用户名: 密码: 验证码:
高粘附性能乳杆菌的筛选及其对肠上皮细胞粘附机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
益生菌是人体肠道内正常的生理性有益菌,是肠粘膜生物屏障的主要组成部分,进入肠道内的益生菌通过粘附定植于肠粘膜表面以保护肠粘膜上皮细胞免受各种病原微生物的损伤,所以益生菌在肠道内的粘附定植是其发挥生理作用的前提和基础,但是,目前对于益生菌粘附性能的检测还没有一个合适的实验方法;而且,益生菌的粘附性能具有菌株特异性,高粘附性能的模式菌株较少,有关粘附的生物学保护作用和粘附机制等研究尚缺乏系统性资料。因此,本研究通过优化体外粘附实验方法,对11株益生菌的粘附性能进行检测,筛选得到粘附性能较好的乳杆菌,以该菌株作为研究材料,对其粘附的生物学保护作用进行研究,并对其参与粘附的粘附素分子进行初步的提取和鉴定。方法:(1)以体外培养的肠上皮样细胞HT-29为模型,对影响益生菌体外粘附细胞的外部因素进行了探讨,通过优化的体外细胞粘附实验方法,对11株益生菌的粘附性能进行检测,并与放射性同位素标记法和粘蛋白的ELISA法进行比较。通过制备粘附性能较好菌株的多克隆抗体,采用改进的Carnoy固定液对肠粘膜组织标记进行固定,然后制备冰冻切片并进行免疫组化分析,建立乳杆菌体内粘附定植模型。(2)比较不同粘附性能的菌株对体外培养的HT-29细胞的保护作用。建立抗生素脱污染EPEC感染的小鼠模型,通过肠粘膜病理切片、肠道菌群分析以及细菌移位分析等,观察乳杆菌对肠粘膜屏障的保护作用。(3)对筛选得到的高低粘附力菌株的细菌表面成分和培养乏液进行酶、热、过碘酸钠等处理,以观察细菌表面成分和培养乏液对粘附的影响;采用溶菌酶、变溶菌素以及硫酸铵等对细菌胞壁表面蛋白和培养乏液中的蛋白进行提取,通过与HRP标记的粘蛋白受体和NHS-Biotin标记的HT-29进行杂交,对参与粘附的细菌胞壁表面蛋白和促粘附因子进行初步鉴定;通过制备细菌的多克隆抗体,筛选与HT-29细胞粘附的胞壁靶蛋白;并将粘附相关蛋白进行质谱分析。
     结果:(1)优化了体外粘附评价实验方法。pH值、孵育时间、菌液浓度以及菌的生长状态均可影响乳杆菌与HT-29细胞的粘附。优化其基本步骤为:采用培养14天后的肠上皮样细胞HT-29,与培养至稳定期的菌液浓度为1~2×10~8/ml益生菌(含益生菌的SCS),在37℃下共孵育60min,然后用灭菌的PBS洗涤细胞5次,甲醇固定20min,革兰氏染色,镜检计数。
     11株益生菌的粘附性能检测结果表明,乳杆菌属和双歧杆菌属的各种间不同菌株在体外对HT-29细胞的粘附能力相差很大,其中罗伊氏乳杆菌JCM1081的粘附指数为495.07±80.03,显著高于其它益生菌株;嗜酸乳杆菌La1.1878和长双歧杆菌B050102-14的粘附能力较弱,其粘附指数分别为135.43±13.93和47.17±5.84;制备了罗伊氏乳杆菌JCM1081的多克隆抗体,免疫组化分析表明,在小鼠肠组织中可见罗伊氏乳杆菌JCM1081在肠粘膜表面呈弥散状分布、定植,形成肠粘膜菌群生物屏障;
     (2)粘附性能较好的罗伊氏乳杆菌JCM1081在体外可抑制致病性大肠杆菌对肠上皮样细胞HT-29的粘附(28.1%)(P<0.01)和侵袭(23.9%)(P<0.01),粘附力较弱的嗜酸乳杆菌La1.1878对致病性大肠杆菌的粘附抑制率为12.4%(P<0.01),侵袭抑制率为7.5%(P<0.01)。抑菌实验结果显示,嗜酸乳杆菌La1.1878对EPEC的抑制作用显著高于罗伊氏乳杆菌JCM1081(P<0.01)。乳杆菌粘附肠上皮样细胞HT-29后,细胞结构正常,乳酸脱氢酶释放量和细胞活力无明显变化。不显著影响单层细胞的通透性和细胞微丝骨架F-actin。乳杆菌减弱了致病性大肠杆菌对肠上皮细胞样HT-29的损伤(P<0.05)。小鼠体内实验结果表明,灌胃乳杆菌的治疗组肠道菌群中双歧杆菌和乳杆菌的数量与致病性大肠杆菌感染的模型组相比,有显著增加(P<0.05);在肝、脾、肾等实质器官以及肠系膜淋巴结处发现有部分肠杆菌,但数量明显低于EPEC感染模型组(P<0.01)。
     (3)罗伊氏乳杆菌JCM1081菌体经胰蛋白酶、蛋白酶K处理后,其对HT-29细胞的粘附力显著下降(P<0.01);提取了罗伊氏乳杆菌JCM1081细胞壁表面蛋白,Westernblot结果显示29kD和14kD的两种蛋白与粘蛋白受体和HT-29细胞的杂交中都出现了强阳性;多抗鉴定结果显示,29kD的蛋白与罗伊氏乳杆菌JCM1081的多克隆抗体产生杂交阳性条带;将29kD的蛋白进行质谱分析后,结果表明,此蛋白与罗伊氏乳杆菌ATCC55730的lr0793蛋白的相似性高达71.1%,实际分子量为28519.54Da,有263个氨基酸,PI为9.78,属于ATP-Binding Cassette蛋白家族。采用相同的方法对其它8株乳杆菌的胞壁表面蛋白进行了鉴定,结果显示,其中,只有鼠李糖乳杆菌1.120存在29kD的杂交阳性条带,而嗜酸乳杆菌L050103-12存在43kD、63kD以及85kD的三种蛋白杂交阳性,在其它乳杆菌中未检测出杂交阳性条带。
     将罗伊氏乳杆菌JCM1081的培养乏液用PBS、新鲜的MRS替换,或经过胰蛋白酶或蛋白酶K处理,乳杆菌JCM1081对HT-29的粘附力显著下降(P<0.01);罗伊氏乳杆菌JCM1081的SCS不能促进低粘附力菌株嗜酸乳杆菌La1.1878对HT-29细胞的粘附;对JCM1081的SCS进行了蛋白提取,经初步提纯,SDS-PGAE和Western blol结果表明,在其SCS中存在一种29kD的小分子蛋白,与HRP标记的粘蛋白受体杂交可产生阳性。
     结论:
     1.细胞培养革兰氏染色法是一种有效的检测益生菌粘附性能的实验方法,它与放射性同位素法、荧光标记法以及活菌计数法相比较,具有操作简单,重复性好,实验结果稳定可靠等优点。
     2.乳杆菌属和双歧杆菌属的各种间不同菌株粘附能力相差很大,筛选了高粘附力菌株罗伊氏乳杆菌JCM1081,为研究乳杆菌的粘附保护作用及粘附机制提供了良好模式材料,同时也提供了一株高粘附性能的益生菌株。
     3.高粘附力菌株罗伊氏乳杆菌JCM1081对HT-29细胞具有粘附保护作用,其粘附性能的高低与生物保护作用的强弱具有一定相关性。乳杆菌JCM1081可抑制致病性大肠杆菌对肠上皮样细胞HT-29的粘附和侵袭,减弱了致病性大肠杆菌对肠上皮细胞样HT-29的损伤;罗伊氏乳杆菌JCM1081可粘附定植于肠粘膜,形成生物屏障,维持并保护肠粘膜的正常功能。
