用户名: 密码: 验证码:
白念珠菌耐药相关蛋白Rta2p生物活性位点的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着器官移植后免疫抑制剂的使用,广谱抗生素的大量使用,系统性真菌感染的发生率急剧升高,尤其以白念珠菌感染最为普遍、严重。开展以深部真菌感染主要病原菌白念珠菌为代表的真菌耐药机制研究,寻找新的抗真菌药物作用靶点,对于创建抗真菌药物筛选新模型,设计开发新型抗真菌药物,从而克服真菌感染及其耐药性,防治日益严重的深部真菌感染具有重要意义。
     本实验室前期研究发现了新的耐药基因RTA2,并已证明钙离子通过钙调神经磷酸酶通路上调RTA2基因的表达,其编码蛋白Rta2p是白念珠菌鞘脂成分的异位酶,定位于细胞膜脂筏,能将细胞膜内侧鞘脂骨架成分--长链碱转运至细胞膜外侧,从而调节细胞膜内外两侧的鞘脂成分分布,增强脂筏的稳定性。因此,本课题通过进一步研究Rta2p蛋白的结构与功能关系,发现一些与钙调神经磷酸酶通路、与长链碱结合转运相关的生物学活性位点,将会对白念珠菌耐药性形成的分子机制,发现新的抗真菌药物靶标,设计新型抗真菌抑制剂奠定理论基础。
     通过白念珠菌基因组数据库和酿酒酵母基因组数据库比对分析发现4个同源蛋白(Rsb1p,Yer185w,Rta1p,Ylr046c);其中Rta2p和Rsb1p具有长链碱二氢鞘氨醇转运活性,其他同源蛋白为七次跨膜的膜蛋白,并且均为脂质转运蛋白家族的成员。通过Blast比对,找出了跨膜区中的保守序列,设计将需要考察的位点突变为结构差异较大,性质相反的氨基酸,本课题共设计16个突变点。首先,据此设计错配引物,用PCR方法扩增突变质粒,并转化至超感受态细胞,抽提质粒得到大量突变质粒,通过基因测序和Blast比对目的突变点,得到14个目的突变质粒。然后,根据同源重组原理,利用LiAC转染法将线性突变质粒转染至RTA2缺失菌JXM101中,并利用RTA2特异性引物和套氏PCR方法鉴定阳性转化菌。将所有Rta2p突变菌通过敏感性相关实验进行筛选,发现突变菌M10-1(G234S)与RTA2回复菌JXM201差异较明显,与空载体回复菌P-B类似,在高钙条件下MIC80值无明显变化,不能诱导真菌耐药性的形成,而在低钙条件下和缺失菌一样,对氟康唑表现得更为敏感;而突变菌M3-1(G158E)与RTA2回复菌JXM201差异并不明显,在钙离子存在时并未完全耐药,不能完全诱导真菌耐药性的形成。其他突变菌和RTA2回复菌JXM201无明显差异,在加入Ca2+后均对氟康唑的敏感性降低。另外,通过各突变菌对氟康唑的生长曲线影响和时间杀菌曲线等实验也可证明突变菌M10-1(G234S)对氟康唑的敏感性有所改变。通过体内动物实验考察突变RTA2对菌株毒力的影响以及FLC治疗效果,发现经氟康唑治疗后,突变菌M10-1感染动物的生存率较JXM201感染动物有所提高。最后,通过考察各突变菌对荧光底物二氢鞘氨醇(NBD-DHS)的外排、摄入情况,以及对鞘胺醇代谢通路的上下游抑制剂敏感性等实验发现M10-1(G234S)对底物的转运能力受到影响,即对NBD-DHS定量摄入后外排释放量减少,并且对鞘脂代谢通路下游抑制剂的敏感性较RTA2回复菌JXM201有明显差异。
     因此,通过对白念珠菌耐药相关蛋白Rta2p跨膜区保守序列突变后的菌株耐药性和转运功能研究,我们发现跨膜区中高保守区域为RTA2重要功能域,通过考察Rta2p跨膜区不同位点突变前后对钙调神经磷酸酶通路调控的耐药性形成的影响以及对底物长链碱二氢鞘氨醇(NBD-DHS)转运能力的改变,发现突变菌M10-1(G234S)与RTA2回复菌JXM201差异较明显,而与空载体回复株P-B类似,表现为在高钙条件下,不能诱导真菌耐药性的形成;而在低钙条件下,也和缺失菌一样,对氟康唑表现得更为敏感,同时突变菌M10-1(G234S)胞内的NBD-DHS积累情况显著高于JXM201,而且其外排能力也明显下降,证明了G234是影响长链碱转运的重要活性位点。
In recent years, with the use of immunosuppressants after organ transplantation, and broad-spectrum antibiotic, the incidence of systemic fungal infections increased rapidly, especially the infections of Candida albicans are most serious. Carrying out research to find new antifungal drug targets of the new model for deep fungal infection resistance and mechanisms of the major pathogen Candida albicans is important for the designment of creation antifungal drugs and development of new antifungal agents, in order to overcome fungal infection and the growing problem of prevention and treatment of deep fungal infection.
