用户名: 密码: 验证码:
废水中镉氨络合物的螯合沉淀处理及后化学发光测定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉是列入我国“水中优先控制污染物黑名单”的重点控制与监测污染物,在水体中不仅会以离子态存在,还能与多种配体形成可溶解的络合物,镉氨络合物是其中一种。镉氨络合物废水处理难度大,用普通化学沉淀法处理效果不佳,需要建立一种处理效率高、对环境无二次污染的处理方法。
     通过实验研究,本文在废水中镉的测定方法和镉氨络合物废水处理方面,取得了以下研究成果:
     (1)建立了铁氰化钾一钙黄绿素后化学发光体系测定水中镉的方法,优化了测定条件。在最佳的测定条件下,Cd(Ⅱ)在1.0×10-5~1×10-3mol/L浓度范围内与化学发光强度呈良好的线性关系。回归方程为:I=7.461C-5.96(C为Cd(Ⅱ)浓度,10-5mol/L),相关系数为0.9980。方法的检出限为3.6×10-6mol/L,相对标准偏差为2.84%(n=11)。此方法用于催化剂废水中Cd(Ⅱ)的测定,结果令人满意。
     (2)探讨了Cd(Ⅱ)在铁氰化钾-钙黄绿素体系中后化学发光反应可能的机理:钙黄绿素与铁氰化钾在碱性条件下发生化学反应,生成激发态的钙黄绿素和亚铁氰化钾,当激发态的钙黄绿素回到基态时,产生第一次化学发光现象。当Cd(Ⅱ)加入到已完成反应的混合溶液中,Cd(Ⅱ)将会催化亚铁氰化钾和钙黄绿素发生反应,生成激发态的钙黄绿素,同时Cd(Ⅱ)又可以与钙黄绿素发生反应生成能产生荧光的反应产物,当激发态的钙黄绿素回到基态时,产生化学发光并释放出能量。
     (3)比较了普通化学沉淀法和TMT螯合沉淀法处理含镉离子废水的效果。结果显示,与NaOH、Na2S和Na2CO3相比,TMT螯合沉淀处理含镉离子废水的效果最好。2×10-3mol/L的含镉离子废水经TMT螯合沉淀处理以后,滤液中剩余镉的含量仅为0.103mg/L,经絮凝沉淀处理以后,废水可达标排放。
     (4)TMT螯合沉淀处理镉氨络合物废水实验研究表明:在pH=7,TMT投加量为0.855倍镉的物质的量剂量,絮凝剂投加量为聚合氯化铝100mg/L或聚合氯化铝铁60mg/L时,处理效果最好。2×10-3mol/L的镉氨络合物废水经处理后镉的含量分别降至0.09mg/L和0.06mg/L,低于国家工业废水排放标准要求的0.1mg/L。TMT与镉氨络合物反应在30min内即可达到平衡,生成的沉淀物稳定,对环境不会造成二次污染。
Cadmium is one of priority controlled pollutants in water blacklist. The existence form of Cadmium in water not only stated in ionic condition, but also formed complex with many kinds of ligands. Those complex compounds could dissolubled in water; the cadmium ammonia complex is the typical one. The cadmium ammonia complex wastewater was intractable. The treated effect was ineffective through ordinary chemical precipitation. So, a high efficiency and no secondary pollutants treatment should be eatablished to treate the cadmium ammonia complex wastewater.
     In this paper, the Cd(Ⅱ) determination and cadmium ammonia complex wastewater treated were studied through experiments, the following findings can be drawn:
     (1) A post-chemiluminescence method for determination of cadmium with potassium ferricyanide-calcein system was established, the experimental conditions of the CL reactions were optimized. The linear response ranger of this method was from 1.0×10-5 to 1×10-3mol/L with a linear correlation of 0.9980. The detection limit was 3.6×10-6mol/L and the relative standard deviztion was 2.84%(n=11). The method was applied to the determination of Cd(Ⅱ) in catalyst wastewater with satisfactory results.