     4.JCM1081的粘附能力与其细胞壁表面的蛋白成分密切相关。分离纯化鉴定了其中的一种重要的参与其粘附的新蛋白成分,该蛋白分子量为29kDa,是其主要的粘附素分子之一;29kD蛋白与罗伊氏乳杆菌ATCC55730的lr0793蛋白相似性高达71.1%,有263个氨基酸,PI为9.78,属于ATP-Binding Cassette蛋白家族。其培养乏液中存在有29kD的促粘附因子,与胞壁表面29kD的粘附素蛋白可能为同一类物质。该结果提示29kD蛋白为一种分泌性蛋白,一部分分布于细胞壁表面,用于识别细胞膜表面的粘附素受体,另一部分则分泌至胞外培养乏液中,介导了菌体与细胞的粘附。29kD的粘附素蛋白在乳杆菌中并不是普遍存在的,不同种属的乳杆菌,其参与粘附的蛋白种类亦存在多样性。
Probiotics play an important role in controlling undesirable microflora in the gastrointestinal tract of humans and animals.They have been shown to possess inhibitory activity toward the growth of pathogenic bacteria.The characteristics of adhesion of probiotics to the intestinal mucosal surface are a critical prerequisite for exerting beneficial effect to their host organisms.But there have some difficulties involved in studying bacterial adhesion in vivo,especially in humans.To date,there have no a proper evaluation method for adhesion in vitro,and little is known about the mechanisms by which is might occour in the human gastrointestinal tract and these bacteria attach to the intestinal mucosa. Therefore,which have led to the development of in vitro model systems for the preliminary selection of potentially adherent strains,and to gain further understanding of the mechanisms by which lactobacilli adhere to human intestinal cells and investigate intestinal mucosal barrier to prevent the infection of the enteropathogenic bacteria.
     Methods:1.In vitro model of HT-29 cell culture was employed to investigate the influence of the pH,buffer,growth phase,incubation time and bacteria concentration on adherence of Lactobacillus.A critical validation of in vitro adhesion model was used to screen and assess adhesive properties of 11 strains of probiotics.Methods of radioactivity and ELISA of mucin were compared as complement.Anti-JCM1081 polyclonal antibodies were prepared by immunizing rabbit to investigate colonization of Lactobacillus JCM1081 on intestinal mucosa through frozen section and immunohistochemistry.2.Different adhesive properties of Lactobacillus strains were compared to investigate the beneficial effect on protection of intestinal epithelial cells.Antibiotics decontaminated and EPEC infected mice model was established and HE stained slide,gut microflora analysis and bacteria translocation were observed for intestinal mucosal changes.3.Lactobacillus with spent culture supernatant were subjected to various treatments including heat shock,trypsin, pronase and chemical products to study on factors involved in adherence.Extraction of the cell wall surface proteins with lysozyme and mutanolysin were performed and spent culture supernatant was fractionated by ammonium sulfate precipitation.The proteins which associated with adhesion of Lactobacillus to HT-29 and mucin were dectected in the fractions by SDS-PAGE and Western blotting with horseradish peroxidase labeled mucin and NHS-Biotin labeled HT-29 cells and the adhesin of Lactobacilli were dectected in Western blotting with Anti-JCM1081 polyclonal antibodies.The proteins which asscoiated with adhesion of Lactobacillus to HT-29 cells were purified to mass spectrographic analysis.
