用户名: 密码: 验证码:
湿生物质定向气化制取高浓度氢气的实验研究及理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了改善能源结构和缓解目前严重的环境污染问题,人们越来越重视清洁能源—氢能的开发和利用。生物质蒸汽气化制氢是富有发展前景的可再生资源制氢技术。本文针对生物质蒸汽气化产氢浓度低、能耗高的缺点,提出了湿生物质定向气化制取高浓度氢气工艺。该工艺将湿生物质干燥、热解、蒸汽气化、高温原位CO2分离集中在一个反应器内进行,利用高温原位CO2分离技术突破反应器内热力学平衡的限制,定向推动蒸汽重整反应向着产氢方向进行,应用湿份干燥产生的自发蒸汽进行蒸汽气化,在获取产氢浓度较高的气化气的同时简化操作、降低能耗,具有较好的经济性。围绕该工艺的构建,本论文开展以下研究工作:
     (1)自发蒸汽气氛内生物质热解/气化研究。在自制的两套反应器内进行湿生物质热解/气化研究,研究湿度、温度、加热速率、停留时间对产物分布、产气组分分布、碳转化率等参数的影响规律,重点讨论应用自发蒸汽进行蒸汽重整的可行性。结果表明加热速率对应用自发蒸汽进行蒸汽重整具有决定作用。采用高加热速率时,干燥和热解发生在一个相对较短的时间段内,强化了自发蒸汽与热解中间产物(焦油、半焦)的接触频率,从而提高产氢量以及产氢浓度。增加载气流量降低了自发蒸汽、热解挥发份在反应器内的停留时间不利于蒸汽重整。此外,还研究了热解/气化中半焦微晶结构的变化规律。研究表明饱和结构(γ带)的分解集中在573~673K之间。芳香结构的分解贯穿整个反应过程,但不能完全分解,是构成焦炭的主要结构。低温(<573K)时,γ带衍射线增加以及芳香度降低从微晶结构证明了生物质热解初期活性中间态物质的存在。
     (2)湿生物质定向气化热力学分析及实验研究。运用热力学分析和实验研究两种方法对湿生物质定向气化进行研究。热力学分析表明CaO碳酸化反应能突破热平衡对气相反应的限制,定向推动气相反应向着产氢方向进行。随着[Ca]/[C]、S/B的增加,产氢量、产氢浓度增加。CaO碳酸化反应进行的程度直接关系到定向气化的效果。CO2分压低是制约CaO碳酸化反应的主要因素。实验研究表明湿度、温度、[Ca]/[C]等参数对定向气化过程的影响与热分析结论基本相同。高温强化了生物质、焦油热分解等反应产生较多氢气,但是不利于CaO碳酸化反应。高温时生成的CaO活性较差,这一点在XRD谱图和SEM图片上也有所体现。定向气化操作的最佳温度在923~973K。此外,还发现Ca(OH)2对水煤气反应的促进作用明显大于对甲烷蒸汽重整的影响。
     (3) CaO吸收剂循环性能改进实验研究。围绕钙基吸收剂不完全转化以及循环吸收能力下降,结合湿生物质定向气化实际操作条件,开展以下研究:定向气化过程中钙基吸收剂孔隙结构变化;钙基吸收剂蒸汽活化和水合活化;煅烧条件对h-CaO吸收能力的影响规律;实际生物质定向气化中的钙基吸收剂循环特性。研究表明Ca(OH)2分解能引起孔隙结构的增加,特别是中孔范围内的孔;CaCO3所造成的孔堵塞主要是针对孔径小于25nm的孔。活化温度对蒸汽活化效果有较大的影响。随着活化温度的升高活化效果逐渐下降,最高活化温度为598K。煅烧条件对Ca(OH)2分解产物的CO2吸收能力有较大的影响。首次发现煅烧初期延长煅烧时间会导致其分解产物的CO2吸收能力大幅度下降。随着温度的增加,吸收能力下降幅度减少。相对于氮气气氛,在蒸汽气氛中煅烧,吸收能力下降幅度较大。在生物质定向气化中采用可蒸汽活化可以对CaO进行有效活化。
     (4)移动填充床内湿生物质定向气化理论分析。从动力学角度对移动填充床内湿生物质定向气化进行理论研究。建立了系统的湿生物质定向气化动力学模型,对影响生物质定向气化制氢的几个关键参数进行研究,分析气化过程中一次蒸汽、挥发份、二次蒸汽析出规律以及CaO碳酸化反应对气化反应的作用机理。此外,通过理论计算获取反应器设计相关参数也是本章模拟计算的一个目的,以期为生物质定向气化制氢工业化应用提供理论依据。
Both the growing awareness of the decreasing availability of fossil fuels and the increasing pressure on the environment from production and combustion of fossil have nowadays led to a deeper interest in sustainable energy generation using biomass. In the past two decades, hydrogen production from steam gasification of biomass has become the subject of extensive research in the field of biomass utilization. However, there are still many obstacles required to resolve until the commercial breakthrough could be obtained, such as low hydrogen content in gas product, high levels of energy consumption. In this thesis, a novel process of directional gasification of wet biomass for hydrogen production was proposed. In the process, the drying of wet biomass, pyrolysis, gasification, steam production and in-situ CO2 capture are occurred in the same reactor. The removing of CO2 by in-situ capture will change the original equilibriums of gas phase and push reactions, such as, steam reforming of carbonaceous fuel, water gas shift reaction, to take place on the direction of hydrogen production to produce additional H2. Furthermore, the steam auto-generated from the drying of wet biomass is utilized as reactant to react with the intermediate product of pyrolysis to produce more hydrogen. As a result, the pre-drying process and the specific steam generation, which involves lots of energy consumption are removed consequently in this process. For developing the novel process, investigations were conducted in this thesis as following:
     (1) Mechanism study of biomass pyrolysis in an auto-generated steam atmosphere.
