用户名: 密码: 验证码:
生物表面活性剂在固态发酵中对木质纤维素生物降解的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物表面活性剂主要是由微生物代谢过程中分泌的具有一定生物活性的代谢产物,像合成表面活性剂一样,生物表面活性剂由亲水基和疏水基两部分组成,但生物表面活性剂比合成表面活性剂更具潜在的优势,因而随着人类环保意识的增强,更加快了生物表面活性剂取代合成表面活性剂的发展进程。本文考察了铜绿假单胞菌(Pa AB93066)产鼠李糖脂的最佳培养条件,采用了白腐菌固态发酵降解稻草的方法,选取生物表面活性剂二鼠李糖脂添加到反应中,通过分析表面活性剂对木质素过氧化物酶,锰过氧化物酶,溶解性有机碳,木质素降解率等参数的影响,考察二鼠李糖脂作用下微生物降解木质素的特性。
     通过单因素试验,铜绿假单胞菌(Pa AB93066)的最佳碳源和氮源分别是花生油和NaNO3。正交试验的结果表明,铜绿假单胞菌(Pa AB93066)具有较强的生物表面活性剂生产能力且最佳培养条件为:花生油浓度125g/L,硝酸钠浓度2.5g/L,温度为34℃,摇床转速为90r/min,pH为7。在此条件下培养了180h,鼠李糖脂产量最终为16.29g/L。在最佳培养发酵条件下,随着糖脂的生产,表面张力值迅速降低,最低达到29.19mN/m,最后趋于平衡,通过对培养液进行稀释,培养液表现出临界胶束的性质。说明产生了表面活性剂且表面活性稳定。鼠李糖脂产量随菌体量的增加而增加,在菌体培养的第84h到第144h之间,鼠李糖脂产量最高,以后菌体量开始下降,鼠李糖脂产量也相应减少。所以确定提取鼠李糖脂的最佳时间为菌体生长的稳定后期到衰减初期之间,即108h。
     通过固态发酵方式采用白腐菌对稻草中木质纤维素进行降解,并研究了生物表面活性剂二鼠李糖脂对该降解过程的影响.结果表明,不同浓度的二鼠李糖脂能在不同程度上提高降解过程水溶性有机碳的含量,添加0.007%和0.021%二鼠李糖脂的实验组最高TOC浓度较对照组分别提高了83.6%和54.5%,这有利于黄孢原毛平革菌的生长,且延缓了菌体的衰退.添加0.007%和0.021%浓度的二鼠李糖脂可使LiP酶活分别提高85.7%和41.2%,二鼠李糖脂对MnP酶活没有显著影响.生物表面活性剂的介入促进了白腐菌对稻草中木质素的降解,添加0.007%二鼠李糖脂可使木质素降解率提高54%.
Biosurfactants mainly are producted by microbial metabolism in the secretion of biologically active metabolites, the same as synthetic surfactants, biosurfactants by the hydrophilic and hydrophobic group of two parts, but the ratio of synthesis of biosurfactant more surface active agents of potential advantages, so as human awareness of environmental protection, but also accelerated the biosurfactant replace Synthesis of Surface-active agent development process. This article examines the Pseudomonas aeruginosa (Pa AB93066) rhamnolipid produced the best culture conditions, using the white rot fungi degrade straw solid-state fermentation method, select the biosurfactant rhamnolipidⅡadded to the reaction, Through analysis of surfactants on the lignin peroxidase, manganese peroxidase, dissolved organic carbon, lignin degradation rate parameters were investigated under the action of two rhamnolipid characteristics of microbial degradation of lignin.
     Single factor test, Pseudomonas aeruginosa (Pa AB93066) the best carbon and nitrogen are peanut oil and NaNO3. Orthogonal experimental results show that Pseudomonas aeruginosa (Pa AB93066) has a strong biosurfactant production and optimal culture conditions are:peanut oil concentration 125g/L, sodium nitrate concentration 2.5g/L, temperature 34℃, shaking the 90r/min, pH is 7. Under this condition, trained 180h, rhamnolipid production ultimately 16.29g/L. Optimum culture conditions in fermentation, with the production of glycolipids, surface tension decreased rapidly, the minimum to 29.19mN/m, finally becomes more balanced, by dilution of the culture medium, medium to show the nature of the critical micelle. Showing that the surfactant and surfactant stability. Rhamnolipid production with the increase of biomass in cell culture between the first 84h to 144h, the highest rhamnolipid yield, after the cell began to decrease, rhamnolipid production is also reduced. Therefore, extraction of rhamnolipid to determine the best time for the stable growth of bacteria between late early decay,108h.
