用户名: 密码: 验证码:
铁道客车乘坐舒适性建模、仿真与虚拟试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国铁路客运正迎来跨越式发展的历史机遇,追求高品质的乘坐舒适性是伴随这一发展历程的必然要求。采用先进的理论分析模型和计算机仿真技术,研究铁路客车的乘坐舒适性是保证列车运行品质的基础内容和关键环节。静态乘坐舒适性和振动舒适性是决定乘坐舒适性的两大重要因素。然而,目前针对铁道客车的静态乘坐舒适性研究,尚缺乏考虑人体特征差异的坐姿舒适性定量分析方法和评价模型。在振动舒适性研究中,尚欠缺综合考虑乘员质量参振作用、车体柔性和空间特征的理论分析模型。对于乘员质量在轻量化高速客车中的参振影响,以及目前的运行平稳性标准在卧车车辆上的适用性问题,还欠缺深入研究。另外,在仿真技术方面,还没有能够将集动力学仿真与视景仿真于一体的虚拟试验技术用于铁道客车振动舒适性的分析模拟。为此,本文对以上问题进行深入系统的研究,具体内容如下:
     (1)采用几何建模和特征建模技术,建立了具有不同人体百分位参数化建模功能的人体CAD模型。利用循环干涉检查方法进行人-椅CAD模型自适应匹配,实现了不同尺寸人体“虚拟乘坐”的要求,为坐姿几何舒适性的分析评价提供了客观依据。在此基础上,以性别、人体百分位及坐姿关节角度构成三层因素集,以不同设计方案的座椅构成评价集,建立了列车座椅几何舒适性三级模糊综合评价模型,应用该评价模型可定量分析比较不同设计方案列车座椅的几何舒适性。
     (2)分析了坐姿人体振动生物力学特性和柔性车体特征,综合考虑乘员质量和车体柔性的参振影响,建立了坐姿人体-柔性车体垂向耦合动力学模型。在此基础上,建立了包含车体自由度和坐姿人体自由度的耦合振动系统运动方程,通过化多轮激励为单轮激励,实现了轨道不平顺激励下的随机振动仿真。运用该模型对轻量化高速客车在满乘和空载两种情况下的随机振动响应进行了定量对比分析,结果表明乘员质量的参振作用明显,忽略乘员质量的影响会带来较大的计算误差。
     (3)分析了卧铺的隔振作用与卧姿人体的垂直振动响应特性,针对卧车的结构特点,建立了“人-铺-车辆”空间振动系统动力学模型。在此基础上,建立了考虑车厢空间位置的卧姿人体头-臀部位的随机振动响应模型。应用卧姿人体全身振动舒适性评价标准,建立了铁路卧铺客车人体振动舒适性仿真流程。运用该模型分析了Sperling指标和GB/T18368-2001指标在卧铺客车振动舒适性评价中的差异性、卧铺参数的影响,以及不同铺位振动舒适性的区别。
     (4)深入开展了铁道客车振动舒适性虚拟试验方法研究。以虚拟试验场的建立作为虚拟试验的前提基础,采用自建理论模型和多体动力学软件作为虚拟试验计算引擎,以虚拟仪表作为虚拟试验数据可视化工具,构建了铁路客车振动舒适性虚拟试验系统体系结构。在虚拟试验数据传输机制上,以基于虚拟试验场的轨道线路空间数学模型为联系纽带,统一定义虚拟样机环境和虚拟现实环境中的轨道线路工况,有效保证了动力学仿真与视景仿真在虚拟试验过程中的有机联系和集成。
     (5)在振动舒适性虚拟试验场的构建研究中,利用三维CAD建模、虚拟现实模型优化、纹理映射和DOF建模技术,建立了列车三维视景虚拟现实模型。建立了基于真实地形DEM数据的虚拟试验场,建立了基于分段函数的轨道线路空间数学模型,实现了分段线路由局部空间坐标向地形空间坐标的映射转换机制。研究了程式化的轨道线路地形空间形位数据的生成方法和实现技术。
     (6)开展了基于虚拟样机技术的铁道客车振动舒适性多体动力学仿真研究。通过编制文本解析程序,实现轨道线路拐点数据由虚拟试验场向虚拟样机建模环境的自动转换。基于Adams/Rail实现了面向铁道客车振动舒适性分析的多体动力学仿真,为振动舒适性虚拟实验提供了强大的车辆运动属性支持。
     (7)在铁道客车动态视景仿真研究中,利用车辆运动学数据文件集生成的车辆图像帧序列驱动列车视景模型,能够准确地模拟列车在虚拟试验场既定轨道的动态运行。利用Measurement Studio开发工具,建立了铁道客车振动舒适性虚拟试验仪表,实现了车辆运行速度、振动加速度及舒适性指标的实时动态显示。
The railway passenger transportation of our country is meeting with a historic opportunity of great-leap-forward development, which is accompanied by the inevitable requirements of high quality riding comfort of passengers. To study the riding comfort of railway passenger vehicles with advanced theoretical analysis model and computer simulation technology is the basic contents and crucial sections to ensure the running quality of vehicles. Static comfort and vibration comfort of vehicles are two important factors influencing the riding comfort of passengers. However, in previous research of static comfort there lack quantitative analysis method and evaluation model for analyzing the sitting comfort with consideration of various characteristic of human body. In present research of vibration comfort, there is no theoretical analysis model with comprehensive consideration of passenger masses, the flexibility and spatial characteristics of carbody. Further study of the vibration effect of passenger masses on lightweight high-speed passenger vehicle and the applicability of applying present riding comfort evaluation standard on the sleeping cars are still not carried out. Additionally, in the aspect of simulation technology, the virtual test integrated with technologies of virtual prototype and virtual reality is not applied in the analysis and simulation of vibration comfort of railway passenger vehicles. To solve the above problems, systematical studies are carried out in this paper. The detailed contents are as follows:
     (1) Using geometric and feature modeling technology, the CAD models with various human body percentiles through parametric modeling is established. A circular interference check method is used to implement adaptive match between CAD models of human body and seat to realize analysis and evaluation of human body with various characteristics. As a result, the objective basis for virtual test of geometric comfort of sitting human body is provided. On this basis, a three-level fuzzy assessment model for evaluating the riding comfort of train seat is established. The three-level structure factor sets in the model are composed of genders, human body percentiles and joint angles, and the assessment sets are composed of series of train seats with various design schemes. While the assessment model can quantitatively compare the geometric comfort of different train seats.
