation of Small Intestinal and Bronchopulmonary Neuroendocrine Cell Lines by Using Peptide Analogs Targeting Receptors. Cancer, 2008, 112:1404-1414.
    
    [54] Treszl A, Schally AV, Seitz S,et al.Inhibition of human non-small cell lung cancers with a targeted cytotoxic somatostatin analog, AN-162. Peptides, 2009, 30:1643-1650.
    
    [55] Seitz S, Schally AV, Treszl A, et al. Preclinical evaluation of properties of a new targeted cytotoxic somatostatin analog, AN-162 (AEZS-124), and its effects on tumor growth inhibition. Anticancer Drugs, 2009, 20:553-558.
    
    [56] Sun LC, Luo J, Mackey LV,et al.A conjugate of camptothecin and a somatostatin analog against prostate cancer cell invasion via a possible signaling pathway involving PI3K/Akt, aVb3/aVb5 and MMP-2/-9. Cancer Lett, 2007, 246:157-166.
    
    [57] Moody TW, Fuselier J, Coy DH,et al.Camptothecin-somatostatin conjugates inhibit the growth of small cell lung cancer cells. Peptides, 2005, 26:1560-1566.
    
    [58] Huang CM, Wu YT,Chen ST, et al.Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis. Chem Biol, 2000, 7:453-461.
    
    [59] Buchholz S, Keller G, Schally AV, et al.Therapy of ovarian cancers with targeted cytotoxic analogs of bombesin, somatostatin, and luteinizing hormone-releasing hormone and their combinations. Proc Natl Acad Sci USA, 2006, 103:10403-10407.
    
    [60] Engel JB, Schally AV, Halmos G,et al.Targeted therapy with a cytotoxic somatostatin analog, AN-238, inhibits growth of human experimental endometrial carcinomas expressing multidrug resistance protein MDR-1. Cancer , 2005,104:1312-1321.
    
    [61] Keller G, Schally AV, Nagy A,et al.Effective therapy of experimental human malignant melanomas with a targeted cytotoxic somatostatin analogue without induction of multi-drug resistance proteins. Int J Oncol, 2006, 28:1507-1513.
    
    [62] Letsch M, Schally AV, Szepeshazi K,et al. Effective treatment of experimental androgen sensitive and androgen independent intraosseous prostate cancer with targeted cytotoxic somatostatin analogue AN-238.J Urol.2004,171:911-915.
    [63]Plonowski A,Schally AV,Nagy A,et al.Effective treatment of experimental DU-145 prostate cancers with targeted cytotoxic somatostatin analog AN-238.Int J Oncol,2002,20:397-402.
    [64]Plonowski A,Schally AV,Koppan M,et al.Inhibition of the UCI-107 human ovarian carcinoma cell line by a targeted cytotoxic analog of somatostatin,AN-238.Cancer,2001,92:1168-1176.
    [65]Szepeshazi K,Schally AV,Halmos G,et al.Targeting of cytotoxic somatostatin analog AN-238 to somatostatin receptor subtypes 5 and/or 3 in experimental pancreatic cancers.Clin Cancer Res,2001,7:2854-2861.
    [66]Plonowski A,Schally AV,Nagy A,et al.Inhibition of metastatic renal cell carcinomas expressing somatostatin receptors by a targeted cytotoxic analogue of somatostatin AN-238.Cancer Res,2000,60:2996-3001.
    [67]Kahan Z,Nagy A,Schally AV,et al.hibition of growth of MX-1,MCF-7-MⅢ and MDA-MB-231 human breast cancer xenografts aider administration of a targeted cytotoxic analog of somatostatin,AN-238.Int J Cancer,1999,82:592-598.
    [68]Plonowski A,Schally AV,Nagy A,et al.Inhibition of PC-3 human androgen-independent prostate cancer and its metastases by cytotoxic somatostatin analogue AN-238.Cancer Res,1999,59:1947-1953.
    [69]闫雪冬,李曼,张明伟,等.不同方式诱导卵巢癌紫杉醇耐药细胞系的比较.基础医学与临床,2006,26:284-289.
    [70]Takeda M,Mizokami A,Mamiya K,et al.The establishment of two paclitaxel-resistant prostate cancer cell lines and the mechanisms of paclitaxel resistance with two cell lines.Prostate,2007,67:955-967.
    [71]Dumontet C,Sikic BI.Mechanisms of action and resistance to antitubulin agents:microtubule dynamics,drug transport,and cell death.J Clin Oncol,1999,17:1061-1070.
    [72]Kavallaris M,Kuo DYS,Burkhart CA et al.Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes.J Clin Invest,1997,100:1282-1293.
    [73] Yusuf RZ, Duan Z, Lamendola DE,et al. Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr Cancer Drug Targets. 2003,3:1-19.
    
