用户名: 密码: 验证码:
各向异性地层中电磁场三维数值模拟的积分方程算法及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
积分方程法是地球物理学中电磁场三维数值模拟的一种常见而有效的方法,但目前该方法的应用主要还是集中于各向同性地层,本文的主要目的是研究开发在各向异性地层条件下电磁场三维数值模拟的积分方程算法,并考察分析各向异性对三维电磁响应的影响特征和规律。
     鉴于并矢Green函数在积分方程算法中的关键作用,本文首先讨论了水平层状各向异性介质中的并矢Green函数理论。利用传输线原理推导出水平层状各向异性介质中频率域并矢Green函数的解析式,并借助于Fourier逆变换得到了空间域并矢Green函数的Sommerfeld积分表达式。为了提高Sommerfeld积分的计算效率,本文提出了一种利用高阶窗函数结合连分式展开来计算该积分的快速算法。
     文中第三章给出了各向异性地层中电磁场三维数值模拟的积分方程算法基本原理。采用等效体积单元法和表面积分技术解决了并矢Green函数的奇异积分问题;为了节省计算机内存以及计算时间,引入迭代法求解积分方程的离散化矩阵方程,并且为保证积分方程满足压缩映射条件,利用电磁能量不等式将原始积分方程转化成压缩积分方程,从而使其在任意电导率分布以及任意频率下都是迭代收敛的。
     第四章利用积分方程法对各向异性地层频率测深响应进行了三维数值模拟。为了提高多频情况下的计算效率,引入一种迭代法求解积分方程的迭代初值优化选择方法。数值结果表明:地层的各向异性降低了轴向及赤道向频率测深视电阻率响应对地下三维电性异常体的探测能力。
     第五章利用积分方程法研究了三维地层条件下各向异性对可控源音频大地电磁(CSAMT)场源效应与静态效应的影响。数值结果表明:地层的各向异性使CSAMT非平面波效应、影子效应和静态效应均得到不同程度的增强,并且使CSAMT视电阻率和相位响应拟断面图对地下三维目标体的反映能力降低。
     第六章利用积分方程法对各向异性海底地层海洋可控源电磁(MCSEM)响应进行了三维数值模拟。为了提高计算效率,引入分区域多重网格准线性近似技术。数值结果表明:MCSEM响应对包围油气藏的海底沉积岩地层的横向和纵向电阻率都非常敏感;海底三维有限大小油气藏的横向电阻率对MCSEM响应有一定的影响,但其纵向电阻率对MCSEM响应几乎没有影响。
1Electromagnetic (EM) prospecting method is one of important sounding ways in the applied geophysics because of its many advantages such as flexible source, various mode, high efficiency and stable performance compared with other ways. It is widely used in the geophysical engineering, oil and gas exploration, evaluation of geothermal reserves, metal mineral exploration and deep geological research, etc. Recently, although many more flexible and reliable new digital instruments have continuously invented, lagging interpretation theories and methods restrict obviously further development and more application of EM method. As to my knowledge, 1-D numerical modeling has already become quite mature and 2-D numerical simulation is also gradually maturing, however the 3-D modeling is just still in the start-up and developing stage. With the continuous improvement in accuracy of EM measurement and the rapid development of computer technology, 3-D EM forward modeling has become a very important subject and attracted more and more scholars to engage in such study. 3-D EM numerical modeling has three main algorithms: the finite difference (FD) method, the finite element (FE) method and the integral equation (IE) method. Different from the full-space discrete FD method and FE method, IE method only requires to discrete the abnormal region on background formation to solve Maxwell’s equation, so smaller number of grids is required and higher accuracy of approximation can be obtained. IE method has in fact become a very important method to solve 3-D EM field and has been deeply and wildely studied. However, it must be pointed out that currently IE method is chiefly applied to solve the 3-D isotropically geoelectric problem only. In fact, many theoretical analyse and field observations show that the upper crusts and sedimentary rocks often behave obvious anisotropy. The effect of anisotropy must be taken into account to correct analyze and interprete the EM datum, otherwise neglect of anisotropy will propably lead to incorrect result. Because of its complexity, the study about 3-D EM numerical simulation in anisotropic media is still not much executed up to now. In this paper, it will try to be developed the 3-D EM IE method in layered anisotropic earth and the corresponding key techniques, and to be analyzed the influence of anisotropy on the 3-D EM responses through numerical results obtained by the IE method in various environments so as to supply some theoretical basises for correct and new methods to interpretate EM datum in complex formation.