     (2) The possible PCL mechanism of Cd(Ⅱ) in calcein-potassium ferricyanide reaction system was discussed:Calcein reacted with potassium ferricyanide in the alkaline solution, generated the excitated calcein and potassium ferrocyanide. When the excitated calcein came to original state, a chemiluminescence reaction was observed. When Cd(Ⅱ) added in to the complete reacted mixture solution, Cd (Ⅱ) may catalysis potassium ferrocyanide reacted with calcein generated the excitated calcein again. A chemiluminescence reaction was observed when the excitated calcein came to original state. At the same time, Cd(Ⅱ) could reacted with calcein generated the reaction which could produced fluorescence.
     (3) Comparing the effects of treating wastewater containing cadmium by common chemical precipitation process and TMT chelation precipitation process. The results showed that, comparison of removing cadmium among NaOH, Na2S, Na2CO3 and chelating agent TMT, TMT treating the wastewater containing cadmium was the best.2×10-3mol/L cadmium ions wastewater treated by TMT, cadmium remaining in the filtrate was only 0.103mg/L. After TMT chelation precipitation process, adding flocculant could make the wastewater meet the discharge standards.
     (4) Through the TMT chelation precipitation treated cadmium ammonia complex wastewater experiments, the results show:when the wastewater pH value was 7, the TMT/Cd ratio was 0.855:1 and the flocculants dosage were PAC 100mg/L or PAFC 60mg/L, the treatment effect was good.2×10-3mol/L cadmium ammonia complex wastewater after treated, cadmium were reducted to 0.09mg/L and 0.06mg/L respectively, lower than the industrial wastewater discharge standard of 0.1mg/L. TMT chelated cadmium ammonia complex and formed precipition finished in 30 minuts. The precipitation has more stabilization and it will not cause secondary pollution on the environment.
引文
[1]赵庆良,李伟光.特种废水处理技术[M].哈尔滨:哈尔滨工业大学出版社,2003.12
    [2]王焕校.污染生态学[M].北京:高等教育出版社,2002.7
    [3]Venugopal B,Luchey T D. Toxicology of non-radioactive heavy metals and their salt, In:Heavy Metal Toxicity[J], Safety and Hormology,(eds)Stuttgart:Thieme 1975,4-7
    [4]孟祥和,胡国飞.重金属废水处理[M].北京:化学工业出版社,2000,5-12
    [5]Monser L, Adhoum N. Modified activated carbon for the removal of copper, zinc, chromium and cyanide from water[J].Separation and Purification Technology,2002,26:137-146
