用户名: 密码: 验证码:
接地网腐蚀故障诊断算法与可测性研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了更好地开展接地网腐蚀故障诊断工作,确保人身、设备、电力系统和生产安全,本文开展了下列工作:
     建立了接地网支路电阻变化量与可及节点间电压变化量之间的非线性关系的增广故障诊断方程,并提出了一种采用迭代的方法逐步用线性方程来逼近非线性方程的迭代最小二乘接地网故障诊断算法。提出了一种基于禁忌搜索的接地网故障诊断算法,以可及节点间量测电压与估计电压偏差的平方和最小为适值函数,以支路电阻为解向量,分别以某个步长增加和减少支路电阻的策略进行邻域搜索。
     提出了一种基于蒙特卡罗模拟的接地网故障诊断算法比较和评价方法:在充分测试方案下,通过随机改变各支路电阻值和迭代初值的方式生成检验样本,以各支路电阻的相对累积误差均值和其标准差为评价指标,对迭代最小二乘算法、禁忌搜索法、单纯形禁忌搜索混合法、线性最小二乘法和非线性最小二乘法这几种接地网故障诊断算法的性能进行了比较和评价。
     提出了一种基于蒙特卡罗模拟的接地网故障诊断可测性分析方法:在合理范围内随机设置接地网各条支路的电阻生成样本,按照给定测试方案采用节点电压法计算得到测试数据并进行故障诊断,根据对各个样本诊断误差的统计分析,将相对误差和标准差小于给定阈值的支路被判定为明晰支路,其余支路被判定为不确定支路。在此基础上,提出一种采用最小生成树算法对明晰支路与不确定支路进行自动判别,并引入了补充明确顶点、支路二次分类、相近样本调整和理想样本自动生成等措施的改进方法,提高了判别正确率并减少了判别处理时间。提出了一种基于蒙特卡罗方法的干扰可测性分析方法,以反映量测误差对诊断结果的影响。将接地网故障诊断的可测性可分为结构可测性、测试可测性和干扰可测性3类,并定义了反映支路的不确定程度的指标。
     针对新建接地网,提出了一种基于遗传算法的监测极优化布置方案生成方法,能够以最少的监测极使接地网的所有支路都明晰,所提出的初始种群生成方法、交叉和变异方法能够避免不可行解,从而提高优化效率。建议了“抗干扰性最强原则”和“M+Y-X健壮性原则”对监测极布置方案的进一步优选。还探讨了在接地网撕裂诊断条件下的监测极布置方案优化问题。将上述成果应用到已建成接地网的测试中,提出了一种补充可及节点追加测试法,用以确定通过少量的开挖增加可及节点数量以使尽可能多的支路明晰的开挖方案。
     算例分析结果表明,所提出的方法是可行的和有效的。
In order to diagnose the corrosion of the grounding grids and ensure the safty of power apparatus, electric power system and the human beings, the following contributions have been made:
     An augmented diagnosis equation to describe the nonlinear relationship between incremental branch resistances and incremental voltages between touchable nodes is established. An iteration least square approach is proposed, in which, an iterative algorithm is constructed to solve the nonlinear equation progressively by a series of linear least square approaches. A Tabu search based approach to diagnose the corrosion of grounding grids is investigated. The index is to minimize the summation of the squared errors between testing voltages and the evaluated values. The branch resistances form the solution vector. In each iteration step, a set of neighborhood is formed by increasing or decreasing the resistance of each branch with a certain level, respectively, while the other branches not changed.
     A Monte-Carlo based approach is proposed to evaluate and compare the performance of various grounding grid corrosion diagnosis algorithms. Under a complete test scheme, the testing samples are formed by randomly changing the resistances of branches and the initial values of iteration. The averaged value of relative accumulated error of branch resistances and its standard deviations are used as the indexes for evaluation. Comparsions are made on several grounding grid corrosion diagnosis algorithms, such as, the iteration least square based algorithm, the Tabu based algorithm, the simplex and Tabu search hybrid algorithm, the linear least square based algorithm and the nonlinear least square based algorithm.