     Hydrogen-rich gas production from pyrolysis of biomass in an auto-generated steam atmosphere was proposed. The scheme aims to utilize steam auto-generated from biomass moisture as a reactant to react with the intermediate products of pyrolysis to produce additional hydrogen. The effects of moisture content, temperature, heating rate, and residence time on product distributions, gas composition, carbon conversion, and other parameters were investigated experimentally. The results show that heating rate is a key role in the process. Under fast-heating conditions, drying and pyrolysis occurred in a relatively shorter time, which enhances the interactions between the auto-generated steam and the intermediate products of pyrolysis and hence produces more hydrogen. The use of sweeping gas is unfavorable to hydrogen production due to the reduced residence time of both the auto-generated steam and the volatile. Moisture content has a great effect on hydrogen production. The H2 yield and content increases with the moisture content. Under the conditions of fast-heating rate and without the use of sweeping gas, the pyrolysis of wet biomass with a moisture content of 47.4% exhibits higher H2 yield of 495 mL/g, H2 content of 38.1 vol%, and carbon conversion efficiency of 87.3% than those (267 mL/g, 26.9 vol%, and 68.2%) from the pyrolysis of the pre-dried biomass with a moisture content of 7.9%, which represents the conventional biomass pyrolysis.
     Measurement of the atomic structures of chars produced from pyrolysis of wet biomass at different temperature was carried out with XRD. The presented results indicate that most aliphatic chains (γband) are decomposed before 673K during pyrolysis, while only parts of the aromatic system ((002) band) are decomposed, which is the main structure of char. The increase of X-ray intensity ofγband below 573K and the decrease of aromaticity in the same temperature range confirmed the existence of activated intermediate product during pyrolysis in terms of atomic structures.
     (2) Directional gasification of wet biomass for hydrogen production with in-situ CO2 capture.
     The directional gasification of wet biomass for hydrogen production with in-situ CO2 capture proposed in the present thesis was investigated with a thermodynamic analysis and experimental studies, respectively. The thermodynamic analysis was done using Aspen Plus software (version 11.1) and the Gibbs energy minimization approach was followed. The analysis data indicate that the directional gasification of wet biomass for hydrogen production proposed in this theis is feasible. The CO2 absorption by CaO plays an important role in the process, which directionally pushes the reactions to take place towards the direction of hydrogen production. High temperature is unfavorable to the CO2 absorption by CaO. It should be noticed that the decrease of CO2 partial pressure resulted from the occurrence of CO2 absorption and/or the dilutedness by excessive steam significantly restrict the CO2 absorption by CaO.
     The experimental results show that the effects of moisture content, temperature, and [Ca]/[C] on the process is similar with the results of the analysis. The presence of the sorbent greatly promotes both hydrogen production from biomass gasification and CO2 capture. In this process, CaO plays the dual role of catalyst and sorbent. Furthermore, it is noteworthy that the sorbent reveals a stronger effect on the water gas shift reaction than on the steam reforming of methane. The reactor temperature reveals different effects on hydrogen production and CO2 absorption. High temperature favors enhancing the H2 yield while goes against CO2 capture. The negative effect of high temperature on CO2 capture is also proved by XRD spectrum and SEM image. For the novel method, the optimal operating temperature is in the 923–973K range.
     (3) Study on the improvement of Ca-based sobent in hydrogen production from directional gasification of wet biomass.
     Aimed to the incomplete conversion and absorption capacity decay of CaO, a series of study were performed. The results show that h-CaO generated from the dehydration of Ca(OH)2 has larger ABET and Vpore, than its former Ca(OH)2. Although the burning of SR sample can realize CaO regeneration, the regenerated CaO with a totally deteriorated pore networks suggests poor reactivity. The pore less than 25 nm in CaO powder are easier be blocked by CaCO3, which will cause incomplete utilization. The effect of steam reactivation gradually decreased as steam reactivation temperature increases. The optimal steam reactivation temperature is 598K. For water reactivation, the increase of water amount will result in a better reactivation effect. A fast decay of absorption capacity during Ca(OH)2 calcination was observed first time. Results show that the CO2 capture capacity decreases significantly as calcination time increases. At 923K, the decay leads to a 27.3% of the CO2 capture capacity loss, while calcination time increases from 2.5 minutes to 5 minutes. High calcination temperature is helpful to weaken the extent of the decay, whereas the presence of steam during calcination makes the decay deteriorated. During the decomposition of Ca(OH)2, an intermediate product was generated, which is of high reactivity but very unstable.
     (4) Theoretical study on the directional gasification of wet biomass in a moving bed.
     A mathematical model on the directional gasification of wet biomass in a moving bed was proposed. The drying of wet biomass, the decomposition of biomass and Ca(OH)2, and the CO2 capture by CaO were considered in the model. The model can predict the time-product (first steam, volatile matter, and second steam) released and time-temperature history of feedstock. The result had a good agreement with the experimental results, as could be beneficial for the optimization of reaction parameter and reactor design.
引文
[1]谭洪.生物质热裂解机理试验研究[D].博士学位论文,浙江大学,2005.
    [2]任保增,唐大惠,胡庆丽等.清洁制氢技术[J].河南化工.2004,11:5-7.
    [3]朱起明,魏俊梅,徐柏庆.中国氢气的生产和应用,现状与前景.全国清洁能源技术研讨会,北京,1999,5:7.
    [4]岳思.生物质微米燃料催化气化制富氢燃气研究[D].硕士学位论文,华中科技大学,2007.
    [5] Armor JN.The multiple roles for catalysis in the production of H2[J]. Applied Catalysis A:General,1999,176:159-176.
    [6]毛宗强.氢能及其近期应用前景[J].科技导报.2005,2:34-38.
    [7]任南琪.发酵法生物制氢技术研究进展和发展趋势.PPT上海氢能年会.