     (2) The biomechanical vibration properties of seated human body and the flexibility characteristic of carbody are analyzed, and a vertical coupled dynamic vehicle model including sitting human-bodies and flexible carbody is built with comprehensive consideration of the influence of passenger masses, structure characteristic of carriages and flexibility of carbody. On this basis, the motion equations of the coupled dynamic model with freedoms of vehicle and sitting human body are derived. Through converting multi-excitation to single-excitation of wheelset, the random vibration simulation excited by track irregularity is realized. This model is used to carry out a quantitatively comparative analysis of the random vibration responses of the vehicle in conditions of full-load and no-load. The results show that the passenger's effects as coupling vibration factors are obvious, thus ignoring of the influence of crew's masses may result in bigger miscalculation.
     (3) The vibrating isolation effect of sleeping berth and the vertical vibration response characteristic of supine human body are analyzed. A spatial dynamic system including supine human body, sleeping berth and vehicle is built with considering of the special compartment structure of sleeping car. Applying the vibration comfort assessment standard for supine human body, the simulation flow of vibration comfort of human body in sleeping car is built. With this model, it analyzed the difference between Sperling index and GB/T18368-2001 index for evaluating the vibration comfort of a railway sleeping car, the influence of sleeping berth parameters and the difference of vibration comfort of various berths.
     (4) The virtual test method for vibration comfort of railway passenger vehicles is carried out in a deep sense. To build a virtual proving ground is the basis and precondition of virtual test. The frameworks of virtual test of vibration comfort of railway passenger vehicles are established with self-built theoretical model and multi-body dynamics software as the computation engine for virtual test, and virtual instrument as tool for visualization of virtual test data. In the transmission mechanism of virtual test data, the spatial track mathematical model defined in virtual proving ground is applied as a tie to uniformly determine the conditions of rail lines within both virtual prototype environment and virtual reality environment, which guarantees an effective connection and integration between dynamic simulation and vision simulation.
     (5) In the study of construction of virtual proving ground for vibration comfort test, three-dimensional virtual reality model of train is built through three-dimensional CAD modeling, optimization of virtual reality model, texture mapping and DOF technology. The virtual proving ground based on real terrain DEM data is built, and the spatial mathematic model of track based on piecewise functions is established, and the mapping mechanisms for local coordinates of every sectionalized line converted to landform spatial coordinates is realized. The stylized generating method and realization technology of geometric data of track in landform are discussed.
     (6) The research of multi-body dynamics simulation of vibration comfort of railway passenger vehicles based on virtual prototype technology is carried out. Analytical resolution program is developed to automatically transfer the inflexion data of tracks extracted from virtual proving ground to prototype environment. The multi-body dynamics simulation for vibration comfort of railway passenger vehicles is realized based on Adams/Rail, and it provides powerful support of vehicle kinematics properties for virtual test of vibration comfort.
