用户名: 密码: 验证码:
内蒙古浩尧尔忽洞金矿区岩体地球化学特征及其成矿意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浩尧尔忽洞金矿位于华北地台北缘西段中元古代白云鄂博台缘凹陷带西部,行政上隶属于内蒙古自治区巴彦淖尔市乌拉特中旗新忽热乡。该矿为一大储量低品位矿床,目前探明储量达213t,矿石平均品位为0.82g/t。矿体赋存于中元古界白云鄂博群灰黑色变质细砂、粉砂岩中。矿区范围内出露了大面积海西期花岗质岩体和岩脉,矿床的形成与其关系密切。本文以该岩体为研究对象,在岩相学观察的基础上,重点从岩石地球化学角度对其进行分析,以重塑其侵位时的大地构造环境,并结合前人的研究成果,对该岩体成矿意义进行探讨。
     通过CIPW标准矿物计算,利用QAP图解,可将该岩体划分为二长花岗岩、石英二长闪长岩和碱长花岗岩三种类型。其中二长花岗岩主要呈脉状出露于矿区的东部,石英二长闪长岩呈小岩株状出露于矿区中部及东南部,碱长花岗岩面积最大,主要以岩基状分布在矿区北部、东北部等地。
     地球化学数据分析表明,三类岩石均具有高钾钙碱性岩石系列性质,且都显示出大离子亲石元素Rb、K等相对富集而高场强元素Nb、Ta、Ti、P等相对亏损的特点,Sr、Nd同位素特征均显示其成岩物质来源于下地壳,但受到地幔物质不同程度的混染,岩体侵位与华北板块和西伯利亚板块碰撞造山活动关系密切。此外,石英二长闪长岩SiO2含量相对较低,Fe_2O_3~T、MgO、TiO_2等含量较高,尤其是Sr含量较高;二长花岗岩具有高SiO_2、低Al_2O_3的特征,轻重稀土分馏程度最高;碱长花岗岩全碱含量高,而且具有明显的Eu的负异常,呈现出A型花岗岩的性质。
     结合构造环境判别图解,认为浩尧尔忽洞岩体形成于华北板块与西伯利亚板块同碰撞-后碰撞环境,其中二长花岗岩形成于同碰撞期,是由于板块持续俯冲导致熔融的板片和地幔楔物质上侵,致使下地壳物质受热熔融的结果;石英二长闪长岩形成于碰撞后隆起环境,是加厚下地壳熔融的产物;碱长花岗岩形成于晚造山期,地幔基性岩浆底侵,下地壳物质熔融并与其混染后侵位的。
     根据浩尧尔忽洞金矿的成矿年龄、成矿流体特征及矿石地球化学特征,结合花岗质岩体与金矿富集理论的研究成果,认为海西期岩体的侵入为金矿床的形成提供了充足的热量和部分流体来源,是矿床形成必不可少的因素。
The Haoyaoerhudong gold deposit, which is attached to Xinhure town in UradMiddle Banner of Inner Mongolia, locates in the west of the Mesoproterozoic Bayan Oborift on the west section of the northern margin of the North China plate. As a gold ore ofbig reserves and low grade, the Haoyaoerhudong ore deposit reach to213t in provedreserve, while its grade only is0.82g/t. The orebody occurs in the greyish blackmetamorphic fine sandstone and siltstone. There is large area of hercynian graniticplutones in the orefield, which is deemed to have a close relationship with the formationof ore deposit. On the basis of petrography, the article takes the granitic plutones as theobject of study, emphasizes to analyse its geochemistry characteristics in order to remodethe tectonic setting in the processing of invasion, and discusses its ore-formingsignificance combining the research achievements of predecessors.
     By the CIPW standard mineral calculating and the QAP chart, the Haoyaoerhudongplutone can be divided into three types: the monzonitic granite, the quartz monzobioriteand the alkali feldspar granite. Among them, the monzonitic granite mainly exposes ineastern part of the orefield in the form of dykes; the quartz monzobiorite appears inmiddle and east part of the orefield as small laccoliths; while the alkali feldspar granite,whose area is the largest, mainly as batholith distributes in north and northest part oforefield.
