用户名: 密码: 验证码:
CO_2浓度和镉铜胁迫对水稻生长发育及籽粒品质特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业的迅速发展,农田重金属污染的面积日益扩大。与此同时,伴随全球气候变化,大气CO2浓度日益增加,到2050年,预计大气CO2浓度将升至550μmol·mol-1。研究这些复合污染对水稻生长发育和品质特性的影响,能为我国的粮食安全生产战略提供重要的科学依据。本研究利用开顶式气室(OTC),以22种水稻为供试材料,在对照CO2浓度(Ambient CO2370μmol·mol-1)和高CO2浓度(Elevated CO2800μmol·mol-1)环境中,设低镉铜污染(Cd1.15mg·kg-1, Cu48.44mg·kg-1)和高镉铜污染(Cd2.39mg·kg-1, Cu148.33mg·kg-1)两个水平,三次重复,对水稻的生长发育状况、矿质元素吸收利用特征、稻米中的氨基酸组成和蛋白质含量等品质特性进行了研究,得出以下结论:
     (1) CO2浓度升高促进生物量、株高、穗数、千粒重的提高,一定程度上增加水稻对镉铜胁迫的耐性。低污染水平下粳稻品种的生长发育好于籼稻品种;高污染水平下,籼稻和粳稻之间不再有明显的差异。
     (2) CO2浓度升高对水稻根系发育有不同程度的促进作用。在低污染土壤上高CO2浓度显著增加两种水稻根的生物量、根长、根表面积、根体积和根尖数。在高污染土壤上,r-24的根长、根表面积、根体积和根尖数随着CO2浓度的升高而显著增加;r-974只表现为根长和根尖数的增加。
     (3) CO2浓度升高后,低污染土壤上水稻各部分(根、茎、叶、籽粒)铜含量普遍下降,镉含量普遍增加,各器官中镉铜的升降幅度在品种间的差异较大。
     健康风险评价结果表明,在低污染土壤上所有供试水稻品种的HQ-Cu均小于1;在高污染土壤上只有1个品种的HQ-Cu显著大于1,并随着CO2浓度的升高进一步增加了HQ-Cu值。在低污染土壤有15%的水稻品种HQ-Cd显著大于1,并随着CO2浓度升高其HQ-Cd值增大;在高污染土壤上有30%的水稻品种HQ-Cd显著大于1,但CO2浓度升高没有显著增加HQ-Cd值。可见,在重金属污染农田中,镉对人体健康的潜在风险明显高于Cu,CO2浓度升高会增加低污染农田中镉的潜在风险。
     (4) CO2浓度升高普遍降低了不同土壤水平水稻籽粒中的N、K、S、Mn、P、Mg、Fe含量,而Ca、Zn含量表现出不同的变化差异。在两个污染水平上,同一品种对各矿质营养元素的吸收量与污染水平之间的一致性较小。
     (5)大气CO2浓度升高普遍降低了20种水稻籽粒中蛋白质含量。高污染土壤上籽粒蛋白质含量降幅0.3%-13.1%;低污染土壤上,除了个别品种,粳稻和籼稻籽粒蛋白质含量也呈下降变化,降幅0.3%-16.1%。高CO2浓度降低了多数水稻品种的必需和非必需氨基酸总量,但降幅在不同品种间有着较大的差异。
With the rapid development of industry and agriculture, the metal pollution for the farmland isincreasing. Meanwhile, due to the global climate change, there is a rapid increase in atmospheric carbondioxide concentration. It is predicted that atmospheric CO2concentration will reach about550μmol·mol-1in2050. Studying the impact of the complex pollution on the growth and quality features ofrice lays an important scientific base for ensuring the food security production strategy. In this study, potexperiments were conducted in the open top chambers, with22types of rice as the experiment materials.Rice was grown to maturity under elevated CO2(800μmol·mol-1) and ambient CO2(370μmol·mol-1),with low cadmium and copper-contaminated soil (Cd1.15mg·kg-1, Cu48.44mg·kg-1) and highcadmium and copper-contaminated soil (Cd2.39mg·kg-1, Cu148.33mg·kg-1). Each treatment had threereplicates. This study focuses on the growth status of rice, mineral elements uptake and utilization, andthe content of amino acids and protein in the grain. Some main findings are listed as follows:
     (1) In pot experiment, the stress tolerance of rice varieties to cadmium and cooper increasedsignificantly under the increasing CO2concentration, which resulted in an increase of biomass, plantheight, panicle, and grain weight. At the low pollution level, the growth and development of mostjaponica rice varieties were better than indica ones, while there was no great difference between indicaand japonica at the high pollution level.