     Effects of dirhamnolipid on Solid state fermentation of straw lignocellulose by white rot fungi was studied for 32 days. The results showed that dirhamnolipid at different concentrations had certain stimulative effects on total organic carbon (TOC), dirhamnolipid at 0.007%and 0.021%increased TOC by 83.6%and 54.5%, what is progressive for growth of Phanerochaetechrysosporium, and put off fungal decline. Dirhamnolipid at different concentrations had certain stimulative effects on LiP activity, the Critical Micelle Concentration 0.007%increased 85.7%, and dirhamnolipid at 0.021%increased just 41.2%. Dirhamnolipid have no stimulative effects on MnP activity. The degradation rate of lignin with rhamnolipid at 0.007%was higher than that of the control, increased 54%.
引文
[1]Costa S GVAO, Nitschke M, Haddad R, et al. Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils. Process Biochem.,2006,41:483-488
    [2]Benincasa M, Contiero J, Manresa M A, et al. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J. Food Eng.,2002,54:283-288
    [3]Sarubbo L A, Farias C B B, Campos-Takaki G M. Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Curr. microbiol.,2007,54:68-73
    [4]Vance-Harrop M H, Gusmao N B, Campos-Takaki G M. New bioemulsifiers produced by Candida lipolytica using D-glucose and babassu oil as carbon sources. Braz. J. Microbiol.,2003,34:120-123
    [5]Pauwels A, Covaci A, Weyler J, et al. Comparison of persistent organic pollutant residues in serum and adipose tissue in a female population in Belgium,1996-1998. Archives of environmental contamination and toxicology, 2000,39(1):265-270
    [6]Raza Z A, Khan M S, Khalid Z M, et al. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Biotechnol. Lett.,2006,28:1623-1631
    [7]Teil M-J, Blanchard M, Chevreuil M. Atmospheric deposition of organochlorines (PCBs and pesticides) in northern France.Chemosphere,2004, 55(8):501-514
    [8]付海燕.生物表面活性剂及其在城市生活垃圾堆肥中的应用:[湖南大学硕士学位论文].湖南:湖南大学环境科学与工程学院,2004,6-7
    [9]Deshpande M, Daniels L. Evaluation of sophorolipid biosurfactant production by Candida Bombicola using animal fat. Bioresource technol.,1995,54: 143-150
    [10]Lang S. Biological amphiphiles (microbial biosurfactants). Curr. Opin. Colloid. in.,2002,7:12-20
    [11]Rivera O M P, Moldes A B, Torrado A M, et al. Lactic acid and biosurfactants production from hydrolyzed distilled grape marc. Process Biochem.,2007,42: 1010-1020
    [12]Dubey K, Juwarkar A. Distillery and curd whey wastes as viable alternative sources for biosurfactant production. World. J..Microb. Biot.,2001,17:61-69
    [13]Moldes A B, Torrado A M, Barral M T, et al. Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus. J. Agric. Food Chem.,2007,55:4481-4486
    [14]Rodrigues L R, Teixeira J A, Oliveira R. Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochem. Eng. J.,2006,32: 135-142
    [15]Mulligan C N, Yong R N, Gibbs B F. Surfactant-enhanced remediation of contaminated soil:a review. Eng. Geol.,2001,60:371-380
    [16]Makkar R S, Cameotra S S. An update of the use of unconventional substrates for biosurfactant production and their new applications. Appl. Microbiol. Biotechnol.,2002,58:428-434
    [17]钟华.鼠李糖脂的菌体吸附及其对菌体表面的改性作用研究:[湖南大学博士学位论文].湖南:湖南大学环境科学与工程学院,2008,17-18
    [18]Wingfors H, Lindstr6m G, van Bavel B, et al. Multivariate data evaluation of PCB and dioxin profiles in the general population in Sweden and Spain,Chemosphere,2000,40(9):1083-1088