     Because dyadic Green’s function plays a key role in the the IE algorithm, an efficient algorithm on it in the horizontally layered anisotropic formation has been studied. Through Fourier transform, the EM field is decomposed into two independent transverse magnetic wave(TM) and transverse electric wave(TE) in frequency domain and their solutions are analytically gotten by using transmission line and propagation factor so that it finally produces four analytical EM dyadic Green’s functions in frequency domain. Then, the dyadic Green’s functions in space domain are expressed in form of Sommerfeld integrals by using inverse Fourier transform. Value of the Sommerfeld integral is usually computed by a digital filtering algorithm, and the high order window function and continued fraction expansion technique is advanced to further enhance efficiency of Sommerfeld integral.
     Chapter 3 mainly discusses the basic principles of IE method for 3-D EM modeling in layered anisotropic earth. To discretize integral equation and obtain an approximation system, the electrical current dyadic Green’s function is decomposed into two parts: one is the singular primary wave directly from the source and another a nonsingular waves reflected and transmitted from the interfaces.Value of the singular kernel of IE each node is computed by using equivalent volume element and surface integral methods. Then Bi-Conjugate Gradient (BICGSTAB) iterative method is introduced to reduce computer memory and improve computational efficiency based on Krylov subspace because the approximation system of the IE is complex and dense. Besides, in order to efficiently solve 3-D EM responses produced by several different anomalous bodies far from each other, a block over-relaxation iterative method is applied because it require smaller computer resource only. Furthermore, the contraction IE in layered anisotropic earth is derived by EM energy inequality so that the convergence of numerical solution can be always assured for any formation. Finally, numerical examples validate the efficient algorithms.
     Frequency sounding is an EM method using artificial source, it detects the change of rock resistivity with depth to understand geological structure by altering frequency of alternating EM field. This method has been applied for more than thirty years in our country and played a very important role in the geological research and national economy. In order to improve 3-D forward efficiency in the case of multi-frequency, a technique is introduced to optimize the initial solution for each frequency. Chapter 4 gives a lot of 3-D EM numerical results to investigate frequency sounding responses in layered anisotropic earth. The results show that anisotropy has obvious effects on apparent resistivity of frequency sounding and the intensitivity of both axial and equatorial system responses to 3-D underground anormal body is reduced with the increase of anisotropic coefficients.
     Controlled source audio-frequency magnetotelluric(CSAMT) measurement is commonly used artificial source such as grounding electric dipole(electric source) or non-grounded loop(magnetic source) to excite EM field, and two orthogonal components of electric and magnetic fields far enough from the source is observed to determine apparent resistivity so that it can still used the interpretation method similar to that of MT and AMT. However, unlike to the response of MT or AMT approach with natural source, that of CSAMT has often such many additional effects as non-plane wave effects, shadow effects, transmitter overprint effects and static shift effects even if the distance between the transmitter and receiver might be enough far. In Chapter 5 some numerical results in 3-D buried bodies in layered anisotropic earth are given to investigate the influence of anisotropy on the field source effects and static shift effects. Numerical results show that the anisotropy of formation will reduce the far field extent and enhance shadow effects and static shift effects of CSAMT so that the ability for CSAMT to detect abnormal information in the pseudo-sections will be reduced.
     In recent years, offshore oil and gas exploration has been become a new research subject with the increasing demand for oil and gas resources. Because of strong capacity to detect high resistance of the seabed strata, marine controlled-source electromagnetic (MCSEM) method has developed into an important means of exploration marine oil and gas resources. Chapter 6 establish an efficient algorithm to simulate 3-D MCSEM response in layered anisotropic seabed through the sub-domain multi-grid and quasi-linear approximation technique. Numerical results show that MCSEM responses are very sensitive to change in the horizontal and vertical resistivity of sedimentary strata undersea surrounding oil and gas reservoir. Horizontal resistivity of 3-D finite oil and gas reservoir has some effects on MCSEM responses, but vertical resistivity hardly influences MCSEM responses.