     A new resistance gene RTA2was found in our preliminary studies, and we have proved that Ca2+increased the expression of RTA2by the calcineurin phosphatase pathway. The encoded protein Rta2p, located in cell membrane lipid rafts, was the ectopic enzyme of sphingolipid composition of Candida albicans, and could transport membrane sphingolipid skeleton composition-long chain base from inside to outside, which could regulate cell membrane on both sides of the sphingolipid composition distribution and enhance the stability of lipid rafts. Therefore, if we can study Rta2p protein structure-function relationship furthermore to find the biological active sites related with the calcineurin pathway and the long-chain base binding cassette transporter, we will lay the theoretical foundation of molecular mechanism in Candida albicans resistance, finding new antifungal drug targets, designing new anti-fungal inhibitors.
     We found four homologous proteins (Rsblp, Yer185w, Rtalp, Ylr046c) through analysis of Candida albicans genome database and the Saccharomyces cerevisiae genome database. By Blast comparison to find conserved sequences in transmembrane region, we designed pointed mutations in the structural differences and contrary nature of amino acids, a total of16mutations. First, based on the mismatch primers, we amplified the mutant plasmids by PCR, transformed into ultra-competent cells, extracted plasmids sequenced and got14pointed mutant plasmids. Then, according to the principle of homologous recombination, we used LiAC transfected method to transfect linear mutant plasmids to the RTA2absence strain JXM101, by using RTA2specific primers and nested PCR to identify positive transformed clone. All of the Rta2p mutant strains were proved by sensitivity experiments. We found that compared with JXM201, the difference of mutant strain M10-1(G234S) was obvious, and was similar with the empty vector strain P-B. The MICso showed no significant changes in high calcium conditions, and M10-1couldn't induce the formation of fungal resistance in the low calcium conditions and showed more sensitive to fluconazole. While the mutant strain M3-1(G158E) didn't showed obvious differences in the calcium compared with JXM201, and could not fully induce the formation of fungal resistance. Other mutant strains showed no significant difference with JXM201. In addition, the growth curves of each mutant to fluconazole and time of sterilization curve experiments also proved that the mutant strain M10-1(G234S) to fluconazole was changed. Besides, we found that the mutant strain M10-1(G234S) affected the experiments by the outake and intake of fluorescent substrate (NBD-DHS), and metabolism pathways downstream inhibitor sensitivity in the substrate transport and sensitivity to inhibitors of the sphingolipid metabolic pathway downstream with the difference of JXM201.
     So, through the study of resistant strains and the transport function on the transmembrane domain of resistance-associated protein Rta2p, we found a highly conserved region of the transmembrane region is an important function domain of RTA2. By studying different sites mutations of Rta2p transmembrane region we found that the difference of mutant strain M10-1(G234S) and wild strains JXM201was more obvious, and it was similar with the empty vector strain P-B in the high Ca2-conditions, which couldn't induce the formation of fungal resistance. While in the low Ca2+conditions it showed more sensitive to fluconazole. Besides we indicated that the G234is an important active site of transporting long-chain base.
引文
[1]Maertens J, Vrebos M, Boogaerts M. Assessing risk factors for systemic fungal infections [J]. Eur J Cancer Care.2001,10:56-62.