    [19]Pauwels A, Covaci A, Weyler J, et al. Comparison of persistent organic pollutant residues in serum and adipose tissue in a female population in Belgium,1996-1998. Archives of environmental contamination and toxicology, 2000,39(1):265-270
    [20]Desai J D, Banat I M. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev.,1997,61:47-64
    [21]Rosenberg E, Ron E Z. High-and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol.,1999,52:154-162
    [22]Molina-Barahona L, Rodriguez-Vazquez R, Hernandez-Velasco M, et al. Diesel removal from contaminated soils by biostimulation and supplementation with crop residues.Applied Soil Ecology,2004,27(6):165-175
    [23]孟佑婷,袁兴中,曾光明,等.生物表面活性剂茶皂素离子浮选去除废水中镉离子.环境科学学报,2005,25(8):1029-1033
    [24]刘小兰.鼠李糖脂生产条件优化及对液态发酵中微生物产酶的影响:[湖南大学硕士学位论文].湖南:湖南大学环境科学与工程学院,2008,18
    [25]Harvey S, Elashi I, Valdes J J, et al. Enhanced removalof Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Biotechnol,1990,8: 228-230
    [26]时进钢.表面活性剂对堆肥过程中微生物胞外酶的作用及其机理研究:[湖南大学博士学位论文].湖南:湖南大学环境科学与工程学院,2007,24
    [27]任芳谊.鼠李糖脂在微生物表面的吸附及其对微生物表面性质的影响:[湖南大学硕士学位论文].湖南:湖南大学环境科学与工程学院,2008,12-13
    [28]Abriola L M, Dekker T J, Pennell K D. Surfactnt-enhanced solubilization of residual dodecane in soil columns2:mathematical modeling. Environmental Science and Technology,1993,27(4):2341-2351
    [29]刘佳.表面活性剂在废木质纤维素制酒精中的应用基础研究:[湖南大学硕士学位论文].湖南:湖南大学环境科学与工程学院,2008,26-27
    [30]Crine JP. Hazards decontamination and replacement of PCBs, A Comprehensive Guide. New York:New York and London Plenum Press,1986, 12-13
    [31]West C C, Harwell J H. Surfactants and subsurface remediation. Environ Sci Technol,1992,26(4):2324-2329
    [32]Harner T, Machay D, Jones K C. Model of the long-term exchange of PCBs between soil and atmosphere in the Southern UK. Environ. Sci. Technol., 1995,25(10):1200-1209
    [33]Weghington D M, Hornbuckle K C, Milwaukee WI. As a source of atmospheric PCBs to Lake Michigan. Environmental Science and Technology,2005, 39(15):57-63
    [34]Alock R E, Bacon J, Bardgel R D, et al. Persistence and fate of polychlorinated biphenyls (PCBs) in sewage sludge-amended agriculture soils. Environ. Pollut.,1996,93(12):83-92
    [35]Meijer S N, Steinnes E. Influence of Environmental Variables on the Spatial Distribution of PCBs in Norwegian and N.K. Soil:Implications for Global Cycling.Environ Sci Technol,2002,36(16):2146-2153
    [36]Teil M-J, Blanchard M, Chevreuil M. Atmospheric deposition of organochlorines (PCBs and pesticides) in northern France.Chemosphere,2004, 55(8):501-514
    [37]Bedard D L, Wagner R E, Brennan M J, Haberl M L, Brown J F Jr. Extensive Degradation of Aroclors and Environmentally transformed Polychlorinated Biphenyls by Alcaligenes eutrophus H850. Appl Environ Microbiol,1987, 5(2):1094-1102
    [38]Fish K M, Principe J M. Biotransformations of Aroclor 1242 in Hudson River test tube Microcosm. Appl Environ Microbiol,1994,60(6):4289-4296
    [39]Scow K M, Simkins S, Alexander M. Kinetics of mineralization of compounds at low concentrations in soil. Appl Environ Microbiol,1986, (51):1028-1035
    [40]Edwards D A, Adeel Z,Luthy R G. Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system. Environmental Science and Technology,1994,28(3):1550-1560