     (7) In the research of dynamic visual simulation of railway passenger vehicle, the image frame sequences generated from the vehicle kinematics data for driving the scene model of train can accurately simulate the train running in the established orbits on virtual proving ground. Using development tools of Measurement Studio, the virtual instruments are established to present vehicle speed, acceleration of vibration and vibration comfort index in real time.
引文
[1]张曙光.铁路高速列车应用基础理论与工程技术.北京:科学出版社,2007
    [2]蔡成标.高速铁路列车-线路-桥梁耦合振动理论及应用研究:[博士学位论文].成都:西南交通大学,2004
    [3]卢津,赵洪全,许广东.铁路客车舒适度的检测与评价.中国铁路.2004(06):26-29
    [4]冯秦华,杨洪泽,汪斌,等.铁路旅客列车噪声和振动调查分析.中国铁路.2006(12):60-61
    [5]铃木浩明.列车舒适度的评价.国外铁道车辆.1999(02):28-34
    [6]刘春荣.面向汽车人机工程设计的人体建模系统及其关键技术研究:[博士学位论文].武汉:武汉理工大学,2002
    [7]徐孟.面向人机工程仿真分析的人体生物力学模型:[博士学位论文].杭州:浙江大学,2006
    [8]Suda Yoshihiro, Matsuoka Shigeki, Ogawa Tadashi. Quantitative evaluation method of seat arrangement for commuter railway vehicles from the viewpoint of comfort and accessibility. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C.1997, 63(611):2329~2336
    [9]方卫宁,郭北苑,戴明森.机车乘务员坐姿视野判定方法的研究.铁道学报.2000,22(05):28-32
    [10]方卫宁,徐媛媛,田生彩.基于工效学的机车显示、控制器界面计算机辅助优化设计.铁道学报.2004,26(06):20-24
    [11]方卫宁,郭北苑.机车乘务员空间作业域判定方法的研究.北方交通大学学报.2001,25(01):61-66
    [12]方卫宁,郭北苑,田生彩.机车乘务员坐姿作业空间的定量分析与仿真.北方交通大学学报.2004,28(01):74-77
    [13]唐飞龙.高速机车司机室的设计分析与计算.电力机车技术.2001,24(01):14-16
    [14]刘青,刘攀,吕应明.人机工程学在机车驾驶室设计中的应用研究.机械研究与应用.2006,19(04):28-29
    [15]陈祥.我国硬座车厢座椅设计——人机工程学应用的探讨与展望.攀枝花学院学报.2006,23(06):90-92
    [16]何峰,于印泉,谭南林,等.高速列车座椅乘坐舒适性设计.劳动保护科学技术.1999,19(06):53-56
    [17]苏晓峰.我国中高速旅客列车座椅设计模式探讨.铁道车辆.1999,37(12):25-26
    [18]闫志勇.基于生理学反应的列车座椅舒适度研究:[硕士学位论文].大连:大连交通大学,2007.
    [19]周一鸣,毛恩荣.车辆人机工程学.北京:北京理工大学出版社,1999
    [20]宋正河.机械系统人机界面优化设计方法的研究:[博士学位论文].北京:中国农业大学,2000
    [21]王福天.车辆系统动力学.北京:中国铁道出版社,1994
    [22]严隽耄.车辆工程.北京:中国铁道出版社,1999
    [23]翟婉明.车辆-轨道垂向耦合动力学:[博士学位论文].成都:西南交通大学,1991
    [24]陈果.车辆-轨道耦合系统随机振动分析:[博士学位论文].成都:西南交通大学,2000
    [25]Auersch L. Vehicle-track interaction and Soil Dynamics. Vehicle System Dynamics.1998,28(Supp 1.):553~558
    [26]B Ripke, K Knothe. Simulation of High Frequency Vehicle-track Interactions. Vehicle System Dynamics.1995,24(Supp 1.):72~85
    [27]J Oscarsson, T Dahlberg. Dynamic Train/Track/Ballast Interaction Computer Models and Full-scale Experiments. Vehicle System Dynamics.1998, 28(Supp 1.):553~558
    [28]J Drozdziel, B Sowinski, W Groll. The Effect of Railway Vehicle-track System Geometric Deviation on its Dynamics in the Turnout Zone. Vehicle System Dynamics.1999,33(Supp 1.):641~652