    [6]Takaaki Wajima, Kenji Murakami, Takahiro Kato. Heavy metal removal from aqueous solution using carbonaceous K2S-impregnated adsorbent[J]. Journal of environmental science,2009,21:1730-1734
    [7]徐玉芬.粘土矿物对废水中Cu2+、Cd2+、Cr3+的吸附实验研究[J].矿产综合利用,2008,3:28-30
    [8]张汉卿,李国栋.电气石提纯及吸附重金属离子的研究现状[J].中国科技博览,2008,19:29
    [9]SHAMA D C. Removal of heavy metal chromium using sphagnum mass peat[J]. Water Research,1993,27(7):1201-1208
    [10]叶玲,张敬阳.螫合物调控蒙脱石电动电位及其吸附铬离子性能[J].高等学校化学学报.2009,30(12):2478-2483
    [11]Viraraghavan T. Use of Peat in Pollution[J]. Environmental Studies,1991,37:163-169
    [12]潘嘉芬,卢杰.天然及改性膨润土吸附废水中Pb2+、Ni2+、Cd2+的试验研究[J].金属矿山,2008,387(9):130-133
    [13]胡克伟,贾冬艳,查春梅等.天然沸石对重金属离子的竞争性吸附研究[J].中国土壤与肥料,2008(3):66-69
    [14]王艳秋,霍维周.颗粒赤泥吸附剂对重金属离子的吸附性能研究[J].工业用水与废水,2008,39(6):82-85
    [15]孙文田,谢忠雷,赵晓波.剩余污泥的吸附特性及其在污水处理中的应用[J].环境保护,2008,(16):71-73
    [16]杨文澜.壳聚糖联合碱改性粉煤灰对重金属离子的吸附特性[J].环境工程学报,2009,3(12):2281-2284
    [17]Low K S, Lee C K, Liew S C. Sorption of cadmium and lead from aqueous solution by spent grain [J].Process Biochemistry,2000,36:56-64
    [18]李华,程芳琴,张秋花.重金属镉污染水体的吸附修复研究[J].无机盐工业,2005,37(3):43-44
    [19]王国惠.板栗壳对重金属Cr(Ⅵ)吸附性能的研究[J].环境工程学报,2009,3(5):791-794
    [20]付瑞娟,薛文平,马春等.花生壳活性炭对溶液中Cu2+和Ni2+的吸附性能[J].大连工业大学学报,2009,28(3):200-203
    [21]Jun Jiang. Use raw shell of coffee removal heavy metals[J]. J Hazard Mater,2008,152(3):1073-1081
    [22]李佳,张志斌,朱晓帆.胺基螯合棉纤维的制备及用于锰浆脱硫吸收液中重金属离子Fe3+、Co2+、 Ni2+、Zn2+的吸附研究[J].中国锰业,2009,27(4):13-19
    [23]薛庆华.新型聚丙烯腈螯合纤维的合成及其对吸附重金属离子的研究[J].科技资讯,2008,33:9-10
    [24]谷亚昕.三聚磷酸钠修饰凹凸棒石及其对重金属离子的吸附作用[J].淮阴工学院学报,2009,18(5):20-23
    [25]林永波,邢佳,施云芬等.高分子凝胶球去除废水中重金属离子的研究[J].环境保护科学,2008,34(2):21-24
    [26]俞宁,季纯茂,肖军.利用棉杆皮、棉铃壳处理重金属废水[J].环境保护,1996,4:20-21
    [27]Saroj S. Baral, Surendra N. Das, Pradio Rath. Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust[J]. Biochemical Engineering Journal,2006,31:216-222
    [28]Randall J M, Bermann R L, Garrett V, et al. Use of barks to remove heavey metal ions from waste solutions[J]. Forest Products Jounal,1974,24(9):80-84
    [29]王文华,冯咏梅,常秀莲等.玉米芯对废水中铅的吸附研究[J].水处理技术,2004,30(2),95-98
    [30]姜玉,庞浩,廖兵.甘蔗渣基离子吸附剂的研究[J].林产化学与工业,2009,29(2):90-94
    [31]李扬杰,罗洁,龙国志.碱木素及其改性产物制备重金属吸附剂的研究[J].环境科学与技术,2008,31(5):38-41