    [8]倪萌,Leung MKH,Sumathy K.氢-未来的绿色燃料[J].现代车用动力,2004, 2:4-8.
    [9]世界能源理事会编.新的可再生能源-未来发展指南[M].北京:海洋出版社,1998.
    [10]中国农业部/美国能源部项目专家组.中国生物质资源可获性评价[M].北京:中国环境科学出版社,1998.
    [11]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002, (2):75-80.
    [12]李改莲,王远红,黄浩等.中国生物质能的利用状况及展望[J].河南农业大学学报,2004,38(1):100-104.
    [13]顾树华,段茂盛.中国生物质资源概况及其能源利用.吉林:小型生物质发电技术研讨会,1998,1:1-5.
    [14] Evans R, Boyd CL, Elam, etc. Hydrogen from biomass-catalytic reforming of pyrolysis vapors, FY 2003 Progress Report, National Renewable EnergyLaboratory, 2003.
    [15] Demirbas A. Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield[J]. Energy Conversion and Management, 2002, 43: 897.
    [16] Meng N, Dennis YCL, Michael KHL, etc. An overview of hydrogen production from biomass[J]. Fuel Processing Technology, 2006:461-472.
    [17] Chornet E, Czernik S, Wang D, etc. Biomass to hydrogen via pyrolysis and reforming. Proceedings of 1994 US DOE hydrogen program review. NREL/CP-470-6431; CONF-9404194:407-432.
    [18] Chornet E, Wang D, Montane S, etc. Biomass to Hydrogen via Fast Pyrolysis and Catalytic Steam Reforming. Proceedings of the 1995 U.S. DOE Hydrogen Program Review, Coral Gables, Florida, NREL/CP-430-20036:707-730.
    [19] Chomet E, Wang D, Montane D, etc. Hydrogen Production by Fast Pyrolysis of B iomass and Catalytic Steam Reforming of Pyrolysis Oil. Proceedings of the 2nd E U-Canada Workshop on Thermal Biomass Processing:246-261.
    [20] Chomet E, Mann M, Wang D, etc. Hydrogen from Biomass via Fast Pyrolysis. Proceedings: The 1995 Symposium on Gerenhouse Gas Emissions and Mitigation Research, EPA-600/R-96-072: 4-127.
    [21] Chornet E, Wang D, Czemik S, etc. Biomass-to-Hydrogen via Fast Pyrolysis and Catalytic Steam Reforming. Proceedings of the 1996U.S. DOE Hydorgen Program Review, Miami, FL,May1-2,Vol.1, NREL/CP4 30-21968:457-480.
    [22] Czemik S, Franch R, Feik C, etc. Production of hydrogen from biomass-derived liquids. Process in thermochemical biomass conversion. NREL/CP-570-30535,2000, 130-140.
    [23] Rabah MA, Eldighidy SM. Low cost hydrogen production from waste[J]. International Journal of Hydrogen Energy. 1989,14(4):221-227.
    [24] Simell PA, Hakala NAK, Haario HE, etc. Catalytic decompositionof gasification gas tar with benzene as the model compound[J]. Industrial and Engineering Chemistry Research, 1997, 36(1):42-51.
    [25] Simell PA, Hirvensalo EK, Smolander VT, etc. Steam reforming of gasification gas tar over dolomite with benzene as a model compound[J]. Industrial and Engineering Chemistry Research, 1999,38(4):1250-1257.
    [26] Chen G, Andries J, Spliethoff H. Catalytic pyrolysis of biomass for hydrogen rich fuel gas production[J]. Energy Conversion and Management, 2003,44(14):2289-2296.
    [27] Narvaez I, Corella J, Orio A. Fresh tar (from a biomass gasifier) elimination over a commercial steam-reforming catalyst. Kinetics and effect of different variables of operation[J]. Industrial and Engineering Chemistry Research,1997, 36(2):317-327.
    [28] Williams PT, Brindle AJ. Catalytic pyrolysis of tyres: influence of catalyst temperature[J]. Fuel, 2002, 81(18):2425-2434.
    [29] Sutton D, Kelleher B, Ross J. Catalytic conditioning of organic volatile products produced by peat pyrolysis[J]. Biomass and Bioenergy, 2002, 23(3):209-216.
    [30] Garcia L, French R, Czernik S, etc. Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition[J]. Applied Catalysis A: General, 2000, 201(2): 225-239.
    [31] Kinoshita CM, Wang Y, Zhou J. Efect of reformer conditions on catalytic reforming of bio mass-gasification tars. Ind.Eng.Chem.Res.[J]. 1995, 34(9):2949-2954.
    [32] Cox JL, Tonkovich AY, Elliot DC, etc. Hydrogen from biomass: a fresh approach. Second Biomass Confeernce of the Americans: Energy, Enviornment, Agriculture, and Industry Proceedings; National Renewable Energy Laboratory: Golden, Colorado, 1995:657-674.
    [33] Mann MK.Technical and economic assessment of producing hydrogen by reforming syn gas from the Batelle in directly heated biomass gasifier. Proceedings of the1995 U.S. DOE Hydrogen Program Review, National Renewable Energy Laboratory Report No. NREL/TP-431-8143, 1995:205-236.
    [34] Turn S, Kinoshita C, Zhang Z, etc. An experimental investigation of hydrogen production form biomass gasification[J]. Int.J.Hydrogen Energy, 1998, 23 (8):641-648.
    [35] Aznar MP, Caballero MA, Corella J, etc. Hydrogen production by biomass gasification with steam-O2 mixtures followed by a catalytic steam reformer and a CO-shift system[J]. Energy & Fuels, 2006, 22(3):1305-1309.
    [36] Nicholas HF, Andrew TH. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents[J]. Chemical Engineering Science, 2008, 63:287-316.