     By analyzing the geochemistry datum of the three types plutones, we can concludethat all of them have the property of high potassium calcium alkaline and thecharacteristic of enrichment of large-ion lithophile elements like Rb、K and the deficit ofHSFE elements such as Nb、Ta、Ti、P. What’s more, the isoplot of Sr and Nd both indicatethat their’s lithogenous material contaminated by the mantle material in different degreesmainly derived from lower crust and the invasion of the plutones have intimate relationswith collision orogenesis between North China plate and Siberia plate. Nevertheless, thequartz monzobiorite has lower content on SiO_2, while higher on Fe_2O_3~T、MgO and TiO_2,especially higher on Sr; the monzonitic granite, whose fractionation degree of LREE andHREE is the highest, is characterized by high SiO2and low Al_2O_3; while alkali feldspar granite has the most alkali content and obvious negative anomaly of Eu elememt so as toexpress the characters of A-type granite.
     Combining with the discrimination diagrams of structural environment, theHaoyaoerhudong plutone is thought to be formed in syn-collision—post-collisionenvironment between the North China plate and the Siberia plate. Among them, themonzonitic granite formed in syn-collisional environment, and possibly be influenced bythe heat of melting of the underthrust plate and the mantle wedge in the process ofsubduction, of which the parental magma derived from partial melting of lower crust; thequartz monzobiorite formed in the uplift environment of post-collisional, resulting fromthe melt of the thickening lower crust; while the alkali feldspar granite formed in thelateorogenic era while the mantle basaltic magma underplated leading to the lower crustmelting and being mixed.
     According to the mineralization ages, the ore-forming fluid properties and thecharacteristics of geochemistry of host rocks, combining with the theory achievements ofthe relation between the granitic plutones and gold ore-informing, the invasion of theHaoyaoerhudong plutone, as a essential factor of ore-forming, is considered to offerenough heat and a part of ore-forming fluid sources.
引文
[1] Abzalov M. Zarmitan granitoid-hosted gold deposit, Tian Shan belt, Uzbekistan.Economic Geology,2007,102(3):519~532.
    [2] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series usingmulticationic parameters. Chemical Geology,1985(48):43~55.
    [3] Belyatsky B V, Krymsky R S, Kremenetsky A A, et al. Sm-Nd and Sr isotopesystematics of scheelite from the giant Au(-W) deposit Muruntau (Uzbekistan):implications for the age and sources of Au mineralization. Mineralium Deposita,2001,36(5):379~392.
    [4] Bierlein F P, Groves D I, Goldfarb R J et al. Lithospheric controls on the formationof provinces hosting giant orogenic gold deposits. Mineralium Deposita,2006,40(8):874~886.
    [5] Frimmel H E. Earth's continental crustal gold endowment. Earth and PlanetaryScience Letters,2007,267(1-2):45~55.
    [6] Graupner T, Niedermann S, Kempe U, Klemd R, Bechtel A. Origin of ore fluids inthe Muruntau gold system: constraints from noble gas, carbon isotope and halogen data.Geochimica et Cosmochimica Acta,2006,70(21):5356~5370.
    [7] Groves D I, Goldfarb R J Gebre-Mariam M, et al. Orogenic gold deposits: Aproposed classification in the context of their crustal distribution and relationship to othergold deposit types. Ore Geology Reviews,1998,13(1):7~27.
    [8] Jiajun Liu, Minghua Zheng, Nigel J et al. Geological and geochemical characteristicsof the Sawaya'erdun gold deposit, southwestern Chinese Tianshan. Ore Geology Reviews,2007,32:125~156.
    [9] Kempe U, Belyatsky B V, Kremenetsky A A, et al. Mantle influence on the genesisof the super-large Au deposit Muruntau (Uzbekistan): constraints from geochemistry andisotope composition of scheelites. In: Hatton, C J (Ed.), Plumes, Plates andMineralization. University of Pretoria, Pretoria,1997:51~52.