    [2]Snydman DR. Shifting patterns in the epidemiology of nosocomial Candida infections [J]. Chest,2003,123(5Suppl):500S.
    [3]Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis:a persistent public health problem[J]. Clin Microbiol Rev.2007,20(1):133-163.
    [4]Kibbler CC, Seaton S, Barnes RA, et al. Management and outcome of bloodstream infections due to Candida species in England and Wales[J]. J Hosp Infect.2003,54(1):18-24.
    [5]Lu Xiao-qin, Li Ii hua, Zhou Li, et al. Infection distribution and drug resistance analysis of Candida albicans[J]. Chin J Infect Control.2007,6(6):419-421.
    [6]Morschhauser, et al. Thegenetic basis of fluconazole resistance development in Candida albicans[J]. Biochin Biophys Acta,2002,1587:240-248.
    [7]White, T. C., S. Holleman, F. Dy, et al. Resistance mechanisms in clinical isolates of Candida albicans[J]. Antimicrob Agents and Chemother,2002,46:1703-1713.
    [8]Franz, R., M. Ruhnke, and J. Morschhauser. Molecular aspects of fluconazole resistance development in Candida albicans[J]. Mycoses,1999,42:453-458.
    [9]Akins, R.A., An update on antifungal targets and mechanisms of resistance in Candida albicans[J]. Medical Mycology,2005,43(4):285-318.
    [10]Mukhopadhyay, K., A. Kohli, and R. Prasad, Drug susceptibilities of yeast cells are affected by membrane lipid composition[J]. Antimicrob Agents Chemother,2002,46(12):3695-705.
    [11]Loffler, J., et al., Phospholipid and sterol analysis of plasma membranes of azole-resistant Candida albicans strains [J]. FEMS Microbiol Lett,2000,185(1):59-63.
    [12]Higgins, C. F. The ABC transporter channel superfamily—an overview[J]. Semin Cell Biol,1993,4:1-5.
    [13]Keppler, D., Y. Cui, J. Konig, I. Leier, and A. Nies. Export pumps for anionic conjugates encoded by MRP genes[J]. Ad Enzyme Regul,1999,39:237-246.
    [14]Perea S, et al. Prevalence of molecular mechanisms of resistance to azole antifungal anents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency patients[J]. Antimicrob Agents Chemother.2001,45(10):2676.
    [15]Lyons CN, et al. Transcriptional analyses of antifungal drug resistance in Candida albicans[J]. Antimicrob Agents Chemother.2000,44(9):2296.
    [16]Saini P, Prasad T, Gaur NA, et al. Alanine scanning of transmembrane helix11of Cdrlp ABC antifungal efflux pump of Candida albicans:identification of amino acid residues critical for drug efflux[J]. Journal of antimicrobial chemotherapy.2005,56:77-86.
    [17]Shukla, S., Saini, P., Smiriti, et al. Functional characterization of Candida albicans ABC transporter Cdrlp[J]. Eukaryotic cell.2003,2:1362-1375.
    [18]Mukhopadhyay K, Kohli A, and Prasad R. Drug susceptibilities of yeast cells are affected by membrane lipid composition[J]. Antimicrob. Agents and Chemother.2002,46:3695-3705.
    [19]Sanglard D, Ischer F, Monod M, Bille J. Cloning of Candida albicans genes conferring resistance to azole antifungal agents:characterization of CDR2, a new multidrug ABC transporter gene[J]. Microbiology.1997,143(2):405-16.
    [20]Klanunt C, Lohr F, Schafer B, et al. High level cell-flee expression and specific labeling of integral membrane proteins [J]. Eur J Biochem,2004,271(3):568-580.
    [21]Tajkhorshid E. Nollert P, Jensen M, et al.Control of the selectivity of the aquaporin water channel family by global orientational tuning[J]. Science,2002,296:525-530.
    [22]Tate C G, Haase J, Baker C, et al. Comparison of seven difierent heterologous protein expression systems for the production of the serotonin transporter [J]. Biochim Biophys Acta,2003,1610(1):141-153.