    [37]吕鹏梅.生物质催化制氢特性研究[D].博士学位论文,中国科学技术大学, 2003.
    [38]魏立纲.固体热载体法生物质催化气化制氢工艺[D].博士学位论文,大连理工大学,2006.
    [39]郝小红,郭烈锦.超临界水中湿生物质催化气化制氢研究评述[J].化工学报,2002,53(3):221-228.
    [40] http://Iib.hebut.edu.cn/xinxi/xb10-42.htm
    [41] Johanson NW, Spritzer MH, Hong GT, etc. Supercritical water partial oxidation. Proceedings of the2001 U.S. DOE Hydorgen Program Review (NREL/CP5 70-30535).
    [42] Antal JMJ, Manarungson S, Mok WSL. Hydrogen Production by Steam Reforming Glucose in Supercritical Water. Advances in Thermochemical Biomass Conversion, Ed. A V Bridgwater, Blackie Academic and Professional:1367-1377
    [43] Antal JMJ, Xu X. Total, Catalytic, Supercritical steam reforming of biomass. Proceedings of the 1997 U.S. DOE Hydrogen Program Review. NREL/CP-430-23722 (DOEH ZR eview) 149-162.
    [44] Antal JMJ, Allen S, Lichwa J, etc. Hydrogen Production from High-Moisture Content Biomass in Supercritical Water. Proceedings of the1999 U.S. DOE Hydrogen Program Review, NREL/CP-570-26938:1-24.
    [45] Antal JMJ, Allen SG, Schulman D, etc. Biomass gasification in supercritical water. Ind. Eng.Chem.Res.[J], 2000, 39(11):4040-4053.
    [46] Minowa T, Inoue S. Hydrogen production from biomass catalytic gasification in hot compressed water[J]. Renewable Energy, 1999, 16:1114-1117.
    [47] Lu X, Sakoda A, Suzuki M. Decomposition of cellulose by continuous near-critical water reactions. Chinese J .of Chem. Eng.[J], 2000, 8(4):321-325.
    [48]关宇,郭烈锦,张西民等.生物质模型化合物在超临界水中的气化[J].化工学报.2006,57(6):1426-1430.
    [49]郝小红,郭烈锦,吕友军等.生物质超临界水气化制氢反应动力学分析[J].西安交通大学学报.2005,39(7):681-684.
    [50]田亚峻,陈宏刚,李凡等.煤与等离子体的作用机理探讨[J].煤炭转化,1998, 21(4):1-6.
    [51] Sutton D, Review of literature on catalysts for biomass gasification[J]. Fuel processing technology. 2001,73(3):155-173.
    [52] Garcia XA, Alarcon NA, Gordon AL. Steam gasification of tars using a CaO catalyst[J]. Fuel Processing Technology. 1999, 58(2-3):83-102.
    [53] Radovic LR, Walker PL, Jenkins RG. Importance of catalyst dispersion in the gasification of lignite chars[J]. Journal of Catalysis. 1983, 82(2):382-394.
    [54] Ohtsuka Y, Tomita A. Calcium catalysed steam gasification of yallourn brown coal[J]. Fuel. 1986, 65(12):1653-1657.
    [55] Cazorla AD, Linares SA, Saunas MLC. A temperature-programmed reaction study of calcium-catalyzed carbon gasification[J]. Energy&Feuls, 1992, 6(3):287-293.
    [56]骆仲映,张晓东,周劲松.生物质热解焦油的热裂解与催化裂解[J].高校化学工程学报,2004,18(2):162-167.
    [57] Delgado J, Aznar MP, Corella J. Calcined dolomite, magnesite, and calcite for cleaning hot gas from a fluidized bed biomass gasifier with steam: Life and usefulness[J]. Ind. Eng. Chem. Res., 1996, 35(10):3637-3643.
    [58] Corella J, Aznar MP, Gil J, etc. Biomass gasification in fluidized bed: Where to locate the dolomite to improve gasification[J]. Energy&Fuels, 1999, 13(6):1122-1127.
    [59] Corella J, Toledo J M, Padilla R. Olivine or dolomite as in-bed additive in biomass gasification with air in a fluidized bed: Which is better?[J]. Energy&Fuels, 2004, 18(3):713-720.
    [60]吕鹏梅,熊祖鸿,常杰等.生物质催化气化制取富氢燃气的研究[J].环境污染治理技术与设备,2003,4(11):31-34.
    [61]周劲松,王铁柱,骆仲映等.生物质焦油的催化裂解研究[J].燃料化学学报, 2003,31(2):144-148.
    [62]张晓东,骆仲映,周劲松等.焦油催化裂化催化剂积炭失活的实验研究[J].燃料化学学报,2004,32(5):542-546.
    [63]侯斌,吕子安,李晓辉等.生物质热解产物中焦油的催化裂化[J].燃料化学学报,2001,29(1):70-75.
    [64] Rapagna S, Jand N, Kiennemann A, etc. Steam-gasification of biomass in fluidized-bed of olivine particles[J]. Biomass and Bioenergy, 2000, 19(3):187-197
    [65] Devi L, Ptasinski KJ, Janssen FJJG. Catalytic decomposition of biomass tars: use of dolomite and untreated olivine[J]. Renewable Energy, 2005, 30(4):565-587.
    [66] Devi L, Ptasinski KJ, Janssen FJJG. Pretreated olivine as tar removal catalyst for biomass gasifiers: investigation using naphthalene as model biomass tar[J]. Fuel processing technology, 2005, 86(6):707-730.
    [67] Devi L, Craje M, Thune P, etc. Olivine as tar removal catalyst for biomass gasifiers:catalyst characterization[J]. Appllied Catalysis A: General, 2005, 294(1):68-79.
    [68] Devi L. Ptasinski KJ, Janssen FJJG. Decomposition of naphalene as a biomass tar over pretreated olivine: Effect of gas composition, kinetic approach, and reaction scheme[J]. Ind. Eng. Chem. Res. 2005,44(24):9096-9104.