     A Monte-Carlo based approach is proposed to evaluate the testability of grounding grid corrosion diagnosis. The resistances of the branches of a grounding grid are set randomly to form many samples. According to a certain test scheme, the diagnosis results of branches of each sample are worked out. A stastical approach is carried out on the diagnosis results of all the samples, based on which, the branches with their relative errors and standard deviations less than the given threshold are determined as clear branches, the other branches are uncertain branches. A novel improved approach is suggested, which identifies the clear-branches and uncertain-branches automatically by a minimum spanning tree based algorithm and takes the measures of adding a clear vertex and an uncertain vertex, second classification of branches, similar sample adjustment and the ideal sample automatic generation. With the improved approaches, not only are the correctness consideablely increased, but also the amount of calculation needed in the testability evaluation is remarkably reduced. Besides, a Monte-Carlo based approach to evaluate the testability in case of the test data being with the measurent errors is also putforward. Three kinds of testability of grounding grids corrosion diagnosis are defined with their indexes, such as the structural testability, the measurement testability and the disturbance testability.
     As for the new grounding grids to be built, a genetic algorithm based method of layout optimization of monitoring lines is put forward. The optimum layouts of making all of the branches clear with the minimum number of monitoring lines can be worked out. The suggested ways of the initial population forming, crossover and mutation operation can avoid of the unfeasible solutions in the process, which ensures the efficiency. The best layout of monitoring lines is selected according to the proposed principle of the highest ability of anti-disturbace or the proposed robust principle of M+Y-X. The layout optimization of monitoring lines in case of splitting the grounding grid into small scaled sub-grids to test is also investigated. Applying above achievements into the diagnose of existing grounding grids, a new approach of adding touchable nodes and tests for grounding grid corrosion diagnosis is put forward, with the help of which, the positions of digging and adding touchable nodes with the least manpower to make certain uncertain branches clear can be obtained.
     The analyses of examples show that the proposed approaches are feasible and efficient.
引文
[1]蔡崇积.电力交流接地网损坏原因调研与分析[J].电力设备,2005,6(4): 20~22
    [2]满河清.云南电力系统发电厂、变电站接地网运行调查[J].云南电力技术,2002,28(2): 33~35
    [3]王红坡.电力接地网存在的问题分析[J].内蒙古科技与技术2004,21: 87~88
    [4]涂明,林志伟.湖北220kV及以上变电站接地网问题和对策[J].湖北电力,2002, 26(1): 10~11
    [5]刘辉,李明贵,陈晓兵.广西电网防雷及接地工作存在的主要问题及对策[J].广西电力,2006,3: 6~11
    [6]许非吾,徐国柱,沈京华等.500kV兰亭变电所接地网的技术改造[J].华东电力,2005,33(7): 88~90
    [7]韩涛.变电站地网存在的问题及改造意见[J].河北电力技术,2005,5: 7~9
    [8]常美生.变电站接地不当引起的两起事故及防止对策[J].电力学报,2005,20(2): 142~143
    [9]谢文.刘家坪水电站接地网的改造[J].机电设备,2001,3: 20~21
    [10]陈岳定,陈超杰,邓东润等.上海地区变电站接地网改造[J].华东电力,2004,32(3): 36~38
    [11]柯东敏.变电站地网的运行、维护及改造的探讨[J].引进与咨询,2005,4: 48~49
    [12]温丽颖.接地网的事故原因分析及其改造[J].科技情报开发与经济,2003,13(4): 223~224
    [13]蔡伟.变电站接地网存在问题及解决措施[J].冶金动力,1999,5: 5~7
    [14]蔡崇积.我国依国外标准设计电力交流接地网运行状态调研[J].电力设备,2005,6(5): 21~25
    [15]徐华.大型变电站钢材和铜材接地网的性能比较[J].高电压技术,2004,30(7): 18~19