    [10]Kempe U, Belyatsky B V, Krymsky R S, et al. Sm-Nd and Sr isotope systematics ofscheelite from the giant Au(-W) deposit Muruntau (Uzbekistan): implications for the ageand sources of Au mineralization. Mineralium Deposita,2001,36(5):379~392.
    [11]KhamrabaevI. Kh., ed. Ore Formations and Basic Principles of the Metallogeny ofGold in Uzbekistan[J]. FANTashkent,1969,396pp.
    [12]Kostitsyn. Rb-Sr isotope studies on the Muruntau deposit: Mineralizedmetasomatites. Geochem,1994,31(11):21~34.
    [13]Kotov N V, Poritskaya L G. The Muruntau gold deposit: Its geologic structure,metasomatic mineral associations and origin. International Geology Review,1992,34:77~87.
    [14]Lambert I B. Ore genesis: The state of the Art.1982:536~625.
    [15]Large R R, Maslennikov V V, Robert F. Multistage sedimentary and metamorphicorigin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia.Economic geology,2007,102(7):1233~1267.
    [16]Lawrence J, DrewByron R, BergerNamik K, Kurbanov. Geology and structuralevolution of the Muruntau gold deposit, Kyzylkum desert, Uzbekistan Ore GeologyReviews,1996,11(4):175~196.
    [17]Maniar P D, Picooli P M. Tectonic discrimination of granitoids. Geological Societyof America,1989,101:635~643.
    [18]Mao J W, Konopelko D, Seltmann R, et al. Postcollisional age of the kumtor golddeposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan. Economic Geology,2001,99(8):1771~1780.
    [19]Miao L C, Zhang F Q, Fan W M, et al. Phanerozoic evolution of the InnerMongolia-Daxinganling orogenic belt in North China:Constraints from geochronology ofophiolites and associated formations[M]//Zhai MG, Windley BF, Kusky TM, et al.Mesozoic Sub-Continental Lithospheric Thinning under Eastern Asia. London:Geological Society,2007,280:223~237.
    [20]Morelli R, Creaser R A, Seltmann R. Age and source constraints for the giantMuruntau gold deposit, Uzbekistan, from coupled Re-Os-He isotopes in arsenopyrite.Geology,2007,35(9):795~798.
    [21]Nie F J, Jiang S H, Su X X, Wang X L. Geological features and origin of golddeposits occurring in the Baotou–Bayan Obo district, south-central Inner Mongolia,People’s Republic of China. Ore Geology Reviews,2002,20:139~169.
    [22]Peccerillo R and Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocksfrom the Kastamonu area,Northern Turkey. Contrib. Mineral. Petrol.,1976,58:63~81.
    [23]Pearce J A. Trace element discrimination diagrams for the tectonic interpretation ofgranitic rocks. Journal of Petroleum Geology,1984,25:956~983.
    [24]Ren J S, Wang Z X, Chen B W. The tectonics of China from a global view: A guideto the tectonic map of China and adjacent regions. Beijing: Geol. Pub. House,1999,1~32.
    [25]Ryan Morelli,Robert A, Creaser,et al. Age and source constraints for the giantMuruntau gold deposit, Uzbekistan, from coupled Re-Os-He isotopes in arsenopyrite.Geology,2007,35(9):795~798.
    [26]Senor A M C, Natalin B A, Burtman V S. Evolution of the Altaid tectonic collage andPaleozoic crustal growth in Eurasia. Nature,1993,364:299-307.
    [27]Shpirt M Ya, Punanova S A, Strizhakova Y A. Trace elements in black and oil shales.Solid Fuel Chemistry,2007,41(2):119~127.
    [28]Starostin V I, Yapaskurt O V. Au-Cu Black Shale Formations. Earth ScienceFrontiers,2007,14(6):245~256.
    [29]Streckeisen A, Le Maitre. A chemical approximation to the modal QAPFclassification of the igneous rocks. Neues Jahrb Mineral, Abh,1979,136(2):169~206.