    [23]Jiang Y, Lee A, Chen J, et al. Crystal structure and mechanism of a calcium-gated potassium channel[J]. Nature,2002.417:515-522.
    [24]Stahlberga H, Fotiadisa D, Scheuringa S. Two-dimensional crystals:a powerful approach to access structure, function and dynamics of membrane proteins[J]. FEBS let.2001,504(3):166-172.
    [25]Lan Guan, lrina N, Smirnova, Gill Vemer, Shushi Nagamori and H. Ronald Kaback. Manipulating phosopholipids for crystallization of a membrane transport protein[J]. Proc Natl Acad Sci.2006,10(3):1723-1726.
    [26]Punta M, Forrest L R, Bigelow H, et al. Membrane protein prediction methods[J]. Methods,2007,41(4):460-474.
    [27]Morro M, Chan K W, Slotboom D J, et al. Functional expression of eukaryotie membrane proteins in Lactococcus lactis[J]. Protein Sci,2005,14(12):3048-3056.
    [28]Bill, R.M., Henderson, P.J.F., Iwata, S., et al. Overcoming barriers to membrane protein structure determination [J]. Nature Biotechnology,2011,29,335-340.
    [29]Loo TW, Clarke DM. Inhibition of oxidative cross-linking between engineered cysteine residues at position332in predicted transmembrane segments TM6and975in predicted TM12of human P-glycoprotein by drug substrates [J]. J Biol Chem.1996,271:27482-27487.
    [30]Shukla, S., Saini, P., Smiriti, et al. Functional characterization of Candida albicans ABC transporter Cdrlp[J]. Eukaryotic cell.2003,2:1362-1375.
    [31]Saini P, Prasad T, Gaur NA, et al. Alanine scanning of transmembrane helix11of Cdrlp ABC antifungal efflux pump of Candida albicans:identification of amino acid residues critical for drug efflux[J]. Journal of antimicrobial chemotherapy.2005,56:77-86.
    [32]Suneet Shukla, Suresh V. Ambudkar and Rajendra Prasad. Substitution of threonine-1351in the multidrug transporter Cdrlp of Candida albicans results in hypersusceptibility to antifungal agents and is essential for synergic effects of calcineurin inhibitor FK520[J]. Journal of Antimicrobial Chemotherapy.2004,54:38-45.
    [33]Krishnamurthy S, Chatterjee U, Gupta V, et al. Deletion of transmembrane domain12of CDR1, a multidrug transporter from Candida albicans, leads to altered drug specificity:expression of a yeast multidrug transporter in baculovirus expression system[J]. Yeast.1998,14(6):535-550.
    [34]Gao PH, Cao YB, Jia XM, Cao YY, Quan H, Wang Y, Jiang YY. Drug susceptibilities of yeast cells are affected when expressing mutant Candida albicans drug resistance protein[J]. Int J Antimicrob.2006,(28):69-74.
    [35]Shuang-Hong Chen, Chun-Quan Sheng, Xiao-Hui Xu, Yuan-Ying Jiang, Wan-Nian Zhang and Cheng He. Identification of Y118Amino Acid Residue in Candida albicans Sterol14a-Demethylase Associated with the Enzyme Activity and Selective[J]. Biol Pharm Bull.2007,30(7):1246-1253.
    [36]Jia XM, Ma ZP, Jia Y, Gao PH, Zhang JD, Wang Y, Xu YG, Wang L, Cao YY, Cao YB, Zhang LX, Jiang YY. RTA2, a novel gene involved in azole resistance in Candida albicans [J]. Biochem Biophys Res Commun.2008,373(4):631-6.
    [37]Jia XM, Wang Y, Jia Y, Gao PH, Xu YG, Wang L, Cao YY, Cao YB, Zhang LX, Jiang YY. RTA2is involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in Candida albicans [J]. Cell Mol Life Sci.2009,66(1):122-34.
    [38]Manente M, Ghislain M. The lipid-translocating exporter family and membrane phospholipid homeostasis in yeast. FEMS Yeast Res.2009,9(5):673-87.
    [39]Raba M, Baumgartner T, et al. Function of transmembrane domain IX in the Na+/proline transporter PutP[J]. J Mol Biol.2008,382(4):884-93.