    [74] Mozzetti S, Ferlini C, Concolino P, et al. Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res. 2005,11:298-305.
    
    [75] Monzo M , Rosell R , Taron M.Drug resistance in non-small cell lung cancer.Lung Cancer ,2001 ,34 : S91-S94.
    
    [76] Roy S, Kenny E, Kennedy S,et al. MDR1/P-glycoprotein and MRP-1 mRNA and protein expression in non-small cell lung cancer.Anticancer Res, 2007, 27:1325-1330.
    
    [77] Paredes Lario A, Blanco Garcia C, Echenique Elizondo M,et al.Expression of proteins associated with multidrug resistance and resistance to chemotherapy in lung cancer. Arch Bronconeumol, 2007, 43:479-484.
    
    [78] Paredes-Lario A, Blanco-Garcia C, Echenique-Elizondo M.Expression of multiple-drug resistant proteins in lung cancer.Cir Esp,2006,79:46-56.
    
    [79] Bajo AM, Schally AV, Halmos G, et al. Targeted doxorubicin-containing luteinizing hormone-releasing hormone analogue AN-152 inhibits the growth of doxorubicin-resistant MX-1 human breast cancers. Clin Cancer Res, 2003, 9:3742- 3748.
    [1]Reubi JC.Peptide receptors as molecular targets for cancer diagnosis and therapy.Endocrine Review,2003,24:389-427.
    [2]Asnacios A,Courbon F,Rochaix P,et al.Indium-111-pentetreotide scintigraphy and somatostatin receptor subtype 2 expression:new prognostic factors for malignant well-differentiated endocrine tumors.J Clin Oncol,2008,26:963-970.
    [3]Cwikla JB,Mikolajczak R,Pawlak D,et al.Initial direct comparison of ~(99m)Tc-TOC and ~(99m)Tc-TATE in identifying sites of disease in patients with proven GEP NETs.J Nucl Med,2008,49:1060-1065.
    [4]Gabriel M,Decristoforo C,Kendler D,et al.~(68)Ga-DOTA-Tyr~3-octreotide PET in neuroendocrine tumors:comparison with somatostatin receptor scintigraphy and CT.J Nucl Med,2007,48:508-518.
    [5] Bartolomei M, Bodei L, De Cicco C,et al.Peptide receptor radionuclide therapy with ~(90)Y-DOTATOC in recurrent meningioma.Eur J Nucl Med Mol Imaging, 2009, 36:1407-1416.
    
    [6] de Araujo EB, Caldeira Filho JS, Nagamati LT,et al.A comparative study of ~(131)I and ~(177)Lu labeled somatostatin analogues for therapy of neuroendocrine tumours. Appl Radiat Isot, 2009, 67:227-233.
    
    [7] Kwekkeboom DJ, de Herder WW, Kam BL,et al.Treatment with the radiolabeled somatostatin analog [~(177)Lu-DOTA~0,Tyr~3]octreotate: toxicity, efficacy, and survival. J Clin Oncol, 2008, 26:2124-2130.
    
    [8] Kulaksiz H, Eissele R, Rossler D, et al.Identification of somatostatin receptor subtypes 1, 2A, 3, and 5 in neuroendocrine tumours with subtype specific antibodies.Gut,2002,50:52-60.
    
    [9] Fjallskog ML, Ludvigsen E, Stridsberg, M,et al. Expression of somatostatin receptor subtypes 1 to 5 in tumor tissue and intratumoral vessels in malignant endocrine pancreatic tumors.Medical Oncology, 2003,20:59-67
    
    [10] van Eijck CH, Krenning EP, Bootsma A, et al. Somatostatin receptor scintigraphy in primary breast cancer. Lancet, 1994, 343: 640-643.
    
    [11] Reubi JC, Waster B,Schaer JC,et al.somatostatin receptor sstl-sst5 expression in normal and neoplastic human tissues using receptor autoradiograph with subtype-seletive ligands.European J Neuclear Molecular Imaging, 2001,28:836-846
    
    [12] Reubi JC, Waster B, Liu Q, et al.Subcellular distribution of somatostatin sst2A receptors in human tumors of the nervous and neuroendocrine systems: membranous versus intracellular location.Journal of Clinical Endocrinology & Metabolism, 2000,85:3882-3891.
    
    [13] Kimura N, Pilichowska M, Date F, et al.Immunohistochemical expression of somatostatin type 2A receptor in neuroendocrine tumors.Clinical Cancer Research, 1999,5:3483-3487.
    
    [14] Dimitrakopoulou-Strauss A, Georgoulias V, Eisenhut M,et al. Quantitative assessment of SSTR2 expression in patients with non-small cell lung cancer using~(68)Ga-DOTATOC PET and comparison with ~(18)F-FDG PET. European J Neuclear Molecular Imaging, 2006, 33:823-830.
    