    [16]中国电力公司.防止电力生产重大事故的二十五项重点要求.北京:中国电力出版社. 2001
    [17]马东,岳建华,牛继荣等.乌海地区地网腐蚀情况调查及防腐改造建议[J].内蒙古电力技术,2005,23(3): 1~3
    [18]高林蔚.接地装置腐蚀的原因分析和预防控制[J].电力建设,2002,23(12): 25~28
    [19]廖怀东,李建平,关键.变电站接地网腐蚀机理及材料选择[J].电力建设,2005, 26(8): 35~36
    [20]张如杰.谈变电所接地装置的腐蚀问题[J].内蒙古石油化工,2005,8: 32~33
    [21]石海珍.变电站地网电阻及接地引下线的测试、接地装置的防腐[J].新疆电力,2005,3: 4~6
    [22]胡学文.接地网腐蚀与防护的研究[J].湖北电力,2002,26(3): 31~34
    [23]王东烨,董刚.大型变电所地网评估若干问题的探讨[J].高电压技术,2001,27(2): 64~65
    [24]周永志.变电站接地装置存在的问题及其解决[J].华北电力技术,2002,12: 57~59
    [25]陈新.长沙变接地装置存在问题与处理[J].福建电力与电工,2004,24(2): 42~43
    [26]王宗民.一起变电所遭受雷害的原因与教训[J].农村电气化,2005,5: 28~28
    [27]黄日渊.小型水电站遭受雷击的原因分析与对策[J].农村电工,2001,7: 38~38
    [28]王方雄.矿山井下接地网络设计的探讨[J].有色冶金设计与研究,2002,23(4): 64~67
    [29]王公强.浅谈煤矿井下电器设备的安全与保护[J].煤矿开采,2002,52: 53~34
    [30]余淑梅.煤矿井下电气设备保护接地[J].煤炭技术,2005,24(11): 38~39
    [31]邓连山,邓有山.浅谈煤矿井下电器设备的保护接地[J].煤矿现代化,2008,6: 71~72
    [32]元瑞斌,元邢柱.浅谈煤矿井下电器设备的保护接地[J].山西煤炭.2008,28(1): 50~52
    [33]郭林.接地装置腐蚀故障诊断实例[J].西北电力技术,2003,6: 71~72
    [34]吴国跃,谭进,王军.变电站设备接地线导通检查[J].高电压技术,2002,28(5): 53~54
    [35]张艳梅.电气设备接地引下线导通测试及分析[J].四川电力技术,2005,6: 8~9
    [36]徐升昊.变电设备接地引下线的选择、施工与维护[J].电力安全技术,2001,6: 23~24
    [37]何金良,曾嵘.电力系统接地技术[M].北京:科学出版社,2007
    [38] Trinh N. Giao, Maruvada P. Sarma, Effect of Two-layer Earth on the Electric Field near HVDC Ground Electrodes[J]. IEEE Trans. Power Apparatus and Systems, 1972, 91: 2356~2365
    [39] F. P. Dawalibi, Electromagnetic Fields Generated by Overhead and Buried Short Conductors, Part 1 and Part 2[J]. IEEE Transaction on Power Delivery, 1986, 1(4): 105~119
    [40] L.Grcev, F.Dawalibi, An Electromagnetic Model for Transients in Grounding Systems[J]. IEEE Transaction on Power Delivery, 1990, 5(4): 1773~1781
    [41] W. Xiong, F.P.Dawalibi, Transient Performance of Substation Grounding Systems Subjected to Lighting and Similar Surge Current[J]. IEEE Transaction on Power Delivery, 1994, 9(3): 1412~1420
    [42] Jinxi Ma, F. P. Dawalibi, Analysis of Grounding Systems in Soils with Finite Volumes of Different Resistivities[J]. IEEE Transaction on Power Delivery, 2002, 17(2): 596~602
    [43] Jinxi Ma, F.P.Dawalibi. Influence of Inductive Coupling between Leads on Ground Impedance Measurements using the Fall-of-potential Method[J]. IEEE Transaction on Power Delivery, 2001,16(4): 739~743
    [44] Jinxi Ma, F.P.Dawalibi, Influence of inductive coupling between leads on soil resistivity measurements in multilayer soils [J]. IEEE Transaction on Power Delivery, 1998, 13(4): 999~1004
    [45] Li Yexu, Ma Jinxi, F.P.Dawalibi, et al.Power grounding safety: Copper grounding systems vs. steel grounding systems[C]. Proceeding of 2006 International Conference on Power System Technology, Chongqing, China, 2006, 6: 2973~2978
    [46] Ma Jinxi, F.P.Dawalibi, et al. Grounding analysis of a large electric power station[C]. Proceeding of 2006 International Conference on Power System Technology, Chongqing, China, 2006, 6: 2747~2752
    [47] IEEE Std80-2000, IEEE guide for safety in AC substation grounding [S]. New York: IEEE , 2000
    [48] Y.L.Chow, J.J.Yang, K.D. Srivastava. Complex images of a ground electrode in layered soils[J]. Applied Physics, 1992, 71(2): 569~573
    [49] Y.L.Chow, J.Yang. Complex Images for Electrostatic Field Computation in Multilayered Media[J]. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(7): 1120~1125