    [40]Papworth, C, Bauer, J. C, Braman, J. and Wright, D. A. Multiple site-directed Mutagenesis in vitro[J]. Strategies.1996,9(3):3-4.
    [41]Torres J, Stevens TJ, Samso M. Membrane proteins: the 'Wild West' of structural biology[J]. Trends Biochem Sci.2003,28(3):137-44.
    [42]Stahlberga H, Fotiadisa D, Scheuringa S. Two-dimensional crystals: a powerful approach to access structure, function and dynamics of membrane proteins[J]. FEBS let.2001,504(3):166-172.
    [43]Lan Guan, Irina N, Smirnova, Gill Vemer, Shushi Nagamori and H. Ronald Kaback. Manipulating phosopholipids for crystallization of a membrane transport protein[J]. Proc Natl Acad Sci.2006.103:1723-1726.
    [44]Kihara, A. and Y. Igarashi, Cross talk between sphingolipids and glycerophospholipids in the establishment of plasma membrane asymmetry[J]. Mol Biol Cell.2004,15(11):4949-59.
    [45]Dickson, R.C., Sphingolipid functions in Saccharomyces cerevisiae:comparison to mammals[J]. Annu Rev Biochem,1998.67:27-48.
    [46]Kihara, A. and Y. Igarashi. Identification and characterization of a Saccharomyces cerevisiae gene, RSB1, involved in sphingoid longchain base release[J]. J Biol Chem,2002.277(33):30048-54.
    [47]Mao C, J D Saba, and L M Obeid. The dihydrosphingosine-1-phosphate phosphatases of Saccharomyces cerevisiae are important regulators of cell proliferation and heat stress responses[J]. Biochem J.1999,342(3):667-75.
    [1]Krogh A, Larsson B, von Heijine G, et al. Predicting transmembrane protein topology with a hidden markov model:Application to complete genome[J]. J Mol Biol,2001,305(7):567-580.
    [2]Preston G M, Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of28kilodaltons:Member of an ancient channel family [J]. Proc Natl Acad Sci USA.1991,88(16):11110-114.
    [3]Hite RK, Li Z, Walz T. Principles of membrane protein interactions with annular lipids deduced from aquaporin2D crystals[J]. EMBO J.2010,29(10):1652-8.
    [4]Ostergaard L, Yanofsky M F. Establishing gene function by mutagenesis in Arabidopsis thaliana[J].Plant J,2004,39:682-696.
    [5]Ferro M, Sak i D, Riviere, Rolland H, et al. Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters [J]. Proc Natl Acad Sci USA.2002,99:11487-92.
    [6]Anna E.Speers and Christine C.Wu. Proteomics of integral membrane proteins-theory and application[J]. Chem Rev.2007,107,3687-3714.
    [7]Cho, W. and Stahelin, R.V. Membrane-protein interactions in cell signaling and membrane trafficking[J]. Annu Rev Biophys Biomol Struct.2005,34:119-151.
    [8]Kuo-Chen Chou and David W Elrod. Prediction of membrane protein types and subcellular locations[J]. PROTEINS:Structure, Function, and Genetics.1999,34:137-153.
    [9]Chifflet S, Hernandez JA. The plasma membrane potential and the organization of the actin cytoskeleton of epithelial cells[J]. Int J Cell Biol.2012,20(12):1214-24.
    [10]Su SP, McArthur JD, Friedrich MG, et al. Understanding the α-crystallin cell membrane conjunction[J]. Mol Vis.2011,17:2798-807.
    [11]Murakami H, Wang Y, Hasuwa H, et al. Enhanced response of T lymphocytes from Pgap3knockout mouse:Insight into roles of fatty acid remodeling of GPI anchored proteins[J]. Biochem Biophys Res Commun.2012,417(4):1235-41.
    [12]Marassi, F.M. and S.J. Opella. A solid-state NMR index of helical membrane protein structure and topology[J]. J Magn Reson.2000,144(1):150-155.
    [13]Palczewski K, Kumasaka T, Hori T. Crystal structure of rhodopsin:a G protein-coupled receptor[J]. Science.2000,289(5480):739-745.