     In conclusion, the 3-D responses of EM measurements in anisotropic formation have been better understood through deep study on 3-D IE numerical modeling of EM and systematically numerical results in various complex environments. So it provides essentially theoretical basis for processing and interpretation of EM datum in complex formation. Thus it is theoretically and practically very usefull.
引文
[1]傅良魁.电法勘探教程[M].北京:地质出版社,1983.
    [2]朴化荣.电磁测深法原理[M].北京:地质出版社,1990.
    [3]米萨克N.纳米吉安著,赵经祥等译.电磁法(第一卷:理论)[M].北京:地质出版社,1992.
    [4]维特J R著,纪英楠译.大地电磁学[M].北京:地质出版社,1987.
    [5] ADHIDJAJA J I,HOHMANN G W.A finite-difference algorithm for the transient electro- magnetic response of a three-dimensional body[J]. Geophysical Journal International,1989,98(2):233-242.
    [6] TSILI WANG,HOHMANN G W.A finite-difference time-domain solution for three- dimensional electromagnetic modeling[J].Geophysics,1993,58(6):797-809.
    [7] SPITZER K.A 3-D finite-difference algorithm for DC resistivity modelling using conjugate gradient methods[J].1995,123(3):903-914.
    [8] NEWMAN G A,ALUMBAUGH D L.Frequency-domain modeling of airborne electro- magnetic responses using staggered finite differences[J].Geophysical Prospecting,1995,43(8):1021-1042.
    [9] TSILI WANG,SHENG FANG.3-D electromagnetic anisotropy modeling using finite differences[J].Geophysics,2001,66(5):1386-1398.
    [10] DAVYDYCHEVA S,DRUSKIN V,HABASHY T.An efficient finite-difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media[J]. Geophysics,2003,68(5):1525-1536.
    [11]沈金松.用交错网格有限差分法计算三维频率域电磁响应[J].地球物理学报,2003,46(2):281-288.
    [12]谭捍东,余钦范,John Booker,等.大地电磁法三维交错采样有限差分数值模拟[J].地球物理学报,2003,46(5):705-711.
    [13]王昌学,周灿灿,储昭坦,等.电性各向异性地层频率域电磁响应模拟[J].地球物理学报,2006,49(6):1873-1883.
    [14]杨守文,汪宏年,陈桂波,等.倾斜各向异性地层中多分量电磁波测井响应三维时域有限差分(FDTD)算法[J] .地球物理学报,2009,52(3):833-841.
    [15] PARDO D,TORRES-VERDíN,PASZYNSKI M.Simulations of 3D DC borehole resistivity measurements with a goal-oriented hp finite-element method.Part II:through casing resistivity instruments[J].Computational Geosciences,2008,12:83-89.
    [16] BADEA E A,EVERETTZ M E,NEWMAN G A,et al.Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials[J]. Geophysics,2001,66(3):786-799.
    [17] PRIDMORE D F,HOHMANN G W,WARD S H,et al.An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions[J]. Geophysics,1981,46(7):1009-1024.
    [18] LIVELYBROOKS D.Program 3Dfeem:a multidimensional electromagnetic finite element model[J].Geophysical Journal International,1993,114(3):443-458.
    [19] ZYSERMAN F I , SANTOS J E.Parallel finite element algorithm with domain decomposition for three-dimensional magnetotelluric modeling[J].Journal of Applied Geophysics,2000,44(4):337-351.
    [20] MOGI T.Three-dimensional modeling of magnetotelluric data using finite element method[J].Journal of Applied Geophysics,1996,35:185-189.
    [21] GUPTA P K,RAICHE A P,SUGENG F.Three-dimensional time-domain electromagnetic modelling using a compact finite-element frequency-stepping method[J].Geophysical Journal International,1988,96(3):457-468.
    [22]阮百尧,熊彬.电导率连续变化的三维电阻率测深有限元模拟[J].地球物理学报,2002,45(1):131-138.