     Results:1.An evaluation method for adhesion was optimized.The pH,bacteria concentration and incubation time,growth phase of Lactobacilli have influence on adhesion of Lactobacilli to HT-29 cells.In general,the adhesion approach was optimized,and the procedure is that the HT-29 monolayers which cultured at post confluence after 15d were washed twice with PBS,1 ml 1~2×10~8 bacteria(with spent culture supernatant) suspension was mixed with DMEM and then incubated at 37℃in 10%CO_2/90%air.After incubation, the monolayers were washed five times with sterile PBS,fixed with methanol, Gram-stained,and examined microscopically.
     Eleven strains were examined for their ability to adhere to cultured HT-29 cells by Gram stain and radioactivity methods.The ability of the Lactobacilli and Bifidobacteria to adhere to the HT-29 cells in vitro varied considerably between different strains.High attachment was observed with the chicken intestinal tract isolate Lactobacillus reuteri JCM1081(495.07±80.03)while low attachment showed in Lactobacillus acidphilus 1.1878(135.43±13.93)and Bifidobacterium longum B050102-14(47.17±5.84).Lactobacillus reuteri JCM1081 was appeared on the intestinal mucosa surface diffusely.
     2.High adhesiveness strain Lactobacillus reuteri JCM1081 inhibit enteropathogenic Escherichia coli adhere to enterocyte-like cells and also reduce the invasiveness and enhance the integrity of the cells.The spent culture supernatant of the Lactobacillus acidphilus 1.1878 produces an antibacterial activity against enteropathogenic Escherichia coli.In vitro,no significant changes of the morphology,structure and function of the HT-29 cells were found after being treated with Lactobacilli for 3 hours,especially cellular LDH level,activity and permeability.Lactobacillus reuteri JCM1081 did not alter cell integrity and prevented the increase in permeability induced by enteropathogenic Escherichia coli infection.The distribution of F-actin was also not altered.In contrary,after HT-29 cells being infected by enteropathogenic Escherichia coli in vitro for 3 hours,the cellular activity decreased,the permeability of single layer cell increased and the distribution of F-actin were sparse or dot dome.The group of co-incubation showed that the degree of cell injury was less than the group of enteropathogenic Escherchia coli infection.The results showed that after de-contaminated and EPEC infected,Enterobacteria increased significantly,but anaerobic bacterial such as Bifidobacteria and Lactobacilli decreased and the ratio of anaerobes to aerobes declined,which lead to dysbiosis.The degree of dysbiosis in Lactobacillus feeding group was much less than that in non-feeding group,as well as the rate of organ bacteria count.
     3.Adherence of Lactobacillus reuteri JCM1081 and Lactobacillus acidphilus 1.1878 cells were significantly reduced by treatment with trypsin and protease.Which indicated that the adhesion of Lactobacillus to HT-29 cells appeared to be mediated by a cell surface component,and the cell surface determinant of the strain appeared to be proteinaceous. Extraction of the cell surface proteins with different solutions,were analyzed on SDS-PAGE and Western blotting with HRP-mucin and NHS-biotin labeled HT-29 cells. The strongest-reacting band that bound mucin and HT-29 cells yielded 14kD and 29kD subunit.The proteins which extracted from cell surface of Lactobacillus reuteri JCM1081 were performed to adhere to HT-29 cells,and elutes were analyzed on SDS-PAGE and Western blotting with anti-JCM1081 polyclonal antibodies.There have only one strongest-reacting band which yielded 29kD submit.The 29kD protein was purified and analyzed by mass spectrography,the results indicated that high degree similarities between 29kD protein from Lactobacillus reuteri JCM1081 and the protein lr0793 of Lacobacillus reuteri ATCC55730 strain(approx 71.1%identity) were confirmed.Which belong to the putative ATP-Binding Cassette transportor proteins superfamily.
     A highly significant loss of adhesion was observed when the spent culture supernatant of Lactobacillus reuteri JCM1081 was discarded or when it was replaced by fresh MRS culture medium.These results strongly suggest that a secretory component in the spent culture supernatant was involved in adhesion of Lactobacillus reuteri JCM1081.Treatment of the spent culture supernatant with trypsin or protease almost totally abolished the adhesiveness of Lactobacillus reuteri JCM1081.The SCS of Lactobacillus reuteri JCM1081 has no adhesion promoting effect on Lactobacillus acidphilus 1.1878.Extraction of promoting adhesion protein in spent culture supernatant of Lactobacillus reuteri JCM1081 with ammonium sulfate precipitation.These fractions were analyzed by SDS-PAGE and Western blotting with HRP-mucin.The reacting 29kD protein was found in them.
     Conclusion:
     1.An optimized Gram-stained method could be regarded as effective method to evaluate the adhesive ability of probiotics in vitro.
     2.The ability of the probiotics to adhere to the HT-29 cells in vitro varied considerably between strains and genus.Lactobacillus reuteri JCM1081 have a good ability to adhere to HT-29 cells and could colonize in intestinal mucosa of mice.
     3.Lactobacillus reuteri JCM1081 could protect HT-29 cells by its adhesive abilities which relates to its effectiveness.Lactobacillus reuteri JCM1081 interact with intestinal epithelial cell receptor to Competitively inhibit the adhesion and invasion of enteropathogenic Escherichia coli to HT-29 cells by incubation.Lactobacillus reuteri JCM1081 have ability to adhere and colonize to intestinal mucosa and form biologic barrier to enhance host resistance against enteropathogenic Escherichia coli infection.