    [14]Pebay-Peyroula E, Rummel G, Rosenbusch J P,et al. X-ray structure of bacteriorhodopsin at2·5angstroms from microcrystals grown in lipidic cubic phases[J]. Science.1997,277(5332):1676-1681.
    [15]Hunter MS, DePonte DP, Shapiro DA,et al. X-ray diffraction from membrane protein nanocrystals[J]. Biophys J.2011,100(1):198-206.
    [16]Popot J-L. and Engelman D.M. Helical membrane protein folding, stability, and evolution[J]. Annu. Rev. Biochem.2000,69:881-922.
    [17]Bowie J.U. Solving the membrane protein folding problem[J]. Nature.2005,438:581-589.
    [18]Reddy CS, Vijayasarathy S, Srinivas E, et al. Homology modeling of membrane Proteins:A critical assessment[J].Comput Biol Chem,2006,30(2):120.
    [19]Zhenxin X. Advances in homology protein structure model-ing[J].Curr Protein Pept Sci,2006,7(3):217.
    [20]Forrest LR, Tang CL, Honig B. On the accuracy of homol-ogy modeling and sequence alignment methods applied tomembrane proteins [J]. Biophys J,2006,91(2):508.
    [21]Jacobson MP, Pincus DL, Rapp CS, et al. A hierarchical approach to all-atom protein loop prediction[J].Proteins.2004,55(7):351.
    [22]Jacquez J A. Red blood cell as glucose carrier:significance for placental and cerebral glucose transfer[J]. Amer Physio Soci.1984,246(3):289-298.
    [23]Torben Clausenl, Ole B(?)kgaard Nielsen, et al. Na+,K+pump stimulation improves contractility in isolated muscles of mice with hyperkalemic periodic paralysis[J]. Jour of gener physio.2011,138(1):117-130.
    [24]Kalamida D, Poulas K, Avramopoulou V, et al. Muscle and neuronal nicotinic acetylcholine receptors[J]. Structure, function and pathogenieity. FEBS J.2007,274(15):3799-845.
    [25]Liqin Wang, Ying-Hong Feng and George I Gorodeski. Epidermal growth factor facilitates epinephrine inhibition of P2X7-receptor-mediated pore formation and apoptosis:A novel signaling network[J]. Endocrinology.2005,146(1):164-174.
    [26]Abdullah Olgun, Serif Akman, Muhittin A Serdar, et al. Oxidative phosphorylation enzyme complexes in caloric restriction[J]. Experimental Gerontology.2002,37(5):639-645.
    [27]Smith CW. Adhesion molecules and receptors[J]. J Allergy Clin Immunol.2008,121(2Suppl):375-379.
    [28]Pellegrini F, Budman DR. Review:tubulin function, action of antitubulin drugs, and new drug development[J]. Cancer Invest.2005,23(3):264-73.
    [1]方建茹,谢小梅,章洪华.作用于真菌细胞壁的抗真菌药物研究进展[J].现代诊断与治疗,2004,15(6):364-366.
    [2]Klis FM, de Groot P, Hellingwerf K. Molecular organization of the cell wall of Candida albicans[J]. Med Mycol,2001,39(1):1-8.
    [3]Margit E, Rainer D, Ludwig L, et al. Pir Proteins of saccharomyces cerevisiae are attached to β-1,3-Glucan by a new protein-carbohydrate linkage[J]. J Biol Chem,2006,281(17):11523-11529.
    [4]Chaffin WL. Candida albicans cell wall proteins [J]. Microbio Mol Biol,2008,72(3):495-544.
    [5]Sarthy AV, McGonigal T, Coen M, et al. Phenotype in Candida albicans of a disruption of the BGL2gene encoding a1,3-beta-glucosyltransferase[J]. Microbiology,1997,143(2):367-376.
    [6]Ana I, Martinez, Luis Castillo, et al. Role of Pir1in the construction of the Candida albicans cell wall[J]. Microbiology,2004,150(7):3151-3161.
    [7]Selvaggini S, Munro A, Paschoud S, et al. Independent regulation of chitin synthase and chitinase activity in Candida albicans and Saccharomyces cerevisiae [J]. Microbiology,2004,150(10):921-928.