    [32]Chang Y C,Chang S W,Chen D H. Magnetic Chitosan Nanoparticles:Studies on Chitosan Binding and Adsorption of Co(Ⅱ)Ions[J].React Funct Polym,2006,66(3):335-341
    [33]黄万抚,徐洁.反渗透法处理矿山含重金属离子废水的试验研究[J].矿业工程,2005,3(4):36-37
    [34]王方.回收重金属废水用电去离子技术研究进展[J].工业水处理,2008,28(12):1-4
    [35]Laurent B, Monica A F. Electrodialysis of calcium and carbonate high concentration solutions and impact on composition in cations of membrane fouling[J]. Journal of Colloid and Interface Science, 2005,286:639-646
    [36]罗阳,张韶季.用氢氧化镁共沉淀法测定水中镉、铅、铜、锌、铁、锰[J].水资源保护,1998,3:21-23
    [37]张志,赵永斌,刘如意.微电解-中和沉淀法处理酸性重金属矿山地下水的试验研究[J].有色金属, 2002,2:45-47
    [38]张嫦,吴立考,高维宝等.工业废水中重金属离子的处理方法研究[J].能源环境保护,2003,17(5):25-27
    [39]萨如拉,刘占孟,杨润昌.化学镀镍液的处理方法.电镀与精饰[J].2003,25(4):25-27
    [40]张学洪,许立巍,朱义年等.石灰石和方解石预处理酸性含氟废水的试验研究[J].矿冶工程,2005,25(2):49-52
    [41]巫瑞中.石灰-铁盐法处理含重金属及砷工业废水[J].江西理工大学学报,2006,27(3):58-61
    [42]刘定富,葛丽颖.选择沉淀法分离电镀废水中铜和镍的研究[J].贵州化工,2008,33(3):1-3
    [43]高鸣远.不同pH值条件下重金属捕集剂有效性的研究[J].水资源保护,2006,22(5):65-67
    [44]刘新梅,毛文洁,陈夏.重金属捕集剂DTC(BETA)处理含铜废水效果研究[J].广西工学院学报,2008,19(4):90-92
    [45]修莎,周勤,黄志勇.重金属捕集剂XL9对含铜电镀废水处理效果的研究[J].环境工程学报,2009,3(10):1812-1815
    [46]廖冬梅,于萍,邓佳杰等.螯合沉淀法处理电路板碱氨蚀刻废水[J].工业用水与废水,2007,38(4):50-53
    [47]吴长淋.人工湿地处理含重金属废水的研究现状及展望[J].化学工程师,2009,3:38-41
    [48]杨胜科,费晓华.海泡石处理含镉废水技术研究[J].化工矿物与加工,2004,9:16-17
    [49]邓书平.改性累托石吸附处理含镉废水[J].化工环保,2009,29(4):308-311
    [50]牟淑杰.改性累托石吸附处理含镉废水实验研究[J].矿产综合利用,2009,3:17-19
    [51]冯秀娟,成先雄.改性稀土渣处理含镉废水的研究[J].中国有色冶金,2008,28(1):45-48
    [52]王代芝,黄育刚.酸改性膨润土处理含镉(Ⅱ)废水[J].无机盐工业,2005,37(2):38-40
    [53]甄宝勤.玉米芯处理含镉废水的研究[J].化学与生物工程,2005,10:50-51
    [54]陈泉水.粉煤灰处理含重金属废水试验研究[J].化工矿物与加工,200l,6:11-13
    [55]刘羽,胥焕岩,黄志良等.羟基磷灰石吸附水溶液中Cd2+的影响因素的研究[J].岩石矿物学杂志,2001,20(4):583-586
    [56]胡巧开,揭武,崔荣.用粉煤灰和鸡蛋壳处理酸性含镉废水[J].粉煤灰综合利用,2006,6:41-42
    [57]尚宇,刘海弟,陈运法.腐植酸树脂/二氧化硅复合材料制备及其对重金属离子的吸附性能[J].过程工程学报,2008,8(3):576-582
    [58]姜述芹,周保学,于秀娟等.氢氧化镁处理含镉废水的研究[J].环境化学,2003,22(3):601-604
    [59]鲁栋梁,夏璐,温堡林等.铁氧体法处理含铜、锌、镉重金属废水的实验研究[J].金属矿 山,2009,39(2):154-167
    [60]田忠,赵渊,张粉艳等.重金属离子捕集沉淀剂DTCR处理含镉废水工艺研究[J].应用化35,2008,37(10):1249-1251
    [61]李清雪,梁晓,李曼.反渗透膜截留二级出水中重金属离子试验研究[J].山西建筑,2008,34(7):5-6
    [62]车荣睿.离子交换法在治理含镉废水中的应用[J].离子交换与啦附,1993,9(3):276-282
    [63]许柯,曾光明,黄瑾辉等.胶团强化超滤处理含镉废水[J].膜科学与技术,2006,26(5):76-80
    [64]张瑜,张小龙,包樱等.利用厌氧菌可溶性代谢物处理含镉废水的条件研究[J].四川环境,2008,27(4):27-30
    [65]濮文虹,刘光虹,喻俊芳.水质分析化学[M].华中科技大学出版社,2004.