     4.The adhesion of Lactobacillus reuteri JCM1081 to HT-29 cells appeared to be mediated by two components:a cell surface component and extracellular factor.The cell surface determinant of Lactobacillus reuteri JCM1081 appeared to be proteinaceous,and relative molecular mass which are 14kD and 29kD might be involved in adhesion of Lactobacillus to HT-29 cells.29kD protein could be adhesin of Lactobacillus reuteri JCM1081,which have high degree similarities with the protein lr0793 of Lacobacillus reuteri ATCC55730 strain(approx 71.1%identity) and belong to the putative ATP-Binding Cassette transportor proteins superfamily.A secretory proteinaceous component in the spent culture supernatant with relative molecular mass 29kD was considered to involve in adhesion of the Lactobacillus reutri JCM1081 too.The adhesion of strain JCM1081 was mediated by 29kD protein of bacteria secreted in the spent culture supernatant.
引文
1.郭兴华,益生菌基础与应用,北京科学技术出版社,2002年,第一版
    2.康白,微生态学原理,大连出版社,2002年,第二版.
    3.郭本桓,益生菌,化学工作出版社,2004年,第一版
    4.Elina M,Tuomola L,Salminen S J.Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures.International Journal of Food Microbiology,1998,41:45-51.
    5.Chauviere G,Coconnier MH,Servin AL et al.Adherence of human Lactobacillus acidophilus onto human enterocyte-like cells,Caco-2 and HT-29 in culture.J Gen Microbiol,1992,138:1689-96.
    6.Ouwehand A.C.Kirjavainen P.V.GroK M.-M.et al.Adhesion of probiotic micro-organisms to intestinal mucus.International Dairy Journal.1999,9,623-630
    7.Pirkka V.Kirjavainen a,Arthur C.Ouwehand a,Erika Isolauri.The ability of probiotic bacteria to bind to human intestinal mucus.FEMS Microbiology Letters 1998,167:185-189
    8.Arthur C.Ouwehand,Elina M.Tuomola,Satu Tolkko,Seppo Salminen.Assessment of adhesion properties of novel probiotic strains to human intestinal mucus.International Journal of Food Microbiology.2001,64:119-126
    9.熊德鑫,祝小枫,盛志勇,几种活菌的定植性研究。中国微生态学杂志,1995,7:8-11
    10.Gotteland M,Cruchet S,Verbeke S.Effect of Lactobacillus ingestion on the gastrointestinal mucosal barrier alterations induced by indometacin in humans.Aliment Pharmacol Ther 2001;15:11-17.
    11.Johansson ML,Molin G,Jeppsson B,Nobaek S,Ahme" S,Bengmark S:Administration of different Lactobacillus strains in fermented oatmeal soup;in vivo colonization of human intestinal mucosa and effect on the indigenous flora.Appl Environ Microbiol.1993,59:15-20.
    12.Shornikova AV,Casas IA,Mykkanen H,et al.Bacteriotherapy with Lactobacillus reuteri in rotavirus gastroenteritis.Pediatr Infect Dis J 1997,16:1103-7
    13. Op den Camp HJM, Oosterhof A, Veerkamp JH. Interaction of bifidobacteria lipoteichoic acid with human intestinal epithelial cells. Infect Immun, 1985, 47: 332-334.
    14. Granato D, Perotti F, Masserey I et al. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacilus johnsonni La1 to human enterocyte-like Caco-2 cells. Applied and Enviromental Microbiology, 1999, 65: 1071-1077.
    15. Jeffrey D.G, Klaenhammer T.R, Factors involved in adherence of Lactobacilli to human Caco-2 cells. Applied and Environmental Microbiology, 1994, 60: 4487-4494.
    16. Schneitz, C, L. Nuotio, and K. Lounatmaa. Adhesion of Lactobacillus acidophilus to avian intestinal epithelial cells mediated by the crystalline bacterial cell surface layer (S-layer). J. Appl. Bacteriol. 1992, 74:290-299
    17. Kos B, Suskovic J, Vukovic S et al. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. Journal of Applied Microbiology. 2003, 94: 981-987.
    18. Louis D.R, Francine A, Karine B et al. Characterization of binding of Candida albicans to small intestinal mucin and its role in adherence to mucosal epithelial cells. Infection and Immunity, 2000, 68:3172-3179.
    19. Matsuo K, Ota H, Akamatsu T et al. Histochemistry of the surface mucous gel layer of the human colon. Gut, 1997, 40: 782-789.
    20. Mattila S,T., Matto J, Saarela M. Lactic acid bacteria with health claims—interactions and interference with gastrointestinal flora, Int. Dairy J. 1999,9: 25-35
    21. E. Tuomola, R. Crittenden, M. Playne, E. Isolauri, S. Salminen, Quality assurance criteria for probiotic bacteria, Am. J. Clin. Nutr. 2001, 73: 393S-398S
    22. Sarem-Damerdji, LO, Sarem F, Marchal L et al. In vitro colonization ability of human colon mucosa by exogenous Lactobacillus strains. FEMS Microbiology Letters. 1995, 131: 133-137
    23. Satu Vesterlund, Johanna Paltta , Matti Karp et al. Adhesion of bacteria to resected human colonic tissue:Quantitative analysis of bacterial adhesion and viability. Research in Microbiology, 2004, 23: 1-7.
    24. Arthur C. Ouwehand, Seppo Salminen et al. Resected Human Colonic Tissue: New Model for Characterizing Adhesion of Lactic Acid Bacteria. Clinical and Diagnostic Laboratory Immunology, 2002, 9: 184-186.
    25. Kimoto.H, J. Kurisaki, N.M. Tsuji et al. Lactococci as probiotic strains: adhesion to human enterocyte-like Caco-2 cells and tolerance to low pH and bile. Letters in Applied Microbiology, 1999, 29: 313-316
    26. Fogh J, Fogh JM, Orfeo T. One hundred and twenty seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst, 1977, 59:221-6
    27. Pinto M, Robine LS, Appay MD, et al. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line CaCo-2 in culture. Biol Cell, 1983,47:323-30.