    [29]S Gurule, N Wilson. Simulation of Wheel/rail Interaction in Turnouts and Special Track Work. Vehicle System Dynamics.1999,33(Supp 1.):143~154
    [30]梁波,蔡英,朱东生.车-路垂向耦合系统的动力分析.铁道学报.2000,22(5):65-71
    [31]苏谦,蔡英.高速铁路路基结构空间时变系统耦合动力分析.西南交通大学学报.2001,36(05):509-513
    [32]任尊松.车辆-道岔系统动力学研究:[博士学位论文].成都:西南交通大学,2000
    [33]陈果,翟婉明,蔡成标,等.传统车辆模型与车辆-轨道耦合模型的垂向随机振动响应分析及比较.铁道学报.1999,21(05):70-74
    [34]王开云,翟婉明,蔡成标.机车车辆横向动力学性能仿真——车辆轨道耦合模型与传统车辆模型的比较.西南交通大学学报.2003,38(01):17-21
    [35]翟婉明.车辆-轨道耦合动力学(第三版).北京:科学出版社,2007
    [36]Foo E., Goodall R. M. Active suspension control of flexible-bodied railway vehicles using electro-hydraulic and electro-magnetic actuators. Control Engineering Practice.2000,8(5):507~518
    [37]Yagiz N., Gursel A. Active suspension control of a railway vehicle with a flexible body. International Journal of Vehicle Autonomous Systems.2005,3(1): 80~95
    [38]Schandl G., Lugner P., Benatzky C., et al. Comfort enhancement by an active vibration reduction system for a flexible railway car body. Vehicle System Dynamics.2007,45(9):835~847
    [39]Kozek Martin, Benatzky Christian, Schirrer Alexander, et al. Vibration damping of a flexible car body structure using piezo-stack actuators. Control Engineering Practice., In Press, Corrected Proof
    [40]Diana Giorgio, Cheli Federico, Collina Andrea, et al. The development of a numerical model for railway vehicles comfort assessment through comparison with experimental measurements. Vehicle System Dynamics.2002,38(3):165~183
    [41]Hac A., Iljoong Youn, Chen H. H. Control of suspensions for vehicles with flexible bodies. I. Active suspensions. Transactions of the ASME. Journal of Dynamic Systems, Measurement and Control.1996,118(3):508~517
    [42]Hac A., Iljoong Youn, Chen H. H. Control of suspensions for vehicles with flexible bodies. II. Semi-active suspensions. Transactions of the ASME. Journal of Dynamic Systems, Measurement and Control.1996,118(3):518~525
    [43]Tomioka T., Takigami T., Suzuki Y. Numerical analysis of three-dimensional flexural vibration of railway vehicle car body. Vehicle System Dynamics.2006,44(SUPPL.1):272~285
    [44]Takigami T., Tomioka T. Investigation to suppress bending vibration of railway vehicle carbodies using piezoelectric elements. Quarterly Report of RTRI. 2005,46(4):225~230
    [45]李世亮.计及车体弹性效应的车辆动力学振动方程、振型函数和频率方程解析.铁道车辆.1998,36(07):9-12
    [46]李世亮,王卫东.考虑车体弹性的铰接式高速车辆模型及响应计算分析.中国铁道科学.1997,18(02):79-88
    [47]邬平波,薛世海,杨晨辉.基于弹性车体模型的高速客车动态响应.交通运输工程学报.2005,5(02):5-8
    [48]陆正刚,郭慧明.柔性车辆振动和运行平稳性控制研究.中国机械工程.2006,17(10):1026-1031
    [49]曾京,罗仁.考虑车体弹性效应的铁道客车系统振动分析.铁道学报.2007,29(06):19-25
    [50]周劲松,张伟,孙文静,等.铁道车辆弹性车体动力吸振器减振分析.中国铁道科学.2009,30(03):86-90