    [66]叶玮,刘荣,艾碧英.双硫腙加OP乳化剂直接比色法测定废水中的镉[J].化学分析计量,2008,17(3):45-47
    [67]范少华,张银汉,倪其道meso-四(4-溴苯基)卟啉与Cd2+的显色反应的研究[J].理化检验-化学分册,1999,35(2):79-81
    [68]陈展光,杨爱,余萍等.非水溶性新卟啉显色剂T(BHMOP)P与Cd(Ⅱ)显色反应的研究及应用[J].分析测试学报,1995,14(2):23-26
    [69]冯泳兰Cd(Ⅱ)-SAF-DDMBA显色反应的研究及应用[J].理化检验-化学分册,1998,34(8):362-363
    [70]冯泳兰Cadion-Cd(Ⅱ)-PAV-光度法测定微量镉[J].衡阳师专学报(自然科学),1998,19(6):1-3
    [71]舒和庆,邱风仙.新显色剂4-(2-吡啶偶氮)-邻苯二酚吸光光度法测定微量Cd(Ⅱ)[J].化工时刊,2001,7:27-28
    [72]赵云翔,马卫兴TASPAP分光光度法测定水中镉(Ⅱ)离子[J].安徽理工大学学报(自然科学版),2009,29(2):17-19
    [73]李冠峰,刘晶,吉苏宁等.邻羧基苯基重氮氨基偶氮苯光度法测定废水中的镉[J].洛阳师范学院学报,2009,28(4):78-79
    [74]刘梅,樊静.环境水样中痕量镉的明胶增溶镉(Ⅱ)-碘化钾-孔雀绿体系分光光度测定法[J].环境与健康杂志,2008,25(9):807-809
    [75]李伟,张新申,刁晓华等.流动注射法测定水体中的镉离子[J].皮革科学与工程,2008,18(6)58-60
    [76]蒋春刚,洪陵成,王林芹.流动注射分光光度法测定环境水样中镉[J].环境监测管理与技术,2008,20(5):33-35.
    [77]黄晖,梁勇川.浊点萃取光度法测定环境水样中的痕量镉[J].三明学院学报,2008,25(4):413-416
    [78]盖秀兰,刘军.掺杂卟啉凝胶膜荧光分析法测定锌镉汞[J].淮阴师范学院学报(自然科学 版),2009,8(2):163-165
    [79]尹奇德.陶瓷污泥巾傲量镉催化光度法测定[J].陶瓷,2005,2:38-39
    [80]李丽敏,张文睿.阻抑过氧化氢氧化二甲酚橙褪色动力学光度法测定镉[J].冶金分析,2009,29(3):76-79
    [81]孙瑞霞,王京芳,孙剑辉.二次双波长分光光度法同时测定水样中Cd、Ni的研究[J].干旱环境监测,2005,19(1):9-11
    [82]张逢源,刘翔宇,胡奇林.三波长分光光度法测定La(Ⅲ)、Cd(Ⅱ)混合溶液中痕量Cd(Ⅱ)的浓度[J].石油化工应用,2009,28(2):87-89
    [83]李银保,彭湘君,张道英等.沉淀富集-火焰原子吸收光谱法测定水中的铅和镉[J].光谱实验室,2009,26(3):599-601
    [84]崔世勇,陈洁,翁少梅.共沉淀火焰原子吸收法测定水中镉锰镍铅含量[J].上海预防医学杂志,2009,21(6):305-307
    [85]王中瑗,苏耀东,甘礼华.基于吸力洗脱的流动注射在线富集与火焰原子吸收联用测定水样中的镉[J].分析化学,2009,37(2):247-250
    [86]张美月,李越敏,杜新等.浊点萃取-火焰原子吸收光谱法测定水样中的痕量镉[J].河北大学学报(自然科学版),2009,29(4):407-411
    [87]徐俊,郝国辉,景茜等.畜禽养殖场废水中铜铁铬镉元素测定的研究[J].农业环境与发展,2009,4:74-75
    [88]王丽敏,周关华,宫建龙等.水中痕量镉的高灵敏检测方法研究[J].工业水处理,2009,29(8):75-77
    [89]温晓东,吴鹏,何艺桦等.便携式钨丝电热原子吸收光谱仪测定水样中铜、铬、铅和镉[J].分析化学,2009,37(5):772-775.