    [23]吴小平,汪彤彤.利用共轭梯度算法的电阻率三维有限元正演[J].地球物理学报,2003,46(3):428-432.
    [24]汤井田,任政勇,化希瑞.Coulomb规范下地电磁场的自适应有限元模拟的理论分析[J].地球物理学报,2007,50(5):1584-1594.
    [25]强建科,罗延钟.三维地形直流电阻率有限元法模拟[J].地球物理学报,2007,50(5):1606-1613.
    [26]孙向阳,聂在平,赵延文,等.用矢量有限元方法模拟随钻测井仪在倾斜各向异性地层中的电磁响应[J].地球物理学报,2008,51(5):1600-1607.
    [27] RAICHE A P.An integral equation approach to 3D modeling[J]. Geophysical Journal International,1974,36(2):363-376.
    [28] HOMMAN G W.Three-dimensional induced polarization and electromagnetic modeling[J].Geophysics,1975,40(2):309-324.
    [29] WEIDELT P.Electomagnetic induction in three-dimensional structures[J].Journal of Geophysics,1975,41:85-109.
    [30] TING S C,HOHMANN G W.Integral equation modeling of three-dimensional magne- totelluric response[J].Geophysics,1981,46(2):182-197.
    [31] TRIPP A C,HOMANN G W.Block diagonalization of the electromagnetic impedance matrix of a symmetric buried body using group theory[J].IEEE Transactions on Geoscience and Remote Sensing,1984,22:62-69.
    [32] WANNAMAKER P E.Electromagnetic modeling of three-dimensional bodies in layered earths using integral equations[J].Geophysics,1984,49(1):60-74.
    [33] SANFILIPO W A,HOHMANN G W.Integral equation solution for the transient electro- magnetic response of a three-dimensional body in a conductive half-space[J]. Geophysics,1985,50(5):798-809.
    [34] NEWMAN G A,HOHMANN G W,ANDERSON W L.Transient electromagnetic response of a three-dimensional body in a layered earth[J].Geophysics,1986,51(8):1608-1627.
    [35] XIONG Z H,LUO Y Z,WANG S T,et al.Induced-polarization and electromagnetic modeling of a three-dimensional body buried in a two-layer anisotropic earth[J]. Geophysics,1986,51(12):2235-2246.
    [36] WANNAMAKER P E.Advances in three-dimensional magnetotelluric modeling using integral equation[J].Geophysics,1991,56:1716-1728.
    [37] WALKER P W,WEST G F. A robust integral equation solution for electromagnetic scattering by a thin plate in conductive media[J].Geophysics,1991,56(8):1140-1152.
    [38] XIONG Z H.Electromagnetic modeling of 3-D structures by the method of system iteration using integral equations[J].Geophysics,1992a,57:1556-1561.
    [39] XIONG Z H.Symmetry properties of the scattering matrix in 3-D electromagnetic modeling using the integral equation method[J].Geophysics,1992b,57(9):1199-1202.
    [40] XIONG Z H,TRIPP A C.Scattering matrix evaluation using spatial symmetry in electro- magnetic modeling[J].Geophysical Journal International,1993,114(3):459-464.
    [41] HABASHY T M,GROOM R W,SPIES B R.Beyond the Born and Rytov approximations:A nonlinear approach to electromagnetic scattering[J] .Journal of Geophysical Research,1993,98(B2):1759-1775.
    [42] TORRES-VERDIN,HABASHY T M.Rapid 2.5-D forward modeling and inversion via a new nonlinear scattering approximation[J].Radio Science,1994,29:1051-1079.
    [43] XIONG Z H,TRIPP A C.A block iterative algorithm for 3-D electromagnetic modeling using integral equations with symmetrized substructures[J].Geophysics,1995,61(1):291-295.
    [44] AVDEEV D B,KUVSHINOV A V,PANKRATOV O V,et al.High-performance three- dimensional electromagnetic modeling using modified Neumann series , Wide-band numerical solution and examples[J].Journal of Geomagnetism and Geoelectricity,1997,49:1519-1539.
    [45] ZHDANOV M S,FANG SHENG.Quasi-linear approximation in 3D electromagnetic modeling[J].Geophysics,1996,61:646-665.