    28. Lesuffleur T, Barbat A, Dussaulx E, et al. Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar aborptive and mucus-secreting cells. Cancer Res, 1990, 50: 6334-43.
    29. Blum S, Reniero R, Schiffrin E,J. Adhesion studies for probiotics need for validation and refinement. Trends in Food Science and Technology. 1999, 10: 405-410.
    30. Kerneis S, Blige S, Fourel V et al. Use of purified F1845 fimbrial adhesin to study localization and expression of receptors for diffusely adhering Escherichia coli (DAEC) during enterocytic differentiation of human colon carcinoma cell lines HT-29 and Caco-2 in culture. Infection and Immunity, 1991, 59: 4013-4018.
    31. Bianchi M.A, Del Rio1.D, Pellegrini.N. Fluorescence-based method for the detection of adhesive properties of lactic acid bacteria to Caco-2 cells. Letters in Applied Microbiology, 2004, 39: 301-305.
    32. Satu Vesterlund, Johanna Paltta, Matti Karp et al. Measurement of bacterial adhesion-in vitro evaluation of different methods. Journal of Microbiology Methods, 2005, 60: 225-233.
    33. Gwenaelle LB, Ismail Fliss, Christophe Lacroix. Comparative detection of bacterial adhesion to Caco-2 cells with ELISA, radioactivity and plate count methods. Journal of Microbiology Methods, 2004, 59: 211-221.
    34. Savage D.C, Mechanism by which indigenous microorganisms colonize gastrointestinal epithelial surfaces. Prog Food Nutr Sci, 1983, 7: 65-74.
    35.Cordield A.P,Myerscough N,Longman R et al.Mucins and mucosal protection in the gastrointestinal tract:new prospects for mucins in the pathology of gastrointestinal disease.Gut,2000,47:589-594.
    36.Hidaka E,Ota H,Hidaka H et al.Helicobacter pylori and two ultrastructurally distinct layers of gastric mucous cell mucins in the surface mucous gel layer.Gut,2001,49:474-480.
    37.Toumola E.M,Ouwehand A.C,Salminen S.J.Human ileostomy glycoproteins as a model for small intestinal mucus to investigate adhesion of probiotics.Letters in Applied Microbiology,1999,28:159-163.
    38.Kirjavainen P.V,Ouwehand A.C,Isolauri E.The ability ofprobiotic bacteria to bind to human intestinal mucus.FEMS Microbiology Letters.1998,167:185-189.
    39.熊德鑫,祝小枫,盛志勇等,丽珠肠乐活菌的定植性研究.中国微生态学杂志,1994,6:7-10
    40.闫述翠,万阜昌,蒲春晓等,酪酸梭菌在小鼠体内的动态变化研究.中国新药杂志,2002,4:325-326
    41.Harmsen H.J.M,Gibson G.R.,Elierich P et al.Comparison of viable cell counts and fluorescence in situ hybridization using specific rRNA-based probes for the quantification of human fecal bacteria.FEMS Microbiology Letters.1999,183:125-129.
    42.Michael Hogardt,Karlheinz Trebesius,Anna Met al.Specific and Rapid Detection by Fluorescent In Situ Hybridization of Bacteria in Clinical Samples Obtained from Cystic Fibrosis Patients.Journal of Clinical Microbiology,2000,38:818-825
    43.Hautefort I,Roels A,Tailliez P et al.Selection of Lactobacillus fermentum strains able to durably colonize the digestive tract of mice harboring a complex human flora.FEMS Microbiology Ecology 1999,29:23-31.
    44.Coconnier MH,Bernet MF,Chauviere G,et al.Adhering heat-killed human Lactobacillus acidophilus strain LB inhibits the process of pathogenicity of diarrhoeagenic bacteria in cultured human intestinal cells.J Diarrhoeal Dis Res,1993,11(4):235-242
    45.Bernet MF,Brassart D,Neeser JR,et al.Lactobacillus acidophilus LA1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut, 1994,35:483-489.
    46. Marie Francoise Bernet, Dominique Brassart, Alainl Servin et al. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interaction. Applied Environment Microbiology, 1993, 59: 4121-4128.
    47. Todoriki K, Mukai T, Sato S et al. Inhibition of adhesion of food-borne pathogens to Caco-2 cells by Lactobacillus strains. Journal of Applied Microbiology, 2001, 91, 154-159.
    48. Elina M.L, Seppo J. Salminen. Inhibition of Salmonella typhimurium adhesion to Caco-2 cell cultures by Lactobacillus strain GG spent culture supernate: only a pH effect? FEMS Immunology and Medical Microbiology, 1997, 18: 125-132.
    49. Pramod K.Gopal, Jaya Prasad, John Smart et al. In vitro adherence proterities of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. International Journal of Food Microbiology, 2001, 67: 207-216.
    50. Takao M, Tomoko A, Eri S, et al. Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri. FEMS Immunology and Medical Microbiology. 2002, 32: 105-110
    51. Jacobsen, C.N,.Rosenfeldt V. Hayford A.E et al. Screening of probiotic activities of forty-seven strains of Lactobacillus spp by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Applied Environment Microbiology, 1999, 65: 4949-4956.
    52.赵瑞香.嗜酸乳杆菌抑菌特性的研究.中国微生态杂志,2001,12(13):318-319.
    
    53. Marie Francoise, Bernet C, Vanessa L et al.The human Lactobacillus strain LA1 secretes a nonbacteriocin antibacterial substance active in vitro and in vivo. Applied Environment Microbiology, 1997, 63:2747-2753.
    54. Coconnier MH, Lievin V, Marie Francoise et al. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB. Applied Environment Microbiology, 1997,41: 1046-1052.