    [15] Burghardt B, Barabas K, Marcsek Z, et al. Inhibitory effect of a long-acting somatostatin analogue on EGF-stimulated cell proliferation in Capan-2 cells. J Physiol Paris, 2000, 94:57-62.
    
    [16] Denzler B, Reubi JC. Expression of somatostatin receptors in peritumoral veins of human tumors. Cancer, 1999, 85:188-198.
    
    [17] Sharma K, Srikant CB. Induction of wild-type p53, Bax, and acidic endonuclease during somatostatin-signaled apoptosis in MCF-7 human breast cancer cells. Int J Cancer, 1998, 76:259-266.
    
    [18] Rochaix P, Delesque N, Esteve JP, et al. Gene therapy for pancreatic carcinoma: local and distant antitumor effects after somatostatin receptor sst2 gene transfer. Hum Gene Ther, 1999,10: 995-1008.
    
    [19] Li M,Wang X,Li W,et al.somatostatin receptor-1 induces cell cycle arrest and inhibits tumor growth in pancreatic cancer.Cancer Sci,2008,99:2218-2223.
    
    [20] Nagy A, Schally AV. Targeted cytotoxic somatostatin analogs: a modern approach to the therapy of various cancers. Drugs Future, 2001, 26: 261-270.
    
    [21] Schally AV, Comaru Schally AM , Nagy A, et al. Hypothalamic hormones and cancel. Front Neuroendocrinol, 2001, 22: 248—291.
    
    [22] Kiaris H, Schally AV, Nagy A, et al. A targeted cytotoxic somatostatin(SST) analogue, AN-238, inhibits the growth of H-69 small-cell lung carcinoma(SCLC) and H-157 non-SCLC in nude mice. Eur J Cancer, 2001, 37: 620- 628.
    
    [23] Szepeshazi K, Schally AV, Treszl A,et al.Therapy of experimental hepatic cancers with cytotoxic peptide analogs targeted to receptors for luteinizing hormone-releasing hormone, somatostatin or bombesin. Anticancer Drugs, 2008, 19:349-358.
    
    [24] Buchholz S, Keller G, Schally AV, et al.Therapy of ovarian cancers with targeted cytotoxic analogs of bombesin, somatostatin, and luteinizing hormone-releasing hormone and their combinations. Proc Natl Acad Sci USA, 2006, 103:10403-10407.
    
    [25] Engel JB, Schally AV, Halmos G,et al.Targeted therapy with a cytotoxic somatostatin analog, AN-238, inhibits growth of human experimental endometrial carcinomas expressing multidrug resistance protein MDR-1. Cancer , 2005;104:1312-1321.
    
    [26] Keller G, Schally AV, Nagy A,et al.Effective therapy of experimental human malignant melanomas with a targeted cytotoxic somatostatin analogue without induction of multi-drug resistance proteins. Int J Oncol. 2006, 28:1507-1513.
    
    [27] Schally AV, Nagy A. Chemotherapy targeted to cancers through tumoral hormone receptors. Trends Endocrinol Metab, 2004, 15: 300-31.
    
    [28] Treszl A, Schally AV, Seitz S,et al.Inhibition of human non-small cell lung cancers with a targeted cytotoxic somatostatin analog, AN-162. Peptides, 2009, 30:1643-1650.
    
    [29] Seitz S, Schally AV, Treszl A, et al. Preclinical evaluation of properties of a new targeted cytotoxic somatostatin analog, AN-162 (AEZS-124), and its effects on tumor growth inhibition.Anticancer Drugs, 2009, 20:553-558.
    
    [30] He X, Lu W, Jiang X, et al. Synthesis and biological evaluation of bis and monocarbonate prodrugs of 10-hydroxycamptothecins. Bioorg Med Chem, 2004, 12: 4003-4008.
    
    [31] Moody TW, Fuselier J, Coy DH,et al.Camptothecin-somatostatin conjugates inhibit the growth of small cell lung cancer cells. Peptides, 2005, 26:1560-1566.
    
    [32] Sun LC, Luo J, Mackey LV,et al.A conjugate of camptothecin and a somatostatin analog against prostate cancer cell invasion via a possible signaling pathway involving PI3K/Akt, aVb3/aVb5 and MMP-2/-9. Cancer Lett, 2007, 246:157-166.
    
    [33] Huang CM, Wu YT,Chen ST, et al.Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis. Chem Biol, 2000, 7:453-461.
    
    [34] Sun ML, Wei JM, Wang XW,et al.Paclital-octreotide cononjugates inhibit growth of human non-small cell lung cancer cells in vitro. Exp Oncol, 2007, 29:186-191.
    
    [35] Shen H, Hu D, Du J,et al.Paclitaxel-octreotide conjugates in tumor growth inhibition of A549 human non-small cell lung cancer xenografted into nude mice.Eur J Pharmacol, 2008, 601:23-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700