    [46] ZHDANOV M S,FANG SHENG.Quasi-linear series in three-dimensional electromagnetic modeling[J].Radio Science,1997,32:2167-2188.
    [47] ZHDANOV M S,DMITRIEV V I,SHENG FANG,et al.Quasi-analytical approximations and series in electromagnetic modeling[J].Geophysics,2000,65(6):1746-1757.
    [48] AVDEEV D B,KUVSHINOV A V,PANKRATOV O V,et al. Three-dimensional induction logging problems , Part I : An integral equation solution and model comparisons [J].Geophysics,2002,67(2):413-426.
    [49] HURSáN G,ZHDANOV M S.Contraction integral equation method in three dimensional electromagnetic modeling[J].Radio Science,2002,37(6):1089-2002.
    [50] ZHDANOV M S,LEE S K,YOSHIOKA K.Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity[J].Geophysics,2006,71(6):G333-G345.
    [51] FARQUHARSON C G,DUCKWORTH K,OLDENBURG D W.Comparison of integralequation and physical scale modeling of the electromagnetic responses of models with large conductivity contrasts[J].Geophysics,2006,71(4):G169-G177.
    [52] GAO G Z,TORRES-VERDíN.High-order generalized extended born approximation for electromagnetic scattering[J].IEEE Transactions on Antennas and Propagation,2006,54(4):1243-1256.
    [53]李晓波,朴化荣.两层大地中三维体的激发极化与电阻率响应的积分方程模拟[J].地球物理学报,1988,31(3):342-352.
    [54]陈久平,陈乐寿,王光锷.层状介质中三维大地电磁模拟[J].地球物理学报,1990,33(4):480-488.
    [55]殷长春,朴化荣.三维电磁模拟技术及其在频率测深法中应用[J].地球物理学报,1994,37(6):820-827.
    [56]鲁来玉,张碧星,鲍光淑.电阻率随位置线性变化时的三维大地电磁模拟[J].地球物理学报,2003,46(4):568-575.
    [57]徐利明,聂在平.埋地目标体矢量电磁散射的一种快速正演算法[J].地球物理学报,2005,48(1):209-215.
    [58]内吉J R,萨拉夫P D著,邹永辉,陈德志译.大地介质电磁各向异性问题[M].北京:地质出版社,1992.
    [59] KONG J A.Electromagnetic fields due to dipole antennas over stratified anisotropic media[J].Geophysics,1972,37(6):985-996.
    [60] CHLAMTAC M,ABRAMOVICI F.The electromagnetic fields of a horizontal dipole over a vertically inhomogeneous and anisotropic earth[J]. Geophysics,1981,46:904-915.
    [61] EDWARDS R N,NOBES D C,TREVI?O E G.Offshore electrical exploration of sedimentary basins : the effects of anisotropy in horizontally isotropic layered media[J].Geophysics,1984,49(5):566–576.
    [62] LI XIAOBO,PEDERSEN L B.The electromagnetic response of an azimuthally anisotropic half-space[J].Geophysics,1991,56(9):1462–1473.
    [63] LI XIAOBO,PEDERSEN L B.Controlled-source tensor magnetotelluric responses of a layered earth with azimuthal anisotropy[J].Geophysical Journal International,1992,111(1):91-103.
    [64] YU L,EDWARDS R N.The detection of lateral anisotropy of the ocean floor by electro-magnetic methods.Geophysical Journal International[J],1992,108:433-441.
    [65] CHAPMAN C H.Reflection/transmission coefficient reciprocities in anisotropic media.Geophysical Journal International[J],1994,116:498-501.
    [66] YU L,EVANS R L,EDWARDS R N.Transient electromagnetic responses in seafloor with triaxial anisotropy.Geophysical Journal International[J],1997,129:292–304.
    [67] EVERETT M E,CONSTABLE S.Electric dipole fields over an anisotropic seafloor: theory and application to the structure of 40 Ma Pacific Ocean lithosphere[J]. Geophysical Journal International,1999,136:41–56.
    [68] YIN CHANGCHUN,WEIDELT P.Geoelectrical fields in a layered earth with arbitrary anisotropy[J].Geophysics,1999,64(2):426–434.