    [51]周劲松,宫岛,孙文静,等.铁道客车车体垂向弹性对运行平稳性的影响.铁道学报.2009,31(02):32-37
    [52]徐国宇,梅雪松,吴序堂.多自由度人体-车辆-道路系统的建模与模拟.机械工程学报.1999,35(02):106-110
    [53]魏朗,陈荫三,龚国庆.公路卧铺客车的车-铺-人系统平顺性模拟计算.中国公路学报.1999,12(01):103-106
    [54]王岩松,段敏,耿艾莉,等.车辆-人体系统振动的时域模拟及频谱分析.吉林大学学报(工学版).2004,34(03):373-377
    [55]王岩松,何辉,耿艾莉.车辆-人体系统振动时域模拟及悬架非线性分析.振动与冲击.2007,26(12):36-39
    [56]王波,殷学纲,陈伟民,等.考虑人载的汽车多自由度3维动力学模型.应用力学学报.2006,23(01):57-61
    [57]王连明,宋宝玉,周岩,等.汽车平顺性建模及其仿真研究.哈尔滨工业大学学报.1998,30(05):81-85
    [58]陶向华,黄晓明.人-车-路相互作用三质量车辆模型分析.交通运输工程学报.2004,4(03):11-15
    [59]Nagai M., Yoshida H., Tohtake T., et al. Coupled vibration of passenger and lightweight car-body in consideration of human-body biomechanics. Vehicle System Dynamics.2006,44(SUPPL.1):601~611
    [60]Wei L., Griffin M. J. Mathematical models for the apparent mass of the seated human body exposed to vertical vibration. Journal of Sound and Vibration. 1998,212(5):855~874
    [61]Carlbom Pelle, Berg Mats. Passengers, seats and carbody in rail vehicle dynamics. Vehicle System Dynamics.2003,37(SUPPL.):290-300
    [62]张济民,胡用生,陆正刚.轨道车辆运行过程中人体振动仿真研究.振动与冲击.2007,26(10):76-80
    [63]Wan-Ming Zhai. Two simple fast integration methods for large-scale dynamic problems in engineering. International Jounral for Numerical Methods in Engineering.1996,39(24):4199~4214
    [64]全玉云.机车车辆/轨道系统垂耦合动力学有限元分析的研究:[博士学位论文].北京:铁道部科学研究院,2000
    [65]陈泽深,王成国.车辆随机振动的协方差分析方法.中国铁道科学.2001,22(04):4-10
    [66]陈泽深,王成国.铁道车辆动力学与控制.北京:中国铁道出版社,2004
    [67]晋智斌.车-线-桥耦合系统及车-桥随机振动:[博士学位论文].成都:西南交通大学,2007
    [68]林家浩.随机振动的虚拟激励法.北京:科学出版社,2004
    [69]戴新进.复合材料结构随机振动的虚拟激励法及在航空航天领域的应用:[博士学位论文].大连:大连理工大学,2007
    [70]周劲松,李大光,沈钢,等.磁浮车辆运行平稳性的虚拟激励分析方法.交通运输工程学报.2008,8(01):5-9
    [71]IS02631-2001.人体暴露于全身振动的评价.Iso,2001
    [72]Kim Y. G., Kwon H. B., Kim S. W., et al. Correlation of ride comfort evaluation methods for railway vehicles. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit.2003,217(2):73~88
    [73]陈立功,倪纯珍,张悦,等.按UIC513标准评估旅客列车振动舒适度.中国铁路.2001(04):60-62
    [74]俞展猷.高速列车舒适度的评价.铁道机车车辆.1999(02):1-5
    [75]王悦明,王新锐.客车舒适度的评定.铁道机车车辆.2000(03):1-4
    [76]詹斐生.平稳性指标的历史回顾(上).铁道机车车辆.1994(04):43-52
    [77]詹斐生.平稳性指标的历史回顾(中).铁道机车车辆.1995(01):39-51
    [78]詹斐生.平稳性指标的历史回顾(下).铁道机车车辆.1995(02):19-21
    [79]倪纯双,王悦明.浅析平稳性指标和舒适度指标.铁道机车车辆.2003(06):1-3
    [80]俞展猷.铁道车辆舒适性评价方法的发展与研究现状.铁道车辆.2004,42(03):1-7
    [81]万里翔,许明恒.铁道车辆运行平稳性评价方法的研究.铁道机车车辆.2001(01):8-11
    [82]尹念东.汽车-驾驶员-环境闭环系统操纵稳定性虚拟试验技术的研究:[博士学位论文].北京:中国农业大学,2001
    [83]王树凤.汽车操纵稳定性虚拟试验系统的研究:[博士学位论文].北京:中国农业大学,2002
    [84]Shiiba Taichi, Suda Yoshihiro. Evaluation of vehicle dynamic control system with virtual proving ground. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C.2004,70(4): 981~986