    55.Shigeru Fujiwara,Honoo Hashiba,Tetsuji Hirota et al.Inhibition of the binding of enterotoxigenic Escherichia coli Pb176 to human intestinal epithelial cell line HCT-8by an extracelluar protein fraction containing BIF of Bifidobacterium longum SBT2928:suggestive evidence of blocking of the binding receptor gangliotetraosylceramide on the cell surface.International Journal of Food Microbiology,2001,67:97-106.
    56.Shigeru Fujiwara,Honoo Hashiba,Tetsuji Hirota et al.Proteinaceous factors in culture supertanant fulids of Bifidobacteria which prevents the binding of enterotoxigenic Escherichia coli to gangliotetraosylceramide.Applied Environment Microbiology,1997,63:506-512.
    57.郑跃杰,潘令嘉,王立生,周殿元等.双歧杆菌粘附素的提纯与鉴定.世界华人消化杂志.2002,10:1149-1151.
    58.Shi-Shun Zhong,Zhen-Shu Zhang,Ji-De Zhang et al.Competitive inhibition of adherence of enterotoxigenic Escherichia coli,enteropathogenic Escherichia coli and Clostridium difficile to intestinal epithelial cell line Lovo by purified adhesin of Bifidobacterium adolescentis 1027.World J Gastroenterology,2004,10:1630-1633.
    59.Christine Heinemann,Johan E.T,Dick B.Janssen et al.Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131.FEMS Microbiology Letters,2000,190:177-180.
    60.Elizabeth L.Hartland,Miranda Batchelor,Robin M.Delahay,et al.Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells.Molecular Microbiology,1999,32:151-158.
    61.叶桂安,杨希山,郑跃杰,双歧杆菌粘附体外肠上皮细胞的钙信号传递的研究.中国微生态学杂志.1997,19:1-3
    62.Lievin-Le Moal,R Amsellem,A L Servin and M-H Coconnier.Lactobacillus acidophilus(strain LB) from the resident adult human gastrointestinal microflora exerts activity against brush border damage promoted by a diarrhoeagenic Escherichia coli in human enterocyte-like cells.Gut.2002,50:803-811.
    63.Coconnier M.H,Lievin-Le Moal,A L Servin,et al.Antagonistic activity of Lactobacillus acidophilus LB against intracellular Salmonella enterica Serovar Typhimurium infecting human enterocyte-like Caco-2/TC-7 cells. Applied And Enviromental Microbiology, 2000, 66: 1152-1157.
    64. Savage DC. Microbial ecology of the gastrointestinal tract. Ann Rev Microbiol, 1977, 31:107-110.
    65. Lora V, Hooper, Jeffrey L. Gordon et al. Commensal host-bacterial relationships in the gut. Science, 2001,292: 1115-1118.
    66. Bengmark S. Ecological control of the gastrointestinal tract, the role of probiotic flora. Gut 1998, 42: 2-7.
    67. Rodney D Breg. The indigenous gastrointestinal microflora. Trends in Microbiology, 1996,4:430-435
    68. Jean Pierre Kraehenbuhl, Max Corbett. Keeping the gut microflora at bay. Science, 2004,303: 1624-1626.
    69. Michael S.G, Joseph J. Ferretti. The thin line between gut commensal and pathogen. Science, 2003, 299: 1999-2002
    70. Andrew J.M, Dominique Gatto, Elizabeth Sainsbury et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science, 2000, 288: 2222-2226.
    71. Andrew J.M, Therese Uhr. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science, 2004, 303: 1662-1665.
    72. Andrew S. Neish. The gut microflora and intestinal epithelial cells: a continuing dialogue. Microbes and Infection, 2002, 4: 309-317.
    73. Hudault S. Guignot, A.L Servin. Escherichia coli strains colonizing the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection. Gut, 2001, 49: 47-55.
    74. Garcia-Lafuente A, Antolin M, Guarner F et al, Modulation of colonic barrier function by the composition of the commensal flora in the rat. Gut. 2001, 48: 503-507.
    75. Batt RM, Hall EJ, McLean L, Simpson KW. Small intestinal bacterial overgrowth and enhanced intestinal permeability in healthy beagles. Am J Vet Res 1992; 53: 1935-1940.
    76. Pessi T, SuE tas Y, Martinnen A, Isolauri E. Probiotics reinforce mucosal degradation of antigens in rats: implications for therapeutic use of probiotics. J Nutr 1998; 128: 2313-2318.
    77. Salminen S, Isolauri E, Salminen E. Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and futures challenges Ant Van Leeuw 1996; 70: 347-358.
    78. Mack Dr Michael S, Wei S, McDougall L, Hollingsworth MA. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol, 1999; 276: G941-950.
    79. Kabir AM, Aiba Y, Takagi A, Kamiya S, Miwa Koga Y. Prevention of Helicobacter pylori infection by Lactobacilli in a gnotobiotic murine model. Gut 1997; 41: 49-55.
    80. Michetti P, Dorta G, Wiesel PH, et al. Effect of whey-based culture supernatant of Lactobacillus acidophillus (johnsonii) La1 on Helicobacter pylori infection in humans. Digestion, 1999; 60: 203-209
    81. Mack DR, Michail S, Wei S, et al. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 1999, 276:G941-950
    82. Shornikova AV, Casas IA, Isolauri E, et al. Lactobacillus reuteri as a therapeutic agent in acute diarrhea in young children. J Pediatr Gastroenterol Nutr 1997, 24:399-404
    83. Aleljung P, Shen W, Rozalska B, et al. Purification of collagen-binding proteins of Lactobacillus reuteri NCIB11951. Current Microbiology, 1994, 28: 231-236
    84. Maurilia R, Ascencio F, Conway P. Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl Environ Microbiol, 2002, 68: 2330-2336
    85. Sutcliffe I, Hogg SD. Extraction of lipoteichoic acid from Streptococcus mutans with the nonionic detergent TritonX-114.J Microbiol.Meth, 1993,17(3):215-225.