    [41]Ellis W D, Payne J R, Tafuri A N. The development of chemical countermeasures for hazardous waste contaminated soil. In Proceedings From U.S. EPA Technology Transfer Presentation/Exhibit. N J,1989,1253-1261
    [42]Brown J F, Bedard D L, Brennan M J, Carnakan J C, Feng H, Wagner R E. Polychlorinated biphenyl dechlorination in aquatic sediments. Science, 1987a,236(4):709-712
    [43]Campanella B F, Bock C, Schroder P. Phytoremediation to increase the degradation of PCBs and PCDD/Fs Potencial and Limitations. Environ Sci Pollut Res,2002,9 (1):73-85
    [44]Bedard D L, Quensen J R. Microbial Transformation and Degradation of Toxic Organic Chemicals. New York:Wiley-Liss, Inc,1995,127-216
    [45]Sokol R C, Kwon O S, Bethoney C M, Rhee G Y. Reductive Dechlorination of Polychlorinated Biphenyls in St. Lwarence River Sediments and Variations in Dechlorination Characteristics. Environ Sci Technol,1994,28(4):2054-2064
    [46]Palmer C D, Fish W. Chemical Enhancements to pump-and-treat remediation. Ground Water Issue,1992,1(1):1-19
    [47]Pennell K D, Abriola L M, Webber W J. Surfactant-enhanced solubilization of residual dodecane in soil columns 1:experimental investigation. Environmental Science and Technology,1993,27(2):2332-2340
    [48]Shiau B J, Sabatini D A, Harwell J H. Solubilization and microemulsification of chlorinated solvents using direct food additive (Edible) surfactants. Ground Water,1994,32(1):561-56961(1):1233-1240
    [49]Abdul A S, T L Gibson. Laboratory studies of surfactant-enhanced washing of polychlorinated biphenyls from sandy material. Environmental Science and Technology,1991,25 (4):665-671
    [50]Abdul A S, T L Gibson. Selection of surfactants for the removal of petroleum products from shallow sandy aquifers. Ground Water,1990,28(6):920-926
    [51]冯冲凌.黄孢原毛平革菌及其在堆肥中对木质素生物降解特性的影响研究:[湖南大学硕士学位论文].湖南:湖南大学环境科学与工程学院,2006,32-37
    [52]张青,葛菁萍.微生物学.第一版.北京:科学出版社,2004
    [53]Webber W J. Physicochemical processes for water quality control: Wiley-Interfacial Phenomena. New York:Wiley-Interscience,1978:98-100
    [54]Robert M, Mercade M E, Bosch M P. Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa44T1. Biotechnology, 1989,12(5):871-874
    [55]Davis D A, Lynch H C, Varley I L. The production of surfactin in batch culture by Bacillus subtilis ATCC21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme Microb Tech,1999,25(1):27-32
    [56]Yuan X Z, Ren F Y, Zeng G M, et al. Adsorption of surfactants on a Pseudomonas aeruginosa strain and the effect on cell surface lypohydrophic property. Appl. MicrobiOl. BiothechnOl.,2007,76(5):1189-1198
    [57]杨道茂.铜绿假单胞杆菌发酵生产鼠李糖脂的研究:[浙江大学硕士学位论文].浙江:浙江大学材化学院,2002,28-29
    [58]Abbott T P, Wicklow D T. Degradation of lignin by Cyathus Species. Appl Environ Microbiol,1984,47:585-587
    [59]Martin H. Review:lignin conversion by manganese peroxidase(MnP). Enz Mic Technol,2002,30,454-466.
    [60]Martin H, Tamara V. Mika K, Sarigalkin S, Woifgang F. Production of manganese peroxides and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid state fermentation of wheat straw with the white rot fungi Nematolama frowardii[J]. Appl Environ Microbiol,1999,65: 1864-1870.
    [61]Pardo A G. Effect of surfactants on cellulase production by Nectria catalinensis[J]. Current Microbiology,1996,33:275-278.
    [62]Reese E T, Manguire A. Surfactants as stimulants of enzyme production by microorganisms [J]. Appl Microbiol,1969,17:242-245.