    [69]许小荣.新型镍基催化剂的开发及在生物质催化气化中的应用研究[D].硕士学位论文,武汉工业学院,2009.
    [70] Encinar JM, Beltran FJ, Romiro A, etc. Pyrolysis/gasification of agricultural residues carbon dioxide in the presence of different additives: influence of variables[J]. Fuel Processing Technology. 1998, 55(3):219-233.
    [71] Azar MP, Corella J, Delgado J, etc. Improved steam gasification of lignocellulosic residues in fluidized bed with commercial steam reforming catalysts[J]. Ind. Eng. Chem. Res. 1993, 32(1):1-10.
    [72]王铁军,常杰,吴创之等.生物质气化焦油催化裂解特性[J].太阳能学报,2003, 24(3):376-379.
    [73]郭建维,宋晓锐,崔英德.流化床反应器中生物质的催化裂解气化研究[J].燃料化学学报,2001,29:319-322.
    [74] Courson C, Udron L, Petit C, etc. Grafted NiO on natural olivine for dry reforming of methane[J].Science and Technology of Advanced Mterials. 2002, 3(3):271-282.
    [75] Courson C, Udron L, Swierczynski D, etc. Hydrogen production from biomass gasification on nickel catalysts tests for dry reforming of methane[J]. Catalysis Today. 2002, 76(1):75-86.
    [76] Swierczynski D, Courson C, Bedel L. Oxidation reduction behavior of iron-bearing olivines (MgX,Fel-X)2SiO4 used as catalysts for biomass gasification[J]. Chem. Mater. 2006, 18(4):897-905.
    [77] L Garcia, A Benedicto, E Romeo. Hydrogen production by steam gasification of biomass using Ni-A1 coprecipitated catalysts promoted with magnesium[J]. Energy& Fuels, 2002, 16(5): 1222-1230.
    [78] Garcia L, Bilbao S R, Arauzo J. Influence of calcination and reduction conditions on the catalyst performance in the pyrolysis process of biomass[J]. Energy & Fuel. 1998, 12(1): 139-143.
    [79] Wang W, Padhan N, Ye Z, etc. Kinetics of ammonia decomposition in hot gascleaning[J]. Ind. Eng Chen. Res. 1999, 38(11):4175-4182.
    [80] Caballero MA, Azar MP, GiI J, etc. Commercial steam reforming catalyst to improve biomass gasification with steam-oxygen mixtures. 1·Hot gas upgrading by the catalytic reactor[J]. Ind. Eng. Chem. Res. 1997, 36(12):5227-5239.
    [81] Azar MP, Caballero MA, Gil J, etc. Commercial steam reforming catalyst to improve biomass gasification with steam-oxygen mixtures. 2. Catalytic tar removal [J]. Ind. Eng. Chem. Res. 1998, 37(7):2668-2680.
    [82] McLellan B, Shoko E, Dicks, etc.Hydrogen production and utilisation opportunities for Australia[J]. International Journal of Hydrogen Energy 2005, 30:669-679.
    [83] McKendry, P. Energy production from biomass (part3): gasification technologies[J]. Biosource Technology, 2002c, 83:55-63.
    [84] Nielsen RJR. Catalytic Steam Reforming. In Catalysis Science and Technology: Anderson, J. R., Boudart, M.,Eds.; Springer: Berlin, 1984.
    [85] Williams R. Hydrogen Production, U.S. Patent 1,938,202, 1933.
    [86] Gorin E, Retallick WB. Method for the Production of Hydrogen. U.S. Patent 3,108,857, 1963.
    [87] Curran GP, Fink CE, Gorin E. CO2 acceptor gasification process. In: Schora, F.C., Symposium Chairman. Fuel Gasification. American Chemical Society, Washington, D.C., 1966, 141.
    [88] Han C, Harrison DP. Simultaneous Shift and Carbon Dioxide Removal for the Direct Production of Hydrogen[J]. Chem. Eng. Sci. 1994, 49(24):5875-5883.
    [89] Balasubramanian B, Lopez OA, Harrison DP. Hydrogen from Methane in a Single-Step Process[J]. Chem. Eng. Sci. 1999, 54(15-16):3543-3552.
    [90] Lopez OA, Harrison DP. Hydrogen Production Using Sorption-Enhanced Reaction[J]. Ind. Eng. Chem. Res. 2001, 40(23):5102-5109.
    [91] Harrison DP, Peng Z. Low-Carbon Monoxide Hydrogen by Sorption-Enhanced Reaction[J]. Int. J. Chem. Reactor Eng. 2003, 1, Article A37.
    [92] Ziock H, Lackner K, Harrison DP. Zero Emission Coal Power, A New Concept, Proceedings of the First National Conference on Carbon Sequestration, Washington D.C., May 2001; U.S. Department of Energy, National Energy Technology Laboratory:Pittsburgh, PA, 2004 (on CD-ROM).
    [93] Lin S, Harada M, Suzuki Y, etc. H. Hydrogen Production from Coal by Separating Carbon Dioxide During Gasification[J]. Fuel, 2002, 81(16):2079-2085.
    [94] Zero Emission Gas Power Project ZEG, http://www.ife.no/departments/ enviro nmental_technology/files/ZEG.
    [95]乔春珍.含碳能源直接制氢中CO2吸收剂的研究[D].博士学位论文,中国科学院研究生院,2006.
    [96] Lin SY, Suzuki Y, Hatano H, etc. Development an innovative method, HyPr-RING, to produce hydrogen from hydrocarbons[J].Energy Conversion and Management, 2002, 43(9-12):1283-1290.
    [97]肖云汉.煤制氢零排放系统[J].工程热物理学报,2001,22(1):13-15.