    [30]Stribrny B, Urban H, and Weber H. The lower carboniferous black shale formation,apossible source for noble and base metal deposits in the NE Rhenish Massif, FederalRepublic of Germany. Mineralogy and Petrology,1988,39(2):129~143.
    [31]Sun S S and Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and process[M]//Saunders A D, Norry M J.Magmatism in the Ocean Basins. Geological Society Special Publication, London, UnitedKingdom,1989:313~345.
    [32]Wang Xiuzhang, Cheng Jingping, Liang Huaying, et al. A Three-Stage MetallogenicModel for Gold Deposits in Metamorphosed Microclastic Rocks. Chinese Journalof Geochemistry,1996,15(3):258~264.
    [33]Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics,discrimination and petrogenesis. Contributions to Mineralogy and Petrology,1987,95:407~419.
    [34]Wilde A R, Layer P, Mernagh T, and Foster J. The giant Muruntau gold deposit:Geologic, geochronologic and fluid inclusion constraints on ore genesis. EconomicGeology,2001,96(3):633~644.
    [35]Yang F Q, Mao J W, Wang Y T, et al.2007. Geology and Metallogenesis of theSawayaerdun Gold Deposit in the Southwestern Tianshan Mountains, Xinjiang, China.Resource Geology57(1):57~75.
    [36]Zartman R E, Doe B R. Plumbotectonics-the model. Tectonophysics,1981,75:135~162.
    [37]Zhang XH, Qian M, Zhang HF, et al. Mafic and felsic magma interaction during theconstruction of high-K calc-alkaline plutons within a metacratonic passive margin: TheEarly Permian Guyang batholith from the northern North China Craton. Lithos,2011,125:569~591.
    [38]Zhang X H, Wilde S A, Zhang H F, et al. Geochemistry of hornblende gabbros fromSonidzuoqi, Inner Mongolia, North China: Implication for magmatism during the finalstage of suprasubduction zone ophiolite formation. International Geology Review,2009,51:345~373.
    [39]Zhu Bingquan, Zhang Jinglian, Tu Xianglin, et al. Pb, Sr, and Nd isotopic features inorganic matter from China and their implications for petroleum generation and migration.Geochimica et Cosmochimica Acta,2001,65(15):2555~2570.
    [40]Zindler A and hart S R. Chemical geodynamics. Ann. Rev. Earth Plant. Sci.1986,14:493~571.
    [41]陈斌,赵国春,Simon WILDE.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J].地质论评,2001,47(4):361~364.
    [42]陈衍景,翟明国,蒋少涌.华北大陆边缘造山过程与成矿研究的重要进展和问题[J].岩石学报,2009,25(11):2695~2726.
    [43]陈毓蔚,朱炳泉.矿石铅同位素组成特征与中国大陆地壳的演化.中国科学(B辑),1984,14(3):269~277.
    [44]杜乐天.碱交代岩研究的重大成因意义.矿床地质2002,21(suppl):953-958.
    [45]范德廉.某地下寒武统含镍钼多元素黑色岩系的岩石学及地球化学特点.地球化学,1973,(3):143~164.
    [46]范德廉,张焘,叶杰,等.中国的黑色岩系及其有关矿床.北京:科学出版社2004:1~441.
    [47]范宏瑞,胡芳芳,杨奎锋,等.内蒙古白云鄂博地区晚古生代闪长质-花岗质岩石年代学框架及其地质意义.岩石学报,2009,25:2923~2928.
    [48]郭书胜.浩尧尔忽洞金矿床成因、控矿因素浅析.中国科技博览,2008,16:21~23.
    [49]洪大卫,黄怀曾,肖军宜,等.内蒙古中部二叠纪碱性花岗岩及地球动力学意义[J].地质学报,1994,68(3):219~230.
    [50]胡鸿飞,戴霜,唐玉虎,等.华北板块北缘西段裂谷系金矿床成矿特征及成因探讨,地质与勘探,2008,44(1):8~14.