     (2) High CO2concentration promoted root development of rice to some different degree. In the lowcontaminated soil with high CO2concentration, the biomass, the root length, root surface area, rootvolume and the number of root tips increased significantly. In the highly polluted soil, the root length,root surface area, root volume and the number of root tips of r-24increased significantly with theincreasing CO2concentration; where as an increase of root length and root tip number were found forr-974.
     (3) Cu content in the different parts of rice (including its root, stem, leaf, and grain) showed adecreasing trend under elevated CO2level, and the Cd content of the tissue of rice was generallyincreased at low contamination soil level, but the increase and decrease degree of Cd and Cu variedsignificantly among different varieties.
     Health risk assessment results showed that HQ-Cu values of all test rice were less than1at lowcontaminated soil level. At high contaminated soil level, only one variety of HQ-Cu was significantlygreater than1, and with the increasing of CO2concentration, the HQ-Cu values were increased.15%ofrice varieties HQ-Cd were significantly greater than1, and elevated CO2concentration promoted theHQ-Cd values at low contaminated soil. In high contaminated soil,30%of rice varieties HQ-Cdexceeded1, but there was no significantly increase under elevated CO2level. Thus, Cd posed a higherpotential risk to human health than Cu for the metal polluted farmland, and elevated CO2concentrationincreased the potential risks of Cd in the low polluted farmland.
     (4) The high CO2concentration generally reduced N, K, S, Mn, P, Mg, and Fe content of most ricegrain attwo different polluted soil levels. But the same rice variety at both pollution levels had fewconsistencies between the absorption of mineral elements and pollution level.
     (5) Elevated CO2concentration generally reduced the protein content of rice grain of20ricevarieties. At highly contaminated soil, the reduction volume of protein content was from0.3%to13.1%.Except for few varieties, the protein content of grain and indica fell by0.3-16.1%. Elevated CO2treatments decreased the total content of essential and non-essential amino acid of most rice varieties,but the decrease volume had great difference among varieties.
引文
1.鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000,15-113.
    2.柴如山,牛耀芳,朱丽青,等.大气CO2浓度升高对农产品品质影响的研究进展[J].应用生态学报,2011,22(10):2765-2775.
    3.陈改苹,朱建国,庞静,等. CO2浓度升高对水稻抽穗期根系有关性状及根碳氮比的影响[J].中国水稻科学,2006,20(1):53-57.
    4.陈怀满,郑春荣,王慎强,等.不同来源重金属污染的土壤对水稻的影响[J].农村生态环境,2001,17(2):35-40.
    5.陈楠楠.温度和二氧化碳升高对稻麦产量及生物量影响的整合分析研究[硕士学位论文].南京,南京农业大学,2012.
    6.范中亮,季辉,杨菲,等.不同土壤类型下Cd和Pb在水稻籽粒中累积特征及其环境安全临界值[J].生态环境学,2010,19(4):792-797.
    7.葛才林,杨小勇,金阳,等.重金属胁迫对水稻不同品种超氧化物歧化酶的影响[J].核农学报,2003,17(4):286-291.
    8.葛才林,杨小勇,孙锦荷,等.重金属胁迫引起的水稻和小麦幼苗DNA损伤[J].植物生理与分子生物学学报,2002,28(6):419-424.
    9.顾继光,周启星,王新,等.土壤重金属污染的治理途径及其研究进展[J].应用基础与工程科学学报,2003,11(2):143-151.
    10.郭嘉,张卫建,户其亮,等.大气CO2浓度倍增对稻田生态系统钙、镁、硅离子流失的潜在影响[J].中国科学(C辑:生命科学),2008,38(6):558-564.
    11.韩多红,孟红梅.重金属镉对阿尔冈金和金皇后种子发芽和出苗的影响[J].种子,2006,25(10):71-72.
    12.胡宁静,李泽琴,黄朋,等.贵溪市污灌水田重金属元素的化学形态分布[J].农业科技科学学报,2004,23(4):663-686.
    13.胡正义,沈宏,曹志洪. Cu污染土壤-水稻系统中Cu的分布特征[J].环境科学,2000,(3):62-65.
    14.黄建晔,杨洪建,杨连新,等.开放式空气CO2浓度增加(FACE)对水稻产量形成的影响及其与氮的互作效应[J].中国农业科学,2004,37(12):1824-1830.
    15.黄建晔,杨连新,杨洪建,等.开放式空气CO2浓度增加对水稻生育期的影响及其原因分析[J].作物学报,2005,31(7):882-887.