    [98]阳绍军.含碳能源直接制氢中钙基吸收剂的改性研究[D].博士学位论文,中国科学院研究生院,2008.
    [99]王勤辉,沈询,骆仲涣,岑可法.新型近零排放煤气化燃烧利用系统闭[J].动力工程,2003,23(5):2711-2715.
    [100]关键.新型近零排放煤气化燃烧集成利用系统的机理研究[D].博士学位论文,浙江大学,2007.
    [101] Feng B, Liu W, Li X, etc. Overcoming the problem of loss in capacity of calcium oxide in CO2 capture[J]. Energy and Fuels, 2006,20:2417-2420.
    [102] Gupta H, Fan LS. Carbonation–calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas[J]. Industrial and Engineering Chemical Research, 2002, 41:4035-4042.
    [103] Xiong R, Ida J, Lin YS. Kinetics of carbon dioxide sorption on potassium- doped lithium zirconate[J]. Chemical Engineering Science, 2003, 58:4377-4385.
    [104] Lopez OA, Perez RNG, Reyes RA. Lardizabal GD. Novel carbon dioxide solid acceptors using sodium containing oxides[J]. Separation Science and Technology, 2004, 39, 3559-3572.
    [105] Allam R, Chiang R, Hufton J, etc. Power Generation with Reduced CO2 Emissions via the Sorption Enhanced Water Gas Shift Process. Proceedings of the Third Annual Conference on CO2 Capture and Sequestration, Alexandria, VA, 2004; U.S.Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2004 (on CDROM).
    [106] Ding Y, Alpay E. Equilibria and Kinetics of CO2 Adsorption on Hydrotalcite Sorbent[J]. Chem. Eng. Sci. 2000, 55(17):3461-3474.
    [107] Kato, M. Latest Report of NEDO and Toshiba CO2 Capturing Project, presented at the 6th Workshop of the International Test Network for CO2 Capture, Trondheim, Norway, March 2004.
    [108] Abanades JC, Rubin, ES, Anthony EJ. Sorbent cost and performance in CO2 capture systems [J]. Industrial and Engineering Chemistry Research, 2004,43:3462-3466.
    [1]骆仲泱,周劲松,王树荣等.中国生物质能利用技术评价[J].中国能源,2004, 26(9):39-42.
    [2] Ni M, Dennis YCL, Michael KHL, Sumathy K. An overview of hydrogen production from biomass[J]. Fuel Processing Technology 2006;87:461-472.
    [3]张秀梅,陈冠益,孟祥梅等.催化热解生物质制取富氢气体的研究[J].燃料化学学报,2004,32(4):446-449.
    [4] Turn S, Kinoshita C, Zhang Z, Ishimura D, Zhou J. An experimental investigation of hydrogen production from biomass gasification[J]. Int. J. Hydrogen Energy, 1998, 8: 641-648.
    [5] Lv P, Chang J, Xiong Z, et al. Biomass Air-Steam Gasification in a Fluidized Bed to Produce Hydrogen-Rich Gas[J]. Energy & Fuels, 2003,17:677-682.
    [6] Demirba? A. Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield[J]. Energy Conversion and Management, 2002, 43:897-909.
    [7] Maria PA, Caballero MA, Javier G. Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 2. Vatalytic Tar Removal[J]. Ind. Eng. Chem. Res. 1998, 37:2668-2680.
    [8] Jose C, Alberto O, Pilar A. Biomass gasification with air in fluidized bed: Reforming of the gas composition with commercial steam reforming catalysts [J]. Ind. Eng. Chem. Res. 1998, 37:4617-4624.
    [9]朱廷钰,张守玉,黄戒介等.氧化钙对流化床煤温和气化半焦性质的影响[J].燃料化学学报, 2000, 28(1):40-43.
    [10] Mahishi MR, Goswami DY. An experimental study of hydrogen production by gasification of biomass in the presence of a CO2 sorbent[J]. International Journal of Hydrogen Energy, 2007; 32: 2803-2808.
    [11] Lu LM, Sahajwalla V, Harris D. Characteristics of chars prepared from various pulverized coals at different temperature using drop-tube furnace[J]. Energy & Fuels, 2000, 14:869-876
    [12] Feng B, Bhatia SK, Barry JC. Variation of the crystalline structure of coal char during gasification [J]. Energy Fuels, 2003, 17(3):744-754.
    [13] Yen TF, Erdman JG, Pollack SS. Investigation of the structure of Petroleumasphaltenes by X-Ray Diffraction[J]. Analytical Chemistry, 1961, 33:1587-1594.
    [14] Gregg SJ, Sing KSW. Adsorption, surface Area and Porosity[M]. Academic Press, London, 1982.
    [15] Holman JP. Experimental methods in mechanical engineering[M], 6th ed., McGraw-Hill, New York, 1994.
    [16] Apaydi-Varol E, Pütün E, Pütün AE. Slow pyrolysis of pistachio shell[J]. Fuel, 2007, 86:1892-1899.
    [17] Pütün AE, Apaydin E, Pütün E. Bio-oil production from pyrolysis and steam pyrolysis of soybean-cake: product yields and composition[J].Energy, 2002, 27:703-713.
    [18] Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass[J]. Energy Conversion & Management, 2000, 41:633~646.
    [19] Nguyen T, Zavarin E, Barrall EM. Thermal analysis of lignocellulosic materials I unmodified materials[J]. J.Macromaol.Sci.Rev.Macromol.Chem.2002, 20(1),1-65.
    [20] Kuofopanos C, Maschio G, Lucchesi A. Kinetics modeling of the pyrolysis of biomass and biomass components[J]. Can.J.Chem.Eng. 1989,67:75-84.
    [21]谭洪.生物质热裂解机理实验研究[D].博士学位论文,浙江大学,2005.