    [50] Pappas S.S., Ekonomou L., Karampelas P., etal. Modeling of the grounding resistance variation using ARMA models[J]. Simulation Modelling Practice and Theory, 2008,16(5): 560~570
    [51] Leonid. Grcev, Computer Analysis of Transient Voltages in Large Grounding Systems[J]. IEEE Transaction on Power Delivery, 1996, 11(2): 815~823
    [52] Leonid. Grcev, Markus Heimbach, Frequency Dependent and Transient Characteristics of Substation Grounding Systems[J]. IEEE Transaction on Power Delivery, 1997, 12(1): 172~178
    [53] A.F.Otero, J.Cidras, J.L.D.Alamo, Frequency-Dependent Grounding System Calculation by Means of a Conventional Nodal Analysis Technique[J]. IEEETransaction on Power Delivery, 1999, 14(3): 873~878
    [54] J.Cidras, A.F.Otero, C.Garrido, Nodal Frequency Analysis of Grounding SystemsConsidering the Soil Ionization Effect[J]. IEEE Transaction on Power Delivery, 2000, 15(1): 103~107
    [55] J.M.Nahman,V.B.Djordjevic. Nonuniformity correction factors for maximum mesh and step-voltage of grounding grids and combined grounding electrodes[J]. IEEE Transactions on Power Delivery, 1995, 10(3):1263~1269
    [56] 5J.M.Nahman, V.B.Djordjevic. Resistance to ground of combined grid-multiple rods electrodes[J]. IEEE Transactions on Power Delivery,1996, 11(3):1337~1342
    [57] B.Thapar, V.Gerez, A.Balakrishnan, et al.Evaluation of ground resistance of a grounding grid of any shape[J]. IEEE Transactions on Power Delivery, 1991, 6(2):640~644
    [58] B.Thapar, V.Gerez, A.Balakrishnan, et al.Simplified equations formesh and step voltages in an AC substation[J]. IEEE Transactions on Power Delivery, 1991, 6(2): 601~605
    [59] H.Anton, T.Mladen, P.Joze. The influence of an additional substance in the trenches surrounding the grounding grid's conductors on the grounding grid's performance[J]. IEEE Transactions on Magnetics, 2007, 43(4): 1257~1260
    [60] Dawalibi F. Earth resistivity measurement interpretation techniques[J]. IEEE Trans. Power Apparatus and Systems, 1984, 103(2): 374~382
    [61] P. J. Lagace, J. Fortin, E.D. Crainic. Interpretation of resistivity sounding measurementsin n-layer soil using electrostatic images[J]. IEEE Transaction on power Delivery, 1996, 11(3): 1349~1354
    [62] J. L. del Alamo, E. E. A comparison among eight different techniques to achieve an optimum estimation of electrical grounding parameters in two-layered earth[J]. IEEE Transaction on power Delivery, 1993, 8(4): 1890~1899
    [63] Pierre Jean Lagace, Mai Hoa Vuong, et al. Multilayer Resistivity Interpretation and Error Estimation Using Electrostatic Images[J]. IEEE Transactions on Power Delivery, 2006, 21(4): 1954~1960
    [64] Tommasini R., Pons E., Toja, S.. MV ground fault analysis and global grounding systems[C]. Proceedings of the Seventh IASTED International Conference on Power and Energy Systems, Clearwater Beach, FL, United States. 2004: 285~290
    [65] Gillies D.A., Stewart R.P, Randolph J.D., et al.Current North American assessment and refurbishment practices of substation grounding systems[J]. IEEE Transactions on Power Delivery, 2005, 20(3): 1886~1889
    [66] Thomas E.S., Dagenhart J. B., Barber R.A. et al. Distribution system groundingfundamentals[J]. IEEE Industry Applications Magazine, 2005, 11(5): 67~76
    [67] Sekioka S., Lorentzou M. I., Philippakou M.P.. Current-dependent grounding resistance model based on energy balance of soil ionization[J]. IEEE Transactions on Power Delivery, 2006, 21(1): 194-201.