    [63]Ahuja S K, Ferreira GM, Moreiraa R. Production of an endoglucanase by the shipworm bacterium, Teredinobacter turnir ae[J]. J Ind Microbiol Biotechnol, 2004,31:41-47.
    [64]徐志伟,尤勤,孙炳寅.生物表面活性剂的工业应用[J].生物技术,1995,5(3):6-7.
    [65]梅建风,闵航.生物表面活性剂及其应用[J].工业微生物,2001,31(1):54~57.
    [66]范立梅.生物表面活性剂及其应用[J].生物学通报,2000,35(8):21~22.
    [67]李越忠,高培基,王祖农.黄孢原毛平革菌合成木素过氧化物酶的营养调控[J].微生物学报,1994,34(1):29~36.
    [68]Rogalski J, Szczodrak J, Janusz G. Manganese peroxidase production in submerged cultures by free and immobilized mycelia of Nematoloma frowardii[J]. Bioresource Technology,2006,97(3):469-476.
    [69]Kumar A Ganesh, Sekaran G, Sarayu Krishnamoorthy. Solid state fermentation of Achras zapota lignocellulose by Phanerochaete chrysosporium[J]. Bioresource Technology,2006,97:1521-1528.
    [70]Goering H K, Van Soest P J. Agricultural handbook No.379 Foragefiber analyses apparatus,reagentes procedures and some applications[M]. Washington:USDA,1970.20.
    [71]Charest M H, Antoun H, Beauchamp C J. Dynamics of water-soluble carbon substances and microbial populations during the composting of de-inking paper sludge [J]. Bioresouse Technol,2004,91:53-67.
    [72]Liu X L,Zeng G M, et al.Effects of dirhamnolipid and SDS on enzymeproduction from Phanerochaete chrysosporium in submerged fermentation[J]. Process Biochemistry,2008,43(11):1300-1303.
    [73]钟华.基于生物表面活性剂的堆肥微环境条件的改良[D].长沙:湖南大学,2005.46~47.
    [74]钟华,曾光明,黄国和,等.鼠李糖脂发酵液强化蔬菜基质好氧降解研究[J].环境科学与技术,2005,28(1):9-11.
    [75]Reese E T, Manguire A. Surfactants as stimulants of enzyme production by microorganisms [J]. Appl Microbiol,1969,17:242-245.
    [76]Van der Meer A B, Beenackers A A C M, Burghard R, Mulder N H, Fok J J. Gas/Liquid mass transfer in a four-phase stirred fermentor:Effects of organic phase hold-up and surfactant concentration[J]. Chemical Engineering Science, 1992,47(9-11),2369-2374.
    [77]李华钟,章燕芳,华兆哲,陈坚.黄孢原毛平革菌选择性合成木质素过氧化物酶和锰过氧化物酶[J].过程工程学报,2002,2(2):137~141.
    [78]Helle S S, Duff S J B, Cooper D G. Effect of surfactants on cellulose hydrolysis[J]. Biotech Bioeng,1993,42(5):611-617.
    [79]Womack M D, Kendall D A,MacDonald R C. Detergent effects on enzyme activity and solubilization of lipid biolayer membranes [J]. Biochim Biophys Acta,1983,733:210-215.
    [80]Brown J A, Alic M, Gold M H. Manganese Peroxidase Gene Transcription in Phanerochaete chrysosporium:Activation by Manganese [J]. J. Bacteriol., 1991,173:4101-4106.
    [81]Ayyar S P, Sabatini D A. Surfactant adsolubilization and modified admicellar sorption nonpolar, polar and ionizable organic contaminants [J]. Environ Sci Technol,1994,28:1874-1881.
    [82]Urum K, Grigson S, Pekdemir T, et al. A comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils. Chemosphere,2006,62:1403-141
    [83]Noordman W H, Bruining J W, Wietzes P, et al. Facilitated transport of a PAH mixture by a rhamnolipid biosurfactant in porous silica matrices. J. Contam. Hydrol.,2000,44:119-140
    [84]徐勇,沈其荣,钟增涛,等.水稻秸秆接力处理过程中的红外光谱研究.光谱学与光谱分析,2001,24(9),1050-1054

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700