    16.姬艳芳,李永华,杨林生,等.湘西凤凰铅锌矿区典型土壤剖面中重金属分布特征及其环境意义[J].环境科学学报,2009,29(5):1094-1102.
    17.贾海霞,郭红岩,尹颖,等.开放式空气CO2浓度增加条件下水稻对土壤微污染铜胁迫响应[J].科学通报,2007,52(10):1136-1140.
    18.康立娟,赵明宪,赵成爱.铜对水稻的影响及迁移积累规律的研究[J].广东微量元素科学,1999,6(4):43-44.
    19.孔德工,唐其展,田忠孝,等.南宁市蔬菜基地土壤重金属含量及评价[J].土壤,2004,36(1):21-24.
    20.李见云,侯彦林,王新民,等.温室土壤剖面养分特征及重金属含量演变趋势研究[J].中国生态农业学报,2006,14(3):43-45.
    21.李静,俞天明,周洁,等.铅锌矿区及周边土壤铅、锌、镉、铜的污染健康风险评价[J].环境科学,2008,29(8):2327-2330.
    22.李坤权,刘建国,陆小龙,等.水稻不同品种对镉吸收及分配的差异[J].农业环境科学学报,2003,22(5):529-532.
    23.李明德,汤海涛,汤睿,等.长沙市郊蔬菜土壤和蔬菜重金属污染状况调查及评价[J].湖南农业科学,2005,3(1):34-36.
    24.李永华,杨林生,姬艳芳,等.铅锌矿区土壤-植物系统中植物吸收铅的研究[J].环境科学,2008,29(1):196-201.
    25.李永华.凤凰铅锌矿区土壤铅的化学形态及污染特征[J].农业环境科学学报,2012,31(7):1337-1342.
    26.李正文,张艳玲,潘根兴,等.不同水稻品种籽粒Cd、Cu和Se的含量差异及其人类膳食摄取风险[J].环境科学,2003,24(3):112-115.
    27.李中阳,宋正国,樊向阳,等. CO2浓度升高对不同水稻品种幼苗养分吸收和根系形态的影响[J].植物营养与肥料学报,2013,19(1):20-25.
    28.李中阳.铜、镉胁迫下CO2浓度升高对水稻生长及稻米品质的影响[博士论文].北京,中国农业科学院,2010.
    29.梁晶,朱建国,曾青,等.开放式臭氧浓度升高对水稻叶片光合作用日变化的影响[J].农业环境科学学报,2010,29(4):613-618.
    30.廖荣伟,刘晶淼.作物根系形态观测方法研究进展讨论[J].气象科技,2008,36(4):429-435.
    31.廖荣伟,刘晶淼,安顺清,等.基于微根管技术的玉米根系生长监测[J].农业工程学报,2010,26(10):156-161.
    32.林伟宏,王大力.大气二氧化碳升高对水稻生长及同化物分配的影响[J].科学通报,1998,43(21):2299-2302.
    33.林义章,徐磊.铜污染对高等植物的生理毒害作用研究[J].中国生态农业学报,2007,15(1):201-204.
    34.刘红江,杨连新,黄建晔,等. FACE对三系杂交籼稻汕优63根系活性影响的研究[J].农业环境科学学报,2009,28(1):15-20.
    35.刘红江,杨连新,黄建晔,等. FACE对三系杂交籼稻汕优63根系生长动态的影响[J].农业环境科学学报,2008,27(6),2291-2296.
    36.刘宗平.环境铅镉污染对动物健康影响的研究[J].中国农业科学,2005,38(1):185-190.
    37.栾云霞,陆安祥,王纪华.镉米问题形成原因及对策思考[J].农产品质量与安全,2013,6:49-51.
    38.骆永明,严蔚东.铜锌交互作用和土壤γ-辐射对大麦和黑麦草生长的影响[J].土壤,2000,2:95-98.
    39.马红亮,朱建国,谢祖彬,等.开放式空气CO2浓度升高对水稻土壤可溶性C、N和P的影响[J].土壤,2004,36(4):392-397.
    40.马斯纳H,曹一平,陆景陵.高等植物矿质营养[M].北京:农业大学出版社,1991.
    41.莫争,王春霞,陈琴,等.重金属Cu,Pb,Zn,Cr,Cd在水稻植株中的富集和分布[J].环境化学,2002,21(1):110-116.
    42.倪才英,陈英旭,骆永明.土壤-植物系统铜污染与修复的研究进展[J].浙江大学学报(农业与生命科学版),2003,29(3):3-9.
    43.牛耀芳,宗晓波,都韶婷,等.大气CO2浓度升高对植物根系形态的影响及其调控机理.植物营养与肥料学报,2011,17(1):240-246.