    [90]王喜全.石墨炉原子吸收光谱法测定废水中痕量镉[J].理化检验-化学分册,2006,42:370-371
    [91]问思恩,王益昌.微波消解石墨炉原子吸收光谱法测定水产品中镉[J].光谱实验室,2009,26(1):96-99
    [92]李军,汪模辉,陈文.镉、铅、铬、铜的电化学分析[J].广东微量元素科学,2006,13(7):22-25
    [93]夏新泉,陈灵,张海丽.PVC-十二烷基苯磺酸钠碳糊修饰电极测定水中的镉离子[J].化学与生物工程,2006,23(8):60-62
    [94]张兴之,瞿万云,关德晶.化学修饰碳糊电极对环境水样中微量铅、镉离子的连续电化学测定[J].化工科技,2003,11(3):39-41
    [95]李耀华.水中痕量镉的双硫腙修饰电极阳极溶出伏安测定法[J].环境与健康,2004,21(4):247-249
    [96]杨春海.基于表面活性效应下微量镉的电化学测定[J].湖北民族学院学报(自然科学版),2003,21(2):45-48
    [97]Roa G, Ramirez-Silva M T, Romero-Romo M A, etal. Anal Bioanal Chem[J],2003,377(4):763-769
    [98]李兵成.催化示波极谱法和电位溶出法测定水中镉的比较[J].公共卫生与预防医学,2008,19(2):67.
    [99]王洋.刘在青.王菲等.顺序注射-阀上实验室-微分脉冲阳极溶出伏安法测定痕量镉[J].扬州大学学报(自然科学版),2009,12(1):26-31
    [100]Sun Shuwen, Lu Jiuru. Flow-injection post chemiluminescence determination of atropine sulfate. Analytica Chimica Acta,2006,580:9-13
    [101]何树华,何德勇,吕弋等.高锰酸钾-甲醛-噻枯唑化学发光体系测定噻枯唑[J].分析科学学报,2008,24(2):215-217
    [102]M.D.G.Garcia, M.M.Gelera, R.S.Valverde. New Method for the Photo-Chemiluminometric Determination of Benzoylurea Insecticides Based on Acetonitrile Chemiluminescence[J]. Anal. Bioanal.Chem.,2007,387:1973-1981
    [103]V.mariana, I.Gabriela, V.Mariana, et al. The Effect of Cyclodextrins on the Luminol-Hydrogen Peroxide Chemiluminescence[J]. J.Inclusion Phenomena Macrocyclic Chemistry,2006,54:217-219
    [104]陈效兰,徐淑静,肖柳婧等.鲁米诺-铁氰化钾流动注射化学发光法测定头孢拉定[J].分析试验室,2010,29(1):80-82
    [105]崔英,吕建晓.溴酸钾-鲁米诺体系流动注射化学发光法测定铬[J].冶金分析,2009,29(12):25-28
    [106]杜建修,刘文侠,吕九如.高锰酸钾-鲁米诺反应体系中碱土金属离子Mg2+,Ca2+,Sr2+,Ba2+化学发光行为研究[J].化学学报,2004,62(14):1323-1325
    [107]Nacapricha D, Sangkarn P, Karuwan C, et al. Pervaporation-flow injection with chemiluminescence detection for determination of iodide in multivitamin tablets[J]. Talanta,2007,72(2):626-633.