    [85]De Cuyper J., Furmann M., Kading D., et al. Vehicle dynamics with LMS Virtual.Lab Motion. Vehicle System Dynamics.2007,45(SUPPL.1):199~206
    [86]Bochenek Grace M., Ragusa James M. Using a 3D virtual collaborative design environment for an advanced vehicle concept review:Some test results. Heavy Vehicle Systems.2002,9(2):115~126
    [87]Berssenbrugge Jan, Kreft Sven, Gausemeier Jurgen. Using a virtual reality-based night drive simulator as a tool for the virtual prototyping of an advanced leveling light system. New York City, NY, United states:ASME,2009
    [88]王国权.车辆平顺性虚拟试验技术的研究:[博士学位论文].北京:中国农业大学,2002
    [89]李伯虎,柴旭东,熊光楞,等.复杂产品虚拟样机工程的研究与初步实践.系统仿真学报.2002,14(03):332-337
    [90]王子才.仿真技术发展及应用.中国工程科学.2003,5(02):40-44
    [91]陈定方,罗亚波.虚拟设计(第二版).北京:机械工业出版社,2007
    [92]熊光楞,郭斌,陈晓波,等.协同仿真与虚拟样机技术.北京:清华大学出版社,2004
    [93]吴澄.现代集成制造的理论基础——类复杂性问题及其求解.计算机集成制造系统-CIMS.2001,7(3):1~7
    [94]李伯虎,吴澄,刘飞,等.现代集成制造的发展与863/CIMS主题的实施策略.计算机集成制造系统-CIMS.1998(05):7-15
    [95]王子才.关于仿真理论的探讨.系统仿真学报.2000,12(06):604-608
    [96]洪嘉振.计算多体系统动力学.北京:高等教育出版社,2003
    [97]刘延柱.完全笛卡尔坐标描述的多体系统动力学.力学学报.1997,29(01):85-95
    [98]刘贤喜,刘竹青,周一鸣.机械系统虚拟样机软件原型的实用化研究.中国农业大学学报.2002,7(02):76-80
    [99]闫开印,张卫华,丁国富,等.铁路机车车辆虚拟样机工程研究.铁道学报.2005,27(05):54-60
    [100]吴洪涛,熊有伦.机械工程中的多体系统动力学问题.中国机械工程.2000,11(06):17-20
    [101]Li Bohu, Chai Xudong, Zhu Wenhai. The Recent Research on Virtual Prototyping Engineering for Complex Products:The 8th International Conference on Computer Supported Cooperative Work in Design Proceedings. 200318~25
    [102]G Schupp, A Jaschinksi. Virtual prototyping:the future way of designing railway vehicles. International Journal of Vehicle Design.1999,22(1-2):93~115
    [103]G Wang, Gary. Definition clarification and review on virtual prototyping: Proceedings of the ASME Design Engineering Technical Conference.2001349~357
    [104]Ambuj Sharma, S Kochak R., Sriraman. Development of container flat rail cars through virtual prototyping. Vehicle System Dynamics.2003,37:666~677
    [105]Stribersky A., Moser F., Rulka W. Structural dynamics and ride comfort of a rail vehicle system. Advances in Engineering Software.2002,33(7-10):541~552
    [106]王成国.铁道车辆工程的虚拟样机技术.中国铁路.2001(05):27-28
    [107]原亮明,刘敬辉,王成国,等.虚拟样机制造技术在高速铁路转向架设计中的应用.CAD/CAM与制造业信息化.2002(09):46-47
    [108]阳光武,肖守讷,金鼎昌.基于虚拟样机技术的地铁车辆构架疲劳寿命仿真.机车电传动.2004(03):39-41
    [109]闫开印,张卫华,丁国富,等.铁路机车车辆虚拟样机工程研究.铁道学报.2005,27(05):54-60
    [110]马思群,谢素明,兆文忠,等.PDM技术在铁路机车车辆虚拟样机中的应用研究.铁道学报.2004,26(01):28-32
    [111]杨鑫华,常力,王春生,等.基于数字样机的铁路客车转向架动态设计与仿真.机械设计.2007,24(04):63-65
    [112]丁彦闯,兆奇,兆文忠.铁道车辆虚拟疲劳试验技术研究.铁道车辆.2008,46(04):1-4
    [113]孟广伟,王成国,刘敬辉,等.用虚拟疲劳样机技术分析转8A型转向架侧架的疲劳寿命.中国铁道科学.2002,23(04):10-13