    [51]胡明安.有机质的热液成熟作用在云南金顶铅锌矿床形成过程中的意义.地球科学,1989,14(5):503~512.
    [52]胡受奚,陈衍景,徐金方,等.华北地台花岗岩和地层中金含量与金成矿的关系[J].高校地质学报19984(2):121~126.
    [53]李江海,钱祥麟,黄雄南,等.华北陆块基底构造格局及早期大陆克拉通化过程.岩石学报,2000,16(1):1~10.
    [54]李双庆.内蒙古中部早古生代地体的拼合与增置.内蒙古地质.1997,(1):18~23.
    [55]李义明.内蒙古浩尧尔忽洞金矿床成矿流体特征及其地质意义.北京:中国地质大学地球科学与资源学院,2011,1~67.
    [56]李赞.内蒙古浩尧尔忽洞金矿床地球化学特征研究.北京:中国地质大学地球科学与资源学院,2011,1~60.
    [57]刘春涌,王永江.初论中亚黑色岩系型金矿床的基本特征——兼论新疆黑色岩系型金矿找矿方向.新疆地质,2007,25(1):34~39.
    [58]刘红涛,翟明国,刘建明,等.华北克拉通北缘中生代花岗岩:从碰撞后到非造山[J].岩石学报,2002,18(4):433~446.
    [59]路凤香,桑隆康.岩石学.北京:地质出版社,2002:280~283.
    [60]罗红玲,吴泰然,李毅.乌拉特中旗克布岩体的地球化学特征及SHRIMP定年:早二叠世华北克拉通底侵作用的证据.岩石学报,2007,23(4):755~766.
    [61]罗红玲,吴泰然,赵磊.华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义.岩石学报,2009,25(3):515~526.
    [62]罗红玲,吴泰然,赵磊.乌拉特中旗二叠纪Ⅰ型花岗岩类地球化学特征及构造意义.北京大学学报(自然科学版),2010,46(5):804~820.
    [63]内蒙古自治区地质调查院.区域地质调查报告——白云鄂博辐(1:25万).2003.
    [64]内蒙古自治区地质矿产局.内蒙古自治区区域地质志.北京:地质出版社1991:35~55.
    [65]内蒙古自治区地质矿产局.内蒙古自治区岩石地层.武汉:中国地质大学出版社,1996:1~341.
    [66]内蒙古自治区地质矿产局.白云鄂博幅1/20万区域地质测量报告.1971:1~78.
    [67]宁夏回族自治区核工业地质勘查院.内蒙古自治区乌拉特中旗浩尧尔忽洞金矿详查报告.2005:1~121.
    [68]聂风军,江思宏,侯万荣,等.内蒙古中西部浅变质岩为容矿围岩的金矿床地质特征及形成过程.矿床地质,2010,29(1):58~70.
    [69]聂风军,江思宏,张义,等.中蒙边境中东段金属矿床成矿规律和找矿方向.北京:地质出版社,2007:98~116.
    [70]任收麦,黄宝春.晚古生代以来古亚洲洋构造域主要块体运动学特征初探.地球物理学进展,2002,17(1):113~120.
    [71]邵济安.中朝板块北缘中段地壳演化.北京:北京大学出版社,1991:74~80.
    [72]尚恒胜,陶继雄,宝音乌力吉,等.内蒙古白云鄂博地区早古生代弧——盆体系及其构造意义.地质调查与研究,2003,26(3):160~168.
    [73]沈保丰,李俊建,翟安民,等.地壳演化和成矿耦合——以华北陆块北缘中段为例.前寒武纪研究进展,2001,24(1):9~16.
    [74]涂光炽.初议中亚成矿域.地质科学,1999,34(4):397~404.
    [75]王楫,李双庆,王保良,等.狼山——白云鄂博裂谷系.北京:北京大学出版社,1992:17.
    [76]王建平,刘家军,江向东,等.内蒙古浩尧尔忽洞金矿床黑云母氩氩年龄及其地质意义.矿物学报,2011,31(增刊下):643~644.