    [22] E.Jakab, Faix O, Till F. Thermogravimetry/mass spectrometry study of six lignins within the scope of an international round robin tese[J]. Journal of applied polymer science, 1995, 35:167-179.
    [23] Banyasz JL, Li S, Lyons-Hart, et al. Gas evolution and the mechanism of cellulose pyrolysis[J]. Fuel, 2001, 80:1757-1763.
    [24] Bassilakis R, Carangelo RM, Wojtowicz MA. TG-FTIR analysis of biomass pyrolysis[J]. Fuel, 2001, 80:1765-1786.
    [25] Ubbelohde AR, Lewis FA. Graphite and Its crystal compounds. Oxford University Press, London,1960.
    [26] Sack HA, Trillat JJ, Compt.rend. 224. 1502 (1947).
    [27] Pollack SS, Alexander LE. X-Ray Analysis of Electrode Binder Pitches and Their Cokes[J]. Journal of Chemical & Engineering Data. 1960, 5:88-93.
    [28] Ergun S, Tiensuu VH. Interpretation of the intensities of X-rays scattered by coals. Fuel, 1959, 38:64-78.
    [29] Kasatochkin VI, Izvest. Akad. Nauk S.S.S.SR. Otdel Tekh. Nauk 1951.
    [30] Ergun S, Wender I.X-ray-scattering intensities of anthraxylons reduced withlithium in ethylenediamine[J]. Fuel, 1958,37:503-506.
    [31]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.
    [32] Wooten JB, Hajaligol MR. Evolution of cellulose char structure monitored by C-13 CPMAS NMR[J]. Fuel Chemistry Division Preprints,2001,46:191-193.
    [33] Shafizadeh F, Sekiguchi Y. Oxidation of chars during smoldering combustion of cellulosic materials[J]. Combustion and Flame, 1984,55:171-179.
    [34] Boutin O, Ferrer M, Lede J. Radiant flash pyrolysis of cellulose-evidence for the formation of short life time intermediate liquid species[J]. J. Anal. Appl. Pyrolysis, 1998, 47: 13-31.
    [35] Wooten JB, Seenman JI, Hajaligol MR. Observation and characterization of cellulose pyrolysis intermediates by 13C CPMAS NMR[J]. A New Mechanistic Model. 2004, 18:1-15.
    [1] Nicholas HF, Andrew TH. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents[J]. Chemical Engineering Science 2008, 63:287-316.
    [2]吕文贻.生物质及煤超临界水气化制氢的化学平衡分析[D].西安建筑科技大学,硕士学位论文, 2006.
    [3] Li X, Grace JR, Watkinson AP, etc. Equilibrium modeling of gasification[J]. Fuel, 2001, 80:195-207.
    [4]张瑞祥.生物质发电气化过程机理分析与建模研究[D].华北电力大学,硕士学位论文,2007.
    [5]陈宏刚.煤和液化石油气在氢/氩热等离子体中热解过程的研究[D].太原理工大学,博士学位论文, 1999.
    [6]陈宏刚,谢克昌.等离子体裂解煤制乙炔碳-氢体系的热力学平衡分析[J].过程工程学报,2004,2(2):112-117.
    [7]朱传征,许海涵.物理化学[M].北京:科学出版社,2000.
    [8]吴志斌.生物质与煤气化过程热力学分析[D].太原理工大学,硕士学位论文, 2007.
    [9] William RS, Ronald WM. Chemical Reaction Equilibrium Analysis: theory and Algorithms, Jone Wiley & Sons, New York, 1982.
    [10]杜建华,胡雪蛟,刘翔.最小能量函数法求解多元相平衡[J].大连理工大学学报, 2001,41(增刊1):s1-s4.
    [11] Ximena AG, Nelson AA, Gordon AL. Steam gasification of tars using a CaO catalyst [J]. Fuel Processing Technology, 1999, 58:83-102.
    [12] Miguel AC, Jose C, Maria PA. Biomass gasification with air in fluidized bed. Hot gas cleanup with selected commercial and full-size nickel-based catalysts [J]. Ind Eng Chem Res. 2000, 39(5):1143-1154.
    [13] Hanaokaa T, Yoshidaa Y, Fujimotoa SJ, etc. Hydrogen production from woody biomass by steam gasification using a CO2 sorbent[J]. Biomass and Bioenergy. 2005, 28:63-68.
    [14] Feng B, Bhatia SK, Barry JC. Variation of the crystalline structure of coal char during gasification [J]. Energy Fuels, 2003, 17(3):744-754.
    [15] Gregg SJ, Sing KSW. Adsorption, surface Area and Porosity[M]. Academic Press, London, 1982.
    [16]丁卫华,胡国新.Ca(OH)2对腐植酸粉末热解气化的影响研究[J].实验室研究与探索,2008,27(7):34-36.
    [17]朱廷钰,刘丽鹏,王洋等.氧化钙催化煤温和气化研究[J].燃料化学学报,2000, 28(1):36-39.
    [18]朱慧.生物质在落下床中热解和气化制富氢气体[D].大连理工大学,硕士学位论文,2005.
    [1] Xiong R, Ida J, Lin, YS. Kinetics of carbon dioxide sorption on potassium- doped lithium zirconate[J]. Chemical Engineering Science, 2003, 58:4377-4385.
    [2] Lopez-Oritz A, Perez RNG, Reyes RA, etc. Novel carbon dioxide solid acceptors using sodium containing oxides[J]. Separation Science and Technology, 2004, 39:3559 -3572.
    [3] Ziock H, Lackner K, Harrison, DP. Zero Emission Coal Power, A New Concept, Proceedings of the First National Conference on Carbon Sequestration, Washington D.C., May 2001; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2004 (on CD-ROM).
    [4] Lin S, Harada, M, Suzuki, Y, etc. Hydrogen Production from Coal by Separating Carbon Dioxide During Gasification[J]. Fuel, 2002, 81(16):2079-2085.