    86. Beachey E.H, Giampapa C.S, Abraham S.N. Bacterial adherence: adhesin receptor-mediated attachment of pathogenic bacteria to mucosal surfaces. 1988. Am. Rev. Respir. Dis. 138:6-8.
    87. Teti, G, Chiofalo M.S, Tomadello F et al. Mediation of Staphylococcus saprophyticus adherence to uroepithelial cells by lipoteichoic acid. Infect Immun, 1987, 55:839-842
    88.邓一平,王跃,胡宏.双歧杆菌及表面分子对胃粘膜糖蛋白的粘附作用.中国微生态学杂志.2000,12(4):193-196.
    89.Sanna E,Benita Westerlund-Wikstrom,Susanna L et al.In Vitro Adhesion Specificity of Indigenous Lactobacilli within the Avian Intestinal Tract.,Appl Environ Microbiol,2002,68(10):5155-5159
    90.Neutra M.R,Forstner J.F,Gastrointestinal mucus:synthesis,secretion and function.1987,Physiology of gastrointestinal tract,2nd,Raven Press,New York,p975-1009.
    91.Umadevi S,Forstner J.F Characteristics of binding of Escherichia coli serotype O157:H7 strain CL-49 to purified intestinal mucin.Infection and Immunity,1990,58:860-867.
    92.汪家政,范明,蛋白质技术手册,科学出版社,2002
    93.郭尧君,蛋白质电泳实验技术,科学出版社,2002
    94.Klebe,R.J.,J.R.Hall,S.L.Naylor,and W.D.Dickey.1978.Bioautography of cell attachment proteins.Exp.Cell Res.115:73-78.
    95.Edward G,Hayman,Evaengvall.Cell Attachment on Replicas of SDS Polyacrylamide Gels Reveals Two Adhesive Plasma Proteins.The Journal of Cell Biology,1982,95:20-23
    96.Bowen B,Steinberg U.K,Laemmli et al.The detection of DNA-binding proteins by protein blotting.Nuc Acids Res,1980,8:1-20.
    97.Roheringer R,Holden D.W,Binding of 16S rRNA to chloroplast 30S ribosomal proteins blotted on nitrocellulose,Nuc Acids Res,1984,12:7293-7304
    98.Hawkes R,Identification of concanavalin A-binding proteins after sodium dodecyl sulfate-gel electrophoresis and protein blotting.Anal Biochem,1982,123:143-146.
    99.Gershoni J.M,Palade G.E,Protein blotting:principles and application.Anal Biochem,1982,131:1-15.
    100.Co,M.S,Gaulton G.N,Fields B.N et al.Isolation and biochemical characterization of the mammalian reovirus type 3 cell surface receptor.Proc Natl Acad Sci,1985,82:1494-1498.
    101.Bell M.L,and E.Engvall.The specific detection of collagenous proteins after electrophoresis using enzyme-conjugated collagen-binding fibrunectin fragments.Anal, Biochem
    102.Pierschbacher, M. D., E, G. Hayman, and E. guoslahti. 1981. Location of the cell attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule. Cell. 26:259-267.
    103.Graciela L, Maria I.T, Graciela F.V et al. Lactobacilli express cell surface proteins which mediate binding of immobilized collagen and fibronectin. FEMS Microbiology Letters, 2002, 206:31-37.
    104. Dominique G, Gabriela E, Raymond DP, et al. Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533(La1) to human intestinal cells and mucins. Infection and Immunity, 2004, 72: 2160-2169
    105.Benet MFL Brassart D; Neesr JR; et al . Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut.1994 , 35:483-9.
    106. Coconnier MH, Klaenhammer TR, Kerneis S, et al. Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human entercyte and mucus-secreting cell lines in culture. Appl Environ Microbiol, 1992, 58:2034-9.
    107.Conway, P.L, Kjelleberg S. Protein-mediated adhesion of Lactobacillus fermentum strain 727 to mouse stomach squamous epithelium. Journal of General Microbiology, 1990,135: 1175-1186.
    1.Lora V,Hooper,Jeffrey L.Gordon et al.Commensal host-bacterial relationships in the gut.Science,2001,292:1115-1118.
    2.Bengmark S.Ecological control of the gastrointestinal tract,the role of probiotic flora.Gut 1998,42:2-7.
    3.Pinto M,Robine LS,Appay MD,et al.Enterocyte-like differentiation and polarization of the human colon carcinoma cell line CaCo-2 in culture.Biol Cell,1983,47:323-30.
    4.Lesuffleur T,Barbat A,Dussaulx E,et al.Growth adaptation to methotrexate of HT-29human colon carcinoma cells is associated with their ability to differentiate into columnar aborptive and mucus-secreting cells.Cancer Res,1990,50:6334-43.
    5.Coconnier MH,Bernet MF,Chauviere G,et al.Adhering heat-killed human Lactobacillus acidophilus strain LB inhibits the process of pathogenicity of diarrhoeagenic bacteria in cultured human intestinal cells.J Diarrhoeal Dis Res,1993,11(4):235-242.
    6.Elina M,Tuomola L,Salminen S J.Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures.International Journal of Food Microbiology,1998,41:45-51.
    7.Chauviere G,Coconnier MH,Servin AL et al.Adherence of human Lactobacillus acidophilus onto human enterocyte-like cells,Caco-2 and HT-29 in culture.J Gen Microbiol,1992,138:1689-96.