    44.潘晓群,袁宝君,史祖民,等.江苏省城乡居民膳食状况调查研究[J].江苏预防医学,2007,18(4):6-9.
    45.庞静,朱建国,刘刚.开放式空气CO2浓度增高对水稻体内不同形态N素含量的影响[J].农业环境科学学报,2005a,24(5):833-837.
    46.庞静,朱建国,谢祖彬,等.开放式空气二氧化碳浓度增高(FACE)条件下水稻的根系活力和氮同化能力[J].应用生态学报,2005c,16(8):1482-1486.
    47.庞静,朱建国,谢祖彬,等.自由空气CO2浓度升高对水稻营养元素吸收和籽粒中营养元素含量的影响[J].中国水稻科学,2005b,19(4):350-354.
    48.任思荣,朱建国,李辉信,等.大气CO2浓度升高对水稻伤流液中矿质元素的影响[J].农业环境科学学报,2007,26(5):1849-1853.
    49.史建伟,王孟本,张育平,等.大气CO2浓度升高对植物细根影响的研究进展[J].农业环境科学学报,2007,26(增刊):334-339.
    50.宋正国,徐明岗,刘平,等.钙锌钾共存对赤红壤镉吸附的影响[J].生态环境,2006,15(5):993-996.
    51.苏流坤,袁焕祥.土壤中铜、砷对水稻生长发育影响的研究[J].热带亚热带土壤科学,1997,6(4):194-197.
    52.孙成明,庄恒扬,杨连新,等. FACE水稻生育期模拟[J].生态学报,2007,27(2):613-619.
    53.唐世荣,李中阳,赵玉杰,等. CO2浓度升高对农作物品质影响的研究进展[J].农业环境科学学报,2009,28(12):2415-2421.
    54.王焕校.污染生态学基础[M].昆明:云南大学出版社,1990,91-108.
    55.王凯荣,龚惠群.两种基因型水稻对环境镉吸收与再分配差异性比较研究[J].农业环境保护,1996,15(4):145-149.
    56.王凯荣,郭焱,何电源,等.重金属污染对稻米品质影响的研究[J].农业环境保护,1993, l2(6):254-257.
    57.王亮,朱建国,曾青,等.大气CO2浓度升高对水稻氮代谢影响的研究进展[J].土壤,2010,42(3):344-351.
    58.王潇,宋正国,武慧斌,等.铜镉污染土壤上CO2升高对水稻光合特性的影响[J].核农学报,2013,27(6):839-847.
    59.王小治,孙伟,封克,等.稻季土壤溶液中微量元素浓度对大气CO2浓度升高的响应[J].生态环境学报,2010,19(2):307-313.
    60.王新,吴燕玉.不同作物对重金属复合污染物吸收特性的研究[J].农业环境保护,1998,17:193-196.
    61.王泽港,骆剑峰,刘冲.单一重金属污染对水稻叶片光合特性的影响[J].上海环境科学,2004,23(6):240-243.
    62.吴健,蒋跃林. CO2浓度对水稻籽粒蛋白质及氨基酸含量的影响[J].安徽农学通报,2008,14(11):84-86.
    63.吴启堂,陈卢,王广寿.水稻不同品种对Cd吸收累积的差异和机理研究[J].生态学报,1999,19(1):106-109.
    64.吴燕玉,王新,梁仁禄,等.重金属复合污染对土壤植物系统的生态效应Ⅰ.对作物、微生物、苜蓿、树木的影响[J].应用生态学报,1997,8(2):207-212.
    65.武正华.土壤重金属污染植物修复研究进展[J].盐城工学院学报(自然科学版),2002,15(2):53-57.
    66.谢立勇,林而达.二氧化碳浓度增高对稻、麦品质影响研究进展[J].应用生态学报,2007,18(3):659-664.
    67.徐长亮,李军营,谢辉,等.开放式空气CO2浓度升高对稻米品质的影响[J].中国农学通报,2008,24(9):391-397.
    68.徐加宽,杨连新,王志强,等.土壤铜含量对水稻氮素吸收利用及其产量的影响[J].扬州大学学报(农业与生命科学版),2008,29(2):72-76.
    69.徐加宽,杨连新,王志强,等.土壤铜含量对水稻根系的影响及其与产量的关系[J].中国水稻科学,2005,19(5):427-433.
    70.徐晓燕,杨肖娥.锌、铜对水稻幼苗生长及超氧物歧化酶的影响[J].山西农业大学学报,1997,17(2):113-115.