    [68]张波,崔翔,赵志斌等.大型变电站接地网的频率分析方法[J].中国电机工程学报,2002,22(9): 59~63
    [69]齐磊,崔翔,李慧奇.变电站接地网的频域有限元方法[J].中国电机工程学报,2007,27(6): 62~66
    [70]孟奇,鲁志伟.边界元法在接地网数值计算中的应用[J].东北电力学院学报,1998,18(1): 28~36
    [71]李中新,袁建生,张丽萍.变电站接地网模拟计算[J].中国电机工程学报,1999,19(9): 76~79
    [72]李中新.变电站接地网模拟计算[D]:[清华大学博士论文].北京:清华大学, 1999
    [73]张波,崔翔,赵志斌等.计及导体互感的复杂接地网的频域分析方法[J].中国电机工程学报,2003,23(4): 77~80.
    [74]张丽萍,袁建生,李中新.变电站接地网不等电位模型数值计算[J].中国电机工程学报,2000, 20(1): 1~3.
    [75]徐建平.接地电阻测量方法的误差分析与工程实践[J].浙江电力,2004,4: 23~27
    [76]张丽萍,袁建生,李中新.一个实际变电站接地网的计算机模拟计算与分析[J].电工技术学报,2000,15(1): 72~75
    [77]孙结中,刘力.利用等值复数镜像法求解复合分层土壤结构的格林函数[J].中国电机工程学报,2003,23(9): 146~151
    [78]鲁志伟,文习山,史艳玲等.大型变电站接地网工频接地参数的数值计算[J].中国电机工程学报,2003,23(12): 89~93
    [79]齐磊,崔翔,赵志斌.复杂接地系统冲击接地特性的数值计算及试验[J].电网技术,2006,30(13): 66~69
    [80]于刚,邹军,郭剑等.基于矢量矩阵束方法的大型接地网暂态分析[J].清华大学学报(自然科学版),2004,44(4): 458~461
    [81]鲁志伟,常树生,李越等.大型变电站接地网接地阻抗与接地电阻的差异[J].高电压技术,2005,31(1): 14~16
    [82]鲁志伟,常树生,张久禄.大型变电站接地网的网内电位差[J].电力建设,2004,25(9): 39~40
    [83]王洪新,关根志,张元芳等.一种测量接地网工频接地电阻的新方法[J].武汉水利电力大学学报,1998,31(3): 48~51
    [84]黄文力,侯咏梅.接地系统数值分析数据存储的优化[J].广西电力.2003,3: 70~72
    [85]胡登宇,陈彩屏.电网技术二层土壤是矩形复合接地网基础接地电阻计算[J].电网技术,2001,25(10): 21~25
    [86]王洪泽.计算任意形接地网接地电阻的一种新公式[J].广西电力技术,1994,3: 11~16
    [87]张丽萍,袁建生,李中新.一个复杂结构变电站接地网计算机模拟分析[J].电网技术,1999,23(4): 5~7
    [88]刘宝成.低电压大电流法检测接地网技术研究[J].华北电力技术,1999,2: 7~8
    [89]黄锐锋,李琳,张波等.变电站接地网接地电阻距离测法与系统开发[J].高电压技术,2004,30(9): 27~29
    [90]高延庆,何金良,曾嵘.发、变电站接地网安全性能分析[J].中国电力,2001,34(5): 33~36
    [91]杨慧娜,袁建生.利用Wenner四极法确定三层土壤模型[J].清华大学学报(自然科学版),2002,42(3): 291~294
    [92] HeJinliang, GaoYanqing, Zeng Rong, etal. Optimal design of grounding system considering the influence of seasonal frozen soil layer[J]. IEEE Transactions on Power Delivery, 2005,20(1): 107-115
    [93]解广润.电力系统接地技术[M].北京:水利电力出版社,1991
    [94]李景禄.接地装置的运行与改造[M].北京:中国水利水电出版社,2005
    [95]陈化钢.对变电所接地网安全判据的探讨[J].高电压技术,1996,22(1): 59~61
    [96]水利电力部.电力设备接地设计技术规程(SDJB-76) [S].北京:水利电力出版社,1977
    [97]徐立新,陈刚,王东烨.大型接地装置状态评估测试[J].东北电力技术,2005,9: 9~11
    [98]程更生,蒲路,何计谋等.评价交流接地网施工及运行可靠性的相关问题分析[J].电瓷霹雷器,2008,2: 21~24