    [108]于在乾,周邵文,谷红娟.静态注射化学发光法测定水样中的溶解氧[J].南方水产,2009,5(5):63-66
    [109]李德英,汪芸,汪敬武.盐酸倍他司汀对鲁米诺-高碘酸钾体系后发光作用机理的探讨及其快速测定[J].分析科学学报,2008,24(6):697-700
    [110]张祖玲,李建军,屈凌波等.毛细管电泳-电致化学发光法测定甲磺酸帕珠沙星[J].分析化学,36(7):941-946
    [111]成美容,王园朝,肖亮.毛细管电泳-间接电化学发光法对茶叶中百草枯农药残留的检测[J].分析测试学报,2009,28(12):1444-1447
    [112]张水洞.邻菲咯啉衍生物钌配合物的制备及性能研究[J].广东化工,2009,37(9):73-76
    [113]朱智甲,杨秋青,郝振芳.流动注射胶束增敏光泽精化学发光法测定谷物中Fe(Ⅲ)[J].理化检验:化学分册,2000,36(2):60-61
    [114]朱智甲,吕九如.光泽精与钨(Ⅲ)的流动注射-胶束增敏化学发光反应[J].分析测试学报,2000,19(2):77-79
    [115]朱智甲.测定化探样品中痕量钒的流动注射光泽精化学发光法[J].分析测试学报,2000,19(7):76-78
    [116]朱智甲.流动注射光泽精化学发光法测定钢铁中铝[J].冶金分析,1999,19(2):42-44
    [117]张怡,吕九如.后化学发光法测定盐酸地芬尼多[J].分析科学学报,2008,24(4):404-408
    [118]李光浩.抑制化学发光法测定水中镉[J].电镀与环保,1993,13(6):25-26
    [119]刘晓宇,丁卫,李爱芳等.水中痕量镉的化学发光测定法[J].食品科学,2007,28(7):388-392
    [120]武竟存,吕九如,徐海涛等.流动注射化学发光分析法测定锌和镉.陕西师范大学校报(自然科学版)[J],1993,21(2):88-90
    [121]冯媛媛,杨迎春,吉爱军等.钙黄绿素-H2O2抑制化学发光法测定土壤中的Cd(Ⅱ)[J].分析试验室,2009,28(7):58-60
    [122]韩志辉,吕昌银,杨胜圆Cd2+-PAN-聚乙烯醇共振瑞利散射法测定水中痕量镉[J].分析科学学报,2006,22(1):77-79
    [123]陈冰.氢化物发生ICP-AES法同时测定废水中的铅镉铜锌镍铬汞[J].福建分析测试,2007,16(4):30-32
    [124]王云龙,胡立阁,马亚洲.沸石对重金属废水中的Cd(NH3)42+的吸附性能研究[J].水产科技,2006,(1):20-23
    [125]Na Feng, Jiuru Lu, Yunhua He, et al. Post-chemiluminescence behaviour of Ni2+, Mg2+, Cd2+ and Zn2+ in the potassium ferricyanide-luminol reaction[J]. Luminescence,2005,20:266-270
    [126]汤鸿霄.无机高分子絮凝理论与絮凝剂[M].北京:中国建筑工业出版社,2006
    []27]田宝珍,张云.铝铁共聚复合絮凝剂的研制及应用[J].工业水处理,1998,18(1):17-20
    [128]南京大学《无机及分析化学》编写组.无机及分析化学(第三版)[M].北京:高等教育出版社,1998
    [129]廖冬梅,于萍,邓佳杰等.螯合沉淀法处理电路板碱氨蚀刻废水[J].工业用水与废水,2007,38(4):50-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700