    [8]Dunkler A, Walther A, Specht CA,et al. Candida albicans CHT3encodes the functional homolog of the Ctsl chitinase of Saccharomyces cerevisiae [J]. Fungal Genet Biol,2005,42(11):935-947.
    [9]J Ruiz-Herrera, Elorza MV, Valentin E,et al. Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity[J]. FEMS Yeast Re,2006,6(1):14-29.
    [10]Lussier M, Sdicu A M, Shahinian, et al. The Candida albicans KRE9gene is required for cell wall beta-1,6-glucan synthesis and is essential for growth on glucose[J]. Proc Natl Acad,1998,95(17):9825-9830.
    [11]Nobile CJ, Bruno VM,et al. Genetic control of chlamydospore formation in Candida albicans[J]. Microbiology,2003,149(12):3629-3637.
    [12]Steven Bates, Jose M, Donna M, et al. Candida albicans Iffll, a secreted protein required for cell wall structure and virulence[J]. Infect Immun,2007,75(6):2922-2928.
    [13]Esteban PF, I Rios. Characterization of the CaENG1gene encoding an endo-l,3-beta-glucanase involved in cell separation in Candida albicans[J]. Curr Microbiol,2005,51(6):385-392.
    [14]Sandini S, La Valle R, De B F, et al. The65kDa mannoprotein gene of Candida albicans encodes a putative beta-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity[J]. Cell Microbiol,2007,9(5):1223-1238.
    [15]Hoyer L L, Green C B, Oh SH, et al. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family-a sticky pursuit[J]. Med Mycol,2008,46(1):1-15.
    [16]Hoyer L L. The ALS gene family of Candida albicans[J]. Trends Microbiol,2001,9(4):176-180.
    [17]Fu Y, Ibrahim AS, Sheppard DC, et al. Candida albicans Alslp:an adhesin that is a downstream effector of the EFG1filamentation pathway [J]. Mol Microbiol,2002,44(1):61-72.
    [18]X Zhao, Oh SH, K M, et al. Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family [J]. Microbiology,2005,151(5):1619-1630.
    [19]X Zhao, Oh SH, G Cheng, et al. ALS3and ALS8represent a single locus that encodes a Candida albicans adhesion; functional comparisons between Als3p and Alslp[J]. Microbiology,2004,150(7):2415-2428.
    [20]X Zhao, Oh SH, Hoyer L L, et al. Deletion of ALS5, ALS6or ALS7increases adhesion of Candida albicans to human vascular endothelial and buccal epithelial cells [J]. Med Mycol,2007,45(5):429-434.
    [21]Sundstrom P. Adhesion in Candida spp[J]. Cell Microbiol,2002,4(8):461-469.
    [22]秦晓峰,吴建华,顾军.白念珠菌黏附基因研究进展[Jl.中国真菌学杂志,2006,1(3):186-189.
    [23]Clarissa J, Jeniel E, David R, et al. Function of Candida albicans adhesin Hwpl in biofilm formation[J]. Cell,2006,5(10):1604-1610.
    [24]BL Granger, ML Flenniken, et al. Yeast wall protein1of Candida albicans[J]. Microbiology,2005,151(2):1631-1644.
    [25]Luo S, Poltermann S, Kunert A, et al. Immune evasion of the human pathogenic yeast Candida albicans:Pral is a Factor H, FHL-1and plasminogen binding surface protein[J]. Mol Immunol,2009,47(2):541-550.
    [26]Soloviev DA, William AF, Rafael S,et al. Identification of pH-regulated antigen1released from Candida albicans as the major ligand for leukocyte integrin alphaMbeta2[J]. J Immunol,2007,178(4):2038-2046.
    [27]Urban C, Sohn K, Lottspeich F, et al.Identification of cell surface determinants in Candida albicans reveals Tsalp, a protein differentially localized in the cell[J]. FEBS Lett,2003,544(1-3):228-235.
    [28]刘丽英,王丹敏,陈虹.作用于真菌细胞壁的抗真菌药物研究进展]Jl.中国医学检验杂志,2009,10(1):42-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700