    [114]缪炳荣,张卫华,肖守讷,等.基于多体动力学和有限元法的车体结构疲劳寿命仿真.铁道学报.2007,29(04):38-42
    [115]缪炳荣,张卫华,肖守讷,等.应用多体有限元法预测车体结构疲劳寿命.机械强度.2008,30(06):1003-1007
    [116]闫雪冬.轮轨/磁浮动车组虚拟样机若干关键技术研究与应用:[博士学位论文].大连:大连交通大学,2005
    [117]朱浩.基于多体动力学理论的车辆主动悬挂的控制策略研究:[博士学位论文].长沙:中南大学,2006
    [118]杨岳,杨颜志,彭波.铁道车辆舒适性虚拟试验系统研究.中国机械工程.2008,19(14):1755-1759
    [119]阎开印.基于多体系统意义下的机车车辆虚拟样机研究:[博士学位论文].成都:西南交通大学,2006
    [120]丁国富,翟婉明,张治,等.车辆-轨道耦合系统中基于变参数的三维图形仿真研究.计算机辅助设计与图形学学报.2002,14(02):115-119
    [121]丁国富,翟婉明,刘伯兴.机车车辆-轨道耦合动力学实时仿真模式研究.系统仿真学报.2003,15(02):238-241
    [122]丁国富,翟婉明,张治,等.机车车辆轨道耦合几何结构基于面向对象的建模分析研究.交通运输工程学报.2001,1(02):14-17
    [123]丁国富,邹益胜,张卫华,等.基于虚拟原型的机械多体系统建模可视化.计算机辅助设计与图形学学报.2006,18(06):793-799
    [124]丁国富,张卫华,刘伯兴,等.列车运行动态仿真研究.系统仿真学报.2004,16(08):1697-1700
    [125]杨吉忠,翟婉明,苏虎.车辆-轨道耦合动力学系统可视化仿真.交通运输工程学报.2007,7(04):10-14
    [126]苏虎,周美玉.分布式列车仿真系统的视景生成.西南交通大学学报.2002,37(06):669-672
    [127]苏虎,周美玉.高速列车模拟器的视景建模与仿真.系统仿真学报.2001,13(05):588-591
    [128]苏虎,周美玉.列车驾驶仿真系统中分布式视景仿真.铁道学报.2002,24(05):37-41
    [129]苏虎.分布式列车仿真系统中视景实时生成算法的研究:[博士学位论文].成都:西南交通大学,2002
    [130]王小亮,李立,张卫华.列车驾驶模拟器经典洗出算法的参数优化.中国铁道科学.2008,29(05):102-107
    [131]王小亮,李立,张卫华.高速列车垂向振动的模拟器再现方法研究.振动、测试与诊断.2009,29(01):101-104
    [132]马飞,陈志雄,朱金陵.列车驾驶模拟器体感模拟研究.计算机与数字工程.2007,35(05):36-39
    [133]周忠良,康熊,裘立红.高速列车驾驶模拟器的发展.铁道机车车辆.2006,26(06):1-3
    [134]施寅,曾新宇.列车驾驶模拟器图形仿真系统的研制.铁道学报.1997,19(05):28-33
    [135]谭喜堂,李广俊.城市轨道交通列车驾驶仿真器研究.中国铁道科学. 2006,27(02):110-115
    [136]蒋炜栋,郎诚廉.基于OpenGVS的城轨列车三维视景仿真系统的开发.计算机时代.2008(02):22-24
    [137]胡敏聪,郎诚廉,徐鲜泉,等.列车运行视景仿真及险情特效的实现.计算机应用.2008,28(S1):244-246
    [138]杜霄,唐涛.地铁列车运行仿真系统中三维视景建模和简化.系统仿真学报.2006,18(06):1724-1728
    [139]宋晓伟,唐涛.列车运控系统视景仿真的设计与实现.系统仿真学报.2007,19(16):3864-3867
    [140]倪菊,张树泉,童朝南.基于虚拟现实的地铁客流仿真系统的实现.计算机仿真.2008,25(04):258-262
    [141]张曙光.CRH2型动车组.北京:中国铁道出版社,2008
    [142]木村敏宣,牛晓妮.车体振动评估技术的进展.国外铁道车辆.2005(03):19-23
    [143]曾京,邬平波,郝建华.铁道客车系统的垂向减振分析.中国铁道科学.2006,27(03):62-67
    [144]周劲松,宫岛,任利惠.铁道车辆弹性车体被动减振仿真分析.同济大学学报(自然科学版).2009(08)
    [145]高利,陈荫三.卧姿人体承受全身振动的试验方法研究.客车技术与研究.1998,20(2):38-45
    [146]陈荫三,高利.卧姿人体承受全身振动降低舒适界限的研究.汽车工程.1991,13(4):208-212
    [147]高利,庞胜明,袁纲.公路卧铺客车卧姿人体振动研究.高车技术与研究.2002,24(5):8-11
    [148]魏朗,阎胜利,刘卷仓.公路卧铺客车悬挂卧铺平顺性试验研究.客车技术与研究.1999,21(2):37-40
    [149]GB/T18368-2001.卧姿人体全身振动舒适性的评价.全国机械振动与冲击标准化技术委员会,2001
    [150]张卫华.抓住机遇促进仿真技术发展——2004年度铁路机车车辆动态仿真学术会议综述.学术动态.2004(03):38-40
    [151]日本安田滋.车辆用座椅舒适度的评价.国外铁道车辆.1995(01):46-50
    [152]丁玉兰.人机工程学.北京:北京理工大学出版社,2005
    [153]GBl0000-88.中国成年人人体尺寸.中华人民共和国国家标准,1989
    [154]彭波,杨岳,苏春模.采用SolidWorks API的离心式叶轮参数化建模.工程图学学报.2009,30(05):1-7
    [155]杨岳,罗意平.CAD/CAM原理与实践.北京:中国铁道出版社,2002
    [156]肖位枢.模糊数学基础及应用.北京:航空工业出版社,1992
    [157]敏宣木村.车体振动评估技术的进展.国外铁道车辆.2005(3):19-23