    8.Sutcliffe I,Hogg SD.Extraction of lipoteichoic acid from Streptococcus mutans with the nonionic detergent TritonX-114.J Microbiol.Meth,1993,17(3):215-225.
    9.Beachey E.H,Giampapa,C.S,Abraham S.N.Bacterial adherence:adhesin receptor-mediated attachment of pathogenic bacteria to mucosal surfaces.1988.Am.Rev.Respir.Dis.138:6-8.
    10.Teti,G,Chiofalo M.S,Tomadello F et al.Mediation of Staphylococcus saprophyticus adherence to uroepithelial cells by lipoteichoic acid.Infect Immun,1987,55:839-842.
    11.Op den Camp HJM,Oosterhof A,Veerkamp JH.Interaction of bifidobacteria.lipoteichoic acid with human intestinal epithelial cells.Infect Immun,1985,47:332-334.
    12.Granato D,Perotti F,Masserey I et al.Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacilus johnsonni Lal to human enterocyte-like Caco-2 cells.Applied and Enviromental Microbiology,1999,65:1071-1077.
    13.邓一平,王跃,胡宏.双歧杆菌及表面分子对胃粘膜糖蛋白的粘附作用.中国微生态学杂志.2000,12(4):193-196.
    14.Bernet MF,Brassart D,Neeser JR,et al.Adhesion of human bifidobacteria strains to cultured human intestinal epithelial cells and inhibition of enteropathogen cell interactions,Applied and Enviromental Microbiology,1993,59:4121-4128.
    15.Coconnier MH,Klaenhammer TR,Kerneis S,et al.Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human entercyte and mucus-secreting cell lines in culture.Appl Environ Microbiol,1992,58:2034-9.
    16.郑跃杰,潘令嘉,王立生,周殿元等.双歧杆菌粘附素的提纯与鉴定.世界华人消化杂志.2002,10:1149-1151.
    
    17. Fujiwara S, Hashiba H, Hirota T, Forstner JF. Purification and characterization of a novel protein produced by Bifidobacterium longum SBT2928 that inhibits the binding of enterotoxigenic Escherichia coli Pb176 (CFA/II) to gangliotetraosylceramide. J Appl Microbiol 1999, 86:615-621
    18. Shigeru Fujiwara, Honoo Hashiba, Tetsuji Hirota et al. Inhibition of the binding of enterotoxigenic Escherichia coli Pb176 to human intestinal epithelial cell line HCT-8 by an extracelluar protein fraction containing BIF of Bifidobacterium longum SBT2928: suggestive evidence of blocking of the binding receptor gangliotetraosylceramide on the cell surface. International Journal of Food Microbiology, 2001, 67:97-106.
    19. Schneitz C, Nuotio L, Lounatma K. Adhesion of Lactobacillus acidophilus to avian intestinal epithelial cells mediated by the crystalline bacterial cell surface layer (S-layer). J Appl Bacteriol. 1993, 74: 290-4.
    20. Toba T, Virkola R, Westerlund B, et al. A Collagen-Binding S-Layer Protein in Lactobacillus crispatus. Appl Environ Microbiol, 1995, 61: 2467-2471
    21. Jouko S, Beatriz M, Jenni A, et al. Characterization of the collagen-binding S-layer protein CbsA of Lactobacilus crispatus. Journal of Bacteriology, 2000, 182: 6440-6450.
    22. Beatriz M, Jouko S, Egbert S, et al. Expression of cbsA encoding the collagen-binding S protein of Lactobacillus crispatus JCM5810 in Lactobacillus casei ATCC 393~T. Journal of Bacteriology, 2000, 182: 6857-6861
    23. Silja AJ, Agneta L, Airi P. Surface display of receptor-binding region of the Lactobacillus brevis S layer protein in Lactococcus lactis provides nonadhesive Lactococci with the ability to adhere to intestinal epithelial cells. Appl Environ Microbiol, 2003, 69: 2230-2236
    24. Aleljung P, Shen W, Rozalska B, et al. Purification of collagen-binding proteins of Lactobacillus reuteri NCIB11951. Current Microbiology, 1994, 28: 231-236
    25. Maurilia R, Ascencio F, Conway P. Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin.Appl Environ Microbiol,2002,68:2330-2336
    26.Dominique G,Gabriela E,Raymond DP,et al.Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533(Lal) to human intestinal cells and mucins.Infection and Immunity,2004,72:2160-2169.
    27.Takao M,Tomoko A,Eri S,et al.Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri.FEMS Immunology and Medical Microbiology.2002,32:105-110
    28.郑跃杰,潘令嘉,叶桂安,周殿元,双歧杆菌粘附素受体的初步观察.中国微生态学杂志.1997,9:16-17.
    29.Coconnier MH,Bernet MF,Chauviere G,et al.Adhering heat-killed human Lactobacillus acidophilus strain LB inhibits the process of pathogenicity of diarrhoeagenic bacteria in cultured human intestinal cells.J Diarrhoeal Dis Res,1993,11(4):235-242.
    30.Bernet MF,Brassart D,Neeser JR,et al.Lactobacillus acidophilus LA1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria.Gut,1994,35:483-489.
    31.叶桂安,杨希山,郑跃杰,双歧杆菌粘附体外肠上皮细胞的钙信号传递的研究.中国微生态学杂志.1997,19:1-3
    32.Lievin-Le Moal,R Amsellem,A L Servin and M-H Coconnier.Lactobacillus acidophilus(strain LB) from the resident adult human gastrointestinal microflora exerts activity against brush border damage promoted by a diarrhoeagenic Escherichia coli in human enterocyte-like cells.Gut.2002,50:803-811.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700