    [69] LI XIAOBO,OSKOOI B,PEDERSEN L B.Inversion of controlled-source tensor magne- totelluric data for a layered earth with azimuthal anisotropy[J].Geophysics,2000,65(2):452-464.
    [70] YIN CHANGCHUN.Geoelectrical inversion for a one-dimensional anisotropic model and inherent non-uniqueness[J].Geophysical Journal International,2000,140(1):11-23.
    [71] YIN CHANGCHUN,MAURER H M.Electromagnetic induction in a layered earth with arbitrary anisotropy[J].Geophysics,2001,66(5):1405–1416.
    [72] YIN CHANGCHUN.Inherent nonuniqueness in magnetotelluric inversion for 1D anisotropic models[J].Geophysics,2003,68(1):138-146.
    [73] YIN CHANGCHUN,FRASER D C.The effect of the electrical anisotropy on the response of helicopter-borne frequency-domain electromagnetic systems[J]. Geophysical Prospecting,2004,52(5):399-416.
    [74] YIN CHANGCHUN.MMT forward modeling for a layered earth with arbitrary anisotropy[J].Geophysics,2006,71(3):G115-G128.
    [75] PEK J,SANTOS A M.Magnetotelluric inversion for anisotropic conductivities in layered media[J]. Physics of The Earth and Planetary Interiors,2006,158(2-4):139-158.
    [76] JONES A G.Electromagnetic interrogation of the anisotropic Earth:Looking into the Earth with polarized spectacles[J].Physics of The Earth and Planetary Interiors,2006,158(2-4):281-291.
    [77] L?SETH L O , URSIN B.Electromagnetic fields in planarly layered anisotropicmedia[J].Geophysical Journal International,2007,170:44-80.
    [78] WANG H N,SO P,YANG S W,et al.Numerical modeling of multicomponent induction well logging tools in the cylindrically stratified anisotropic media and its response[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46 (4):1134-1147.
    [79] WANG H N,TAO H G,YAO J J,et al.Fast Multiparameter Reconstruction of multi- component induction well logging datum in deviated well in a horizontally stratified anisotropic formation[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(5):1525-1534.
    [80]林长佑,武玉霞,杨长福,等.水平层状对称各向异性介质的大地电磁资料反演[J].地球物理学报,1996,39:342-348.
    [81]沈金松,郭乃川.各向异性层状介质中视电阻率与磁场响应研究[J].地球物理学报,2008,51(5):1608-1619.
    [82]汪宏年,陶宏根,姚敬金,等.用模式匹配算法研究层状各向异性倾斜地层中多分量感应测井响应[J].地球物理学报,2008,51(5):1591-1599.
    [83] XIONG Z H.Electromagnetic fields of electric dipoles embedded in a stratified anisotropic earth[J].Geophysics,1989,54(12):1643-1646.
    [84]考夫曼等著,王建谋译.频率域和时间域电磁测深[M].北京:地质出版社,1987.
    [85]陈明生,阎述.论频率测深应用中的几个问题[M].北京:地质出版社,1995.
    [86]李毓茂.频率电磁测深法及其直接找油的可能性[J].石油物探,1982,2:101-109.
    [87]朴化荣,殷长春.频率测深正演问题滤波算法及人机联作反演[J].物探化探计算技术,1987,9(2):137-148.
    [88]朴化荣,殷长春.频率测深水平磁场的正演计算及应用[J].物探化探计算技术,1989,11(3):204-213.
    [89]殷长春.频率测深布极方向偏离轴向或赤道向误差问题的探讨[J].吉林地质,1988,(3):80-84.
    [90]殷长春.各向异性地层上方频率测深视电阻率响应特征的研究[J].吉林地质,1990,(4):73-80.
    [91]殷长春.提高频率测深正演计算速度的方法[J].物探化探计算技术,1990,12(2):99-105.
    [92]殷长春.任意角度频率测深正演计算及应用[J].探化探计算技术,1991,13(2):129-138.
    [93]殷长春,朴化荣.电磁场模值转换相位原理及在频率测深法中应用[J].长春地质学院学报,1991,21(1):87-96.