    [158]Liang Cho-Chung, Chiang Chi-Feng. A study on biodynamic models of seated human subjects exposed to vertical vibration. International Journal of Industrial Ergonomics.2006,36:869~890
    [159]R Coermann. The mechanical impedance of the human body in sitting and standing positions at low frequencies. Human Factors 4.1962:227~253
    [160]R Muksian, C Nash. A model for the response of seated humans to sinusoidal displacements of the seat. Journal of Biomechanics.1974,7:209~215
    [161]R Muksian, C Nash. On frequency-dependent damping coefficients in lumped-parameter models of human beings. Journal of Biomechanics.1976,9: 339~342
    [162]K Patil M., S Palanichamy M. A mathematical model of tractor-occupant system with a new seat suspension for minimization of vibration response. Applied Mathematical Modelling.1988,12:63~71
    [163]P Boileau, S Rakheja. Whole-body vertical biodynamic response characteristics of the seated vehicle driver:measurement and model development. International Journal of Industrial Ergonomics.1998,22:449~472
    [164]L Wei, J Griffin. The prediction of seat transmissibility from measures of seat impedance. Journal of Sound and Vibration.1998,214(1):121~137
    [165]J Wagner, X Liu. An active vibration isolation system for vehicle seats. SAE Paper 2000-01-0275.2000:7~18
    [166]戴诗亮,王波.人体振动模态的实验研究.力学与实践.1996,18(01):19-22
    [167]徐国宇,梅雪松,吴序堂.人体上体系统振动生物力学模型研究.应用力学学报.2000,17(01):127-131
    [168]吴国梁.人体动态参数的识别方法.噪声与振动控制.1996(04):9-12
    [169]汪芳子,由广兴,崔建,等.不同冲击力作用下人体动力学响应特性研究.航天医学与医学工程.1994,7(04):266-272
    [170]GB/T16440.人体机械驱动点阻抗.中华人民共和国国家标准,1996
    [171]张义民.机械振动.北京:清华大学出版社,2007
    [172]V K. Garg, R V. Dukkipati. Dynamics of Railway Vehicle Systems. Canada: Academic Press,1984
    [173]长沙铁道学院随机振动研究室.关于机车车辆/轨道系统随机激励函数的研究.长沙铁道学院学报.1985(02):1-36
    [174]铁道科学研究院铁道建筑研究所.我国干线轨道不平顺功率谱的研究.北京:铁道科学研究院,1999
    [175]胡津亚,曾三元.现代随机振动.北京:中国铁道出版社,1989
    [176]徐昭鑫.随机振动.北京:高等教育出版社,1990
    [177]丁国富,翟婉明,王开云.机车车辆在轨道上运行的动力学可视仿真.铁道学报.2002,24(03):14-17
    [178]陈涛.人-车-路(环境)联合运行虚拟仿真理论与实现技术研究:[博士学位论文].西安:长安大学,2005
    [179]李勋祥.基于虚拟现实的驾驶模拟器视景系统关键技术与艺术研究:[博士学位论文].武汉:武汉理工大学,2006
    [180]陈立平,张云清,任卫群,等.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社,2005
    [181]王成国.MSC.ADAMS/RAIL基础教程.北京:科学出版社,2005
    [182]齐敏,郝重阳,佟明安.三维地形生成及实时显示技术研究进展.中国图象图形学报.2000,5(04):3-9
    [183]王亚民,赵捧未.地理信息系统及其应用.西安:西安电子科技大学出版社,2006
    [184]孟晓梅,刘文庆.MultiGen Creator教程.北京:国防工业出版社,2005
    [185]黄超超,凌永顺,吕相银.地形纹理映射方法研究.计算机仿真.2005,22(01):209-212
    [186]陈果,翟婉明.铁路轨道不平顺随机过程的数值模拟.西南交通大学学报.1999,34(02):13-17
    [187]王乘,李利军,周均清,等.Vega实时三维视景仿真技术.武汉:华中科技大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700