    71.颜斌,南忠仁,赵转军,等.干旱区绿洲土壤Cd-Zn与Cd-Zn-Pb复合污染对芹菜生长吸收特征影响的比较[J].兰州大学学报(自然科学版),2013,49(3):327-331.
    72.颜士敏,杨洪建,王云霞,等.土壤铜污染对不同籼稻品种氮素吸收利用的影响[J].扬州大学学报:农业与生命科学版,2008,29(3):28-32.
    73.杨洪建,杨连新,刘红江,等. FACE对武香粳14根系活性影响的研究[J].作物学报,2006,32(1):118-124.
    74.杨洪建,杨连新,刘红江,等. FACE对武香粳14根系生长动态的影响[J].作物学报,2005,31(12):1628-1633.
    75.杨居荣,查燕,刘虹.污染稻、麦籽实中Cd、Cu、Pb的分布及其存在形态初探[J].中国环境科学,1999,19:500-504.
    76.杨连新,王云霞,朱建国,等.十年水稻FACE研究的产量响应[J].生态学报,2009,29(3):1486-1497.
    77.袁玲,祝莉莉,何光存. Cu2+、Ag+在水稻种子萌发及幼苗生长中的作用[J].湖北农业科学,2000,2:24-25.
    78.曾翔,张玉烛,王凯荣,等.不同品种水稻糙米含镉量差异[J].生态与农村环境学报,2006,22(1):67-69.
    79.张福锁,申建波,冯固.根际生态学-过程与调控[M].北京:中国农业大学出版社,2009,257-261.
    80.张俊会.电子废物拆解区水稻田的重金属污染、生态毒性及其微生物修复研究[博士学位论文].杭州,浙江大学,2009.
    81.张莉,郭嘉,朱建国,等.大气CO2含量升高对稻田水体微量元素流失的潜在影响[J].生态环境学报,2009,18(1):17-22.
    82.张旭,刘彦卓.高CO2浓度下水稻高产品种特三矮2号的生长,产量与米质的研究[J].应用与环境生物学报,1998,4(3):238-242.
    83.张义贤.重金属对大麦毒性的研究[J].环境科学学报,1997,17(2):199-204.
    84.张志山,李新荣,张景光,等.用Minirhizotrons观测柠条根系生长动态[J].植物生态学报,2006,30(3):457-464.
    85.赵天宏,王美玉,张巍巍,等.大气CO2浓度升高对植物光合作用的影响[J].生态环境,2006,15(5):1096-1100.
    86.赵轶鹏,宋琪玲,王云霞,等.大气CO2浓度升高对粳稻稻米物性及食味品质的影响[J].农业环境科学学报,2012,31(18):1475-1482.
    87.赵转军,南忠仁,王胜利,等. Cd/Zn及Cd/Zn/Ni复合污染对胡萝卜生长吸收特征的影响[J].农业环境科学学报,2010,29(4):642-647.
    88.郑春荣,陈怀满.土壤-水稻体系中污染重金属的迁移及其对水稻的影响[J].环境科学学报,1990,10(2):145-152.
    89.仲维功,杨杰,陈志德,等.水稻品种及其器官对土壤重金属元素Pb、Cd、Hg、As积累的差异[J].江苏农业学报,2006,22(4):331-338.
    90.周本智,Sword M A,Chambers J L,等.利用Minirhizotron技术监测火炬松新根生长动态[J].林业科学研究,2002,15(3):276-284.
    91.周生贤.2011年中国环境状况公报.北京:中华人民共和国环境保护部,2012.
    92.周晓冬,赖上坤,周娟,等.开放式空气中CO2浓度增高(FACE)对常规粳稻蛋白质和氨基酸含量的影响[J].农业环境科学学报,2012,31(7):1264-1270.
    93.朱春梧,曾青,朱建国,等.大气CO2浓度升高对水稻和稗草根系生长的影响[J].生态与农村环境学报,2006,22(1):1-4.
    94. Adachi M., Hasegawa T., Fukayama H., et al., Soil and water warming accelerates phenology anddown-regulation of leaf photosynthesis of the rice plants grown under free-air CO2enrichment(FACE)[J]. Plant Cell Physiol,2014, in press.
    95. Adebowale K.O., Unuabonah I.H., Olu-Owolabi B.I., The effect of some operating variables on theadsorption of lead and cadmium ions on kaolinite clay [J]. J Hazard Mater,2006,134:130-139.
    96. Ainsworth E.A., Rice production in a changing climate: a meta‐analysis of responses to elevatedcarbon dioxide and elevated ozone concentration [J]. Global Change Biol,2008a,14:1642-1650.
    97. Ainsworth E.A., Leakey A.D., Ort D.