    [77]王建平,刘家军,彭润民,等.内蒙古浩尧尔忽洞金矿床含金建造特征.第九届全国矿床会议论文集,2008:165~167.
    [78]王荃,刘雪亚,李锦轶.中国华夏与安加拉古陆件的板块构造.北京:北京大学出版社,1992:1~151.
    [79]王玉峰,王建平,李义明,等.内蒙古浩尧尔忽洞金矿赋矿地层有机地球化学特征及成矿意义.矿物学报,2011,31(增刊上):405~407.
    [80]温汉捷.中国若干下寒武统高硒地层的有机地球化学特征及生物标志物研究[J].地球化学,2000,29(1):28~34.
    [81]许立权,邓晋福,陈志勇.内蒙古中部印支期强过铝质花岗岩的相平衡约束及动力学背景.地质通报,2004,23(8):790~794.
    [82]肖荣阁,彭润民,王美娟,等.华北地台北缘西段主要成矿系统分析.地球科学——中国地质大学学报,2000,25(4):362~368.
    [83]徐兵,胡受奚,卢冰,等.胶北金矿的碱交代特征与碱交代成矿模式.黄金科学技术,1993,1(2):29~33.
    [84]许立权,邓晋福,陈志勇.内蒙古中部印支期强过铝质花岗岩的相平衡约束及动力学背景.地质通报,2004,23(8):790~794.
    [85]薛伟,薛春纪,CHI Guoxiang,等.鄂尔多斯盆地东北缘侏罗系铀矿化与有机质的某些关联.地质论评,2009,55(3):361~369.
    [86]杨富全,王义天,李蒙文,等.新疆天山黑色岩系型矿床的地质特征及找矿方向.地质通报,2005,24(5):462~469.
    [87]杨学明,杨晓勇,陈双喜,译.岩石地球化学.中国科学技术大学出版社,2000:167~205.
    [88]叶杰,范德廉.黑色岩系型矿床的成矿作用及其在我国的产出特征.矿物岩石化学通报,2000,19(2):95~102.
    [89]叶锦华,叶庆同,王进,等.萨瓦亚尔顿金(锑)矿床地质地球化学特征与成矿机理探讨.矿床地质,1999,18(1):63~72.
    [90]于津生,李耀菘.中国同位素地球化学研究.北京:科学出版社,1997:314~409.
    [91]袁见齐,朱上庆,翟裕生.矿床学.地质出版社,1980:72~89.
    [92]翟裕生,王建平,邓军,等.成矿系统时空演化及其找矿意义.现代地质,2008,22(2):143~150.
    [93]张臣.华北克拉通北缘中段中新元古代热-构造事件及其演化.北京大学学报(自然科学版),2004,40(2),232~240.
    [94]张臣,刘树文,何国琦,等.华北板块北缘中段中元古代晚期花岗岩类特征及其构造意义.北京大学学报(自然科学版),2006,42(4):451~456.
    [95]张德会,金旭东,毛世德,等.成矿热液分类兼论岩浆热液的成矿效率.地球前缘,2011,18(5):90~102.
    [96]张国伟,董云鹏,裴先治,等.关于中新生代环西伯利亚陆内构造体系域问题.地质通报,2002,21(4-5):198~201.
    [97]张旗,王焰,钱青,等.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报,17(2):236-244.
    [98]张拴宏,赵越,刘建民,等.华北地块北缘晚古生代——早中生代岩浆活动期次、特征及构造背景.岩石矿物学杂志,2010,29(6):824~842.
    [99]张晓晖,翟明国.华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应.岩石学报,2010,26(5):1329~1341.
    [100]赵百胜,刘家军,王建平,等.内蒙古长山壕金矿矿床地球化学特征与成因研究.现代地质,2011,25(6):77~87.
    [101]赵百胜,刘家军,王建平,等.内蒙古赛乌素金矿稳定同位素组成特征及成因意义.地质找矿论丛,2007,22(3):195~200.
    [102]朱炳泉,李献华,戴谟,等.地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化.北京:科学出版社,1998:1~330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700