    [94]汤井田,何继善.频率域电磁测深中磁场水平分量新的计算方法[J].物探化探计算技术,1993,15(1):64-68.
    [95]汤井田,何继善.水平多层介质上水平电偶源频率电磁测深的阻抗实部等效电阻率[J].物探与化探,1994,18(2):92-96.
    [96]汤井田,何继善.频率域电磁测深中的记录规则[J].物探与化探,1994,18(3):192-199.
    [97]汤井田,何继善.水平电偶源频率测深中全区视电阻率定义的新方法[J].地球物理学报,1994,37(4):543-552.
    [98]陈明生,严又生.二维水平电偶极变频测深阻抗视电阻率的有限元正演计算[J].地球物理学报,1987,30(2):201-208.
    [99]马钦忠,钱家栋.二维频率测深边界单元法正演计算[J].地球物理学报,1995,38(2):252-261.
    [100]阎述,陈明生,李志民.频率测深二维地形影响的边界元素法正演模拟[J].物探化探计算技术,1996,18(4):310-319.
    [101]殷长春,朴化荣.赤道向频率域电磁测深三维电磁模拟技术研究[J].石油地球物理勘探,1994,29(6):746-757.
    [102]何继善.可控源音频大地电磁法[M].长沙:中南工业大学出版社,1990.
    [103]石昆法.可控源音频大地电磁法理论与应用[M].北京:科学出版社,1999.
    [104]汤井田.可控源音频大地电磁法以及应用[M].长沙:中南大学出版社,2005.
    [105] GOLDSTEIN M A,STRANGWAY D W.Audio-frequency magnetotellurics with a grounded electric dipole source[J].Geophysics,1975,40(4):669-683.
    [106] KUZNETZOV A V.Distorting effects during electromagnetic sounding of horizontally non-uniform media using an artificial field source[J].Earth Physics,1982,18:130–137.
    [107] BOSTICK F X.Electromagnetic array profiling(EMAP) .Expanded abstracts.56th Annual International SEG Meeting and Exposition,1986:60-61.
    [108] BARTEL L C,JACOBSON R D.Results of a controlled-source audiofrequency magne- totelluric survey at the Puhimau thermal area,Kilauea Volcano,Hawaii[J].Geophysics,1987,52(5):665-677.
    [109] ZONGE K L,HUGHES L J.Controlled source audiofrequency magnetotellurics,in Nabighian,M N,Ed,Electromagnetic methods in applied geophysics:Society of Exploration Geophysicists,2:713–809.
    [110] BOSCHETTO N B,HOHMANN G W.Controlled-source audiofrequency magnetotelluric responses of three-dimensional bodies[J].Geophysics,1991,56(2):255-264.
    [111] KELLETT R,BISHOP J,REED E V.The effects of source polarization in CSAMT data over two massive sulfide deposits in Australia[J].Geophysics,1993,58(12):1764-1772.
    [112] YAN SHU,FU JUNMEI.An analytical method to estimate shadow and source overprint effects in CSAMT sounding[J].Geophysics,2004,69(1):161-163.
    [113] XU Y X,YUE R R.Preliminary understanding of near-field effect of CSAMT in electric azimuthally anisotropic half-space[J].Journal of Environmental and Engineering Geophysics,11(2):67-72.
    [114]陈明生,闫述.CSAMT勘探中场区、记录规则、阴影及场源复印效应的解析研究[J].地球物理学报,2005,48(4):951-958.
    [115]程铭宇.三维电性非均匀体上CSAMT畸变效应研究[D].北京:中国地质大学,2006.
    [116] CONSTABLE S,SRNKA L J.An introduction to marine controlled-source electro- magnetic methods for hydrocarbon exploration[J].Geophysics,2007,72(2):WA3–WA12.
    [117] KONG F N,JOHNSTAD S E,R?STEN T,et al.A 2.5D finite-element-modeling difference method for marine CSEM modeling in stratified anisotropic media[J]. Geophysics,2008,73(1):F9–F19.
    [118] LI YUGUO,KEY K.2D marine controlled-source electromagnetic modeling:Part 1-An adaptive finite-element algorithm[J].Geophysics,2007a,72(2):WA51–WA62.