    [99]邓雨荣,何金良,马玉林.变电站接地系统状态评估方法[J].广西电力,2006,5: 1~4
    [100]王森.发电厂及变电站接地网安全评估的探讨[J].西北电力技术,2002,3: 9~11
    [101]张锋.浅析变电所接地装置存在的问题[J].新疆电力,2005,2: 11~12
    [102]李侣.关于接地网几个问题的探讨[J].江西电力,2004,4: 11~13
    [103]邓华.昆明供电局220kV普吉变电站接地网改造[J].云南电力技术,2004,32(1): 45~47
    [104]王森,朱小明,安宗贵等.变电站综合缺陷诊断方法的研究[J].陕西电力,2006,34(1): 23~26
    [105] Dawalibi F. P. Electromagnetic fields generated by overhead and buried short conductors Part 2. Ground conductor[J]. IEEE Trans. on Power Delivery,1986, PWRD,1: 112~119
    [106] Zhang Bo, Zhao Zhibin, Cui Xiang, et al. Diagnosis of breaks in substation’s grounding grid by using the Electromagnetic method[J]. IEEE Trans. on Magnetic, 2002, 38(2): 473~476
    [107]刘洋,崔翔,赵志斌.测量磁感应强度诊断变电站接地网断点[J].高电压技术,2008,34(7): 389~393
    [108] Hu Jun, Zhang Rong, He Jinliang. Novel method of corrosion diagnosis for grounding grid[C]. Proceedings of the 2000 International Conference on Power System Technology, Perth, Australia, 2000, 3: 1365~1370
    [109] Rong ZHANG, Jinliang HE, Jun HU, et al. The theory and implementation of corrosion diagnosis for grounding system[C]. International Conference on Power System Technology. Pittsburgh, USA, 2002: 1120~1126
    [110]肖新华,刘华,陈先禄等.接地网腐蚀和断点的诊断理论分析[J].重庆大学学报,2001,24(3): 72~75
    [111]张晓玲,陈先禄.优化技术在发、变电所接地网故障诊断中的应用[J].高电压技术,2000,26(4): 64~66
    [112]张晓玲,黄青阳.电力系统接地网故障诊断[J].电力系统及其自动化学报,2002,14(1): 48~51
    [113]刘庆珍,蔡金锭.电力系统接地网故障的无伤检测方法[J].高电压技术,2003,29(6): 47~48
    [114]张选利,刘庆珍,蔡金锭.电力系统接地网故障的自动检测[J].福建电力与电工,2003,23(3): 2~14
    [115]刘渝根,腾永禧,陈先禄等.接地网导体状态的诊断方法[J].重庆大学学报,2004,27(2): 92~95
    [116]黄文武,文习山,朱正国.地网腐蚀与断点诊断软件系统的开发[J].高电压技术, 2005,31(7): 42~44
    [117]江修波.接地网故障诊断的一种新方法[J].福州大学学报,2005, 33(6): 749~752
    [118]王萍,刘洵.变电站地网故障诊断理论与实验方法[J].水电能源科学,2006,24(3): 79~81
    [119]王硕,刘渝根,游建川等.大型接地网腐蚀优化诊断[J].重庆大学学报,2006,29(8): 33~35
    [120]付龙海,吴广宁,王颢等.青藏铁路变电站接地网腐蚀断裂点的判断[J].电力系统及其自动化学报,2006,18(1): 20~23
    [121]何智强,文习山,潘桌洪等.一种地网腐蚀故障诊断的新算法[J].高电压技术, 2007,33(4): 83~87
    [122]彭珑,郭洁,李晓峰.微量处理法在变电站接地网腐蚀诊断中的应用[J].高电压技术, 2007,33(7): 199~202
    [123]王福胜,张可村,申培萍等.电力系统中地网腐蚀诊断的一种新的数学模型及其仿真计算[J].高校应用数学学报, 2007,22(2): 141~152