    [5]肖云汉.煤制氢零排放系统[J].工程热物理学报,2001,22(1):13-15.
    [6]王勤辉,沈询,骆仲涣,岑可法.新型近零排放煤气化燃烧利用系统闭[J].动力工程,2003,23(5):2711-2715.
    [7]乔春珍.含碳能源直接制氢中CO2吸收剂的研究[D].博士学位论文,中国科学院研究生院, 2006.
    [8]关键.新型近零排放煤气化燃烧集成利用系统的机理研究[D].博士学位论文,浙江大学, 2007.
    [9]阳绍军.含碳能源直接制氢中钙基吸收剂的改进性能研究[D].博士学位论文,中国科学院研究生院, 2008.
    [10] Nicholas HF, Andrew TH. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents[J]. Chemical Engineering Science, 2008, 63:287-316.
    [11] Gregg SJ, Sing KSW. Adsorption, surface Area and Porosity[M]. Academic Press, London, 1982.
    [12] Takahashi R, Sato S, Sodesawa T, etc. Effect of diffusion in catalytic dehydration of alcohol over silica–alumina with continuous macropores[J]. J Catal 2005,229(1):24-29.
    [13] Takahashi R, Sato S, Tomiyama S, etc. Pore structure control in Ni/SiO2 catalysts with both macropores and mesopores[J]. Micropor Mesopor Mater 2007,98(1-3):107-114.
    [14] Aihara M, Nagai T, Matushita J, etc. Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction[J]. Applied Energy, 2001,69:225-238.
    [15] Barker R. The reversibility of the reaction CaCO3→CaO+CO2[J]. Journal of Applied Chemistry and Biotechnology,1973,23:733-742.
    [16] Barker R. The reactivity of calcium oxide towards carbon dioxide and its use for energy storage[J]. Journal of Applied Chemistry and Biotechnology,1974,24:221-227.
    [17] Bhatia SK, Perlmutter DD. Effect of the product layer on the kinetics of the CO2-lime reaction[J]. American Institute of Chemical Engineers,1983,29:79-86.
    [18] Curran GP, Fink CE, Gorin E. CO2 acceptor gasification process. In: Schora, F.C., Symposium Chairman. Fuel Gasification. American Chemical Society, Washington, D.C., 1966, p. 141.
    [19] Mess D, Sarofim AF, Longwell JP. Product layer diffusion during the reaction of calcium oxide with carbon dioxide[J]. Energy and Fuels,1999,13:999-1005.
    [20] Silaban A, Harrison DP. High temperature capture of carbon dioxide: characteristics of the reversible reaction between CaO(s) and CO2(g)[J]. Chemical Engineering Communications,1995,137:177-190.
    [21] Silaban A, Narcida M, Harrison, DP. Characteristics of the reversible reaction between CO2(g) and calcined dolomite[J]. Chemical Engineering Communications, 1995,138:149-162.
    [22] Kevin RB, Brian KG, Laura OB. Comparative SO2 Reactivity of CaO derived from CaCO3 and Ca(OH)2[J]. AIChE J. 1989, 35:37-41.
    [23] Bhatia SK, Perlmutter DD. Effect of the product layer on the kinetics of the CO2-lime reaction[J]. American Institute Of Chemical Engineers. 1983, 29:79-86.
    [24]田部浩三.新固体酸和碱及其催化作用[M].北京:化学工业出版社,郑禄彬等译,1992.
    [1] Blasi CD. Kinetic and heat transfer control in the slow and flash pyrolysis of solids[J]. Ind.Eng.Chem.Res. 1996,35:37-46
    [2] Maschio G, Koufopanos C, Lucchesi A. Pyrolysis, a promising route for biomass utilization[J]. Bioresource technology, 1992,42:219-231.
    [3]朱炳辰.化学反应工程[M].北京.化学工业出版社.1998.
    [4]李绍芬.化学与催化反应工程[M].北京.化学工业出版社.1988.
    [5]潘永康,王喜忠,刘相东.现代干燥技术[M],第二版,化学工业出版社,2007.
    [6]扬俊红.植物性含湿多孔介质在干燥过程中优化传热传质机理的研究[D].博士学位论文.天津大学,1998.
    [7]谭洪.生物质热裂解机理试验研究[D].博士学位论文,浙江大学,2005.
    [8] Drummond AF, Drummond IW. Pyrolysis of sugarcane Bagasse in a wire-mesh reactor[J]. Ind. Eng. Chem. Res., 1996, 35:1263-1268.
    [9] Shanmukharadhya KS, Sudhakar KG. Effect of fuel moisture on combustion in a bagasse fired furnace[J]. Journal of Energy Resources Technology, 2007, 129(9):248-253.
    [10] Zelic J, Rusic D, Krstulovic R. Kinetic analysis of thermal decomposition of Ca(OH)2 formed during hydration of commercial Portland cement by DSC[J]. Journal of thermal analysis and calorimetry, 2002, 67:613-622.
    [11]阳绍军.含碳能源直接制氢中钙基吸收剂的改性研究[D].博士学位论文,中国科学院研究生院,2008.
    [12] Deuk KL, Hyun B. A gas-solid reaction kinetic model for the carbonation of calcium oxide by CO2[J]. HWAHAK KONGHAK, 2003, 41(6):689-693.
    [13]李绍芬,高文新,廖晖.甲烷水蒸汽催化转化的动力学模型[J].化工学报,1981:51-58.
    [14]孔德峰.TEXACO气化炉气化过程数值模拟研究[D].硕士学位论文,重庆大学, 2008.
    [15] Lechner B, Santana D. Gas-solid conversion in fluidized bed reactors[J]. Chemical Engineering Journal. 2008,141(1-3):151-168
    [16]叶大伦.实用无机物热力学数据手册.北京,冶金工业出版社,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700