    [119] LI YUGUO,CONSTABLE1 S.2D marine controlled-source electromagnetic modeling:Part 2-The effect of bathymetry[J].Geophysics,2007b,72(2):WA63–WA71.
    [120] UEDA T,ZHDANOV M S.Fast Numerical Modeling of Multitransmitter Electromagnetic Data Using Multigrid Quasi-Linear Approximation[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(6):1428-1434.
    [121]何展翔,孙卫斌,孔繁恕,王晓帆.海洋电磁法[J].石油地球物理勘探,2006,41(4):451-457.
    [122]何展翔,余刚.海洋电磁勘探技术及新进展勘探地球物理进展[J].2008,31(1):2-8.
    [123] HE ZHANXIANG,STRACK K,YU GANG,et al.On reservoir boundary detection with marine CSEM[J].Applied Geophysics,2008,5(3):181-188.
    [124]戴振铎,鲁述.电磁理论中的并矢格林函数.武汉:武汉大学出版社,2005.
    [125] CHEW W C.Waves and Fields in Inhomogeneous Media[M].New York:Van Nostrand Reinhold:1990.
    [126] MICHALSKI K A, MOSIG J R. Multilayered media Green’s functions in integral equation formulations[J]. IEEE Transactions on Antennas and Propagation, 1997,45(3):508-519.
    [127] SOMMERFELD A.Partial Differential Equations in Physics[M].New York:Academic,1949.
    [128] GHOSH D P.The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements[J].Geophysical Prospecting,1971,19:192-217.
    [129] JOHANSEN H K,SORENSEN K.Fast Hankel transforms[J].Geophysical Prospecting,1979,27(4):876-901.
    [130] KOEFOED O,GHOAH D P,et al.Computation of type curves for electromagnetic depth sounding with a horizontal transmitting coil by means of a digital linear filter[J].Geophysical Prospecting,1972,20(2):406-420.
    [131] ANDERSON W L.Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering[J].Geophysics,1979,44(7):1287-1305.
    [132] ANDERSON W L.Fast Hankel Transforms Using Related and Lagged Convolutions[J].ACM Transactions on Mathematical Software,1982,8(4):344-368.
    [133] YU TIEJUN,CAI W.High-order window functions and fast algorithms for calculating dyadic electromagnetic Green's functions in multilayered media[J].Radio Science,2001,36(4):559–569.
    [134] LUKE Y L.Integrals of Bessel Functions[M].New York : McGRAW-HILL Book Company,1962.
    [135] PATTERSON T N L.The Optimum Addition of Points to Quadrature Formulae[J].Mathematics of Computation,1968,22(104):847-856.
    [136] CHAVE A D.Numerical integration of related Hankel transforms by quadrature and continued fraction expansion[J].Geophysics,1983,48(12):1671-1686.
    [137] BAKER G A.Pade Approximants[M].Massachusetts : Addison-Wesley Publishing Company,1981.
    [138] HANGGI P,ROSEL F, TRAUTMANN D.Continued fraction expansions in scattering theory and statistical non-equilibrium mechanics[J].Z.Naturforsch,1978, 33a:402-417.
    [139] VAN DER VORST. BI-CGSTAB:a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems[J].SIAM Journal on Scientific and Statistical Computing,1992,13(2):631-644.
    [140] JENNINGS A著,胡冠章,戴一奇译.工程和科学的矩阵算法[M].北京:清华大学出版社,1985.
    [141] SANDBERG S K , HOHMANN G W.Controlled-source audiomagnetotellurics in geothermal exploration[J].Geophysics,1982,47(1):100-116.
    [142] GAO GUOZHONG,TORRES-VERDíN,FANG SHENG.Fast 3D modeling of borehole induction data in dipping and anisotropic formations using a novel approximation technique[J].Petrophysics,2004,45(4):335-349.
    [143] GLISSON A W,WILTON D R.Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surface[J].IEEE Transactions on Antennas and Propagation, 1980,AP-28(5):593-603.
    [144] RAO S M,WILTON D R,GLISSON A W.Electromagnetic scattering by surface of arbitrary shape[J].IEEE Transactions on Antennas and Propagation, 1982,AP-30(3):409-418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700