    [124]黄勇,贺兴柏,王旭东等.发、变电站接地网电器连接故障点检测方法现场试验研究[J].高电压技术.1995,21(1): 56~57
    [125]马德明,江普庆,马洪宁.接地网体故障测试仪制作及使用[J].江苏电力技术,2001, 2: 20~23
    [126]刘健,王树奇,李志忠等.接地网腐蚀故障诊断的可测性研究[J].高电压技术,2008,34 (1): 64~69
    [127] Liu Jian, Wang Shuqi, Ni YunFeng, et al. A new approach of testability evaluation for Grounding Grid Corrosion Diagnosis[C]. Proceeding of the 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, IEEE Computer Society, Nanjing, China, April, 2008: 804-808
    [128]王树奇,倪云峰,刘健等.接地网故障诊断中的拓扑分解及其应用研究[J].计算机工程与应用,2008,44(18): 207~210
    [129]刘健,王树奇,李志忠等.基于网络拓扑分层约简的接地网腐蚀故障诊断[J].中国电机工程学报,2008,28(16): 122~128
    [130] Wang Shuqi, Liu Jian, Ni YunFeng, et al. Conductor Corrosion Fault Detection & Identification For Grounding Grids[C]. Proceeding of 3rd International Conference on Innovation Computering, Information and Control, IEEE Computer Society,Dalian, China, June, 2008
    [131] Liu Jian, Wang Shuqi, Ni YunFeng, et al.Grounding Grids Corrosion Diagnosis and Information Digging of Uncertain Branches[C]. Proceeding of the 2008 IEEE International Conference on Information and Automation, IEEE Computer Society, Zhangjiajie, China, June, 2008: 1480~1484
    [132]刘健,王树奇,李志忠等.接地网导体腐蚀故障诊断测试方案[J].高电压技术, 2008,34 (9): 1964-1970
    [133]王树奇.基于分层约简模型的接地网腐蚀故障诊断研究[D]:西安科技大学博士学位论文.西安:西安科技大学,2009
    [134] Liu Jian, Ni YunFeng, Wang Shuqi, et al. A novel approach of grounding grid corrosion diagnosis [C]. Proceedings of the IEEE International Conference on Industrial Technology, Chengdu, April, 2008.
    [135]倪云峰,刘健,王树奇等.接地网接地引下线腐蚀故障的分区诊断方法[J].高电压技术, 2008,34 (11): 2354~2359
    [136] Ni YunFeng, Liu Jian, Wang Shuqi, et al. Corrosion diagnosis of conductors and downlead lines for grounding grids maintenance [C]. 2008 workshop on Power Electronics and Intelligent Transportation System, Guangzhou, August, 2008
    [137]刘健,倪云峰,王树奇等.可及节点偏移对接地网故障诊断的影响及修正[J].高电压技术,2008,34 (11): 2367~2373
    [138]李志忠,王树奇,郑福荣.基于禁忌搜索和单纯形结合的接地网故障诊断算法[J].兰州大学学报(自然科学版), 2007,43: 319~322
    [139]王凌.智能优化算法及其应用.北京:清华大学出版社,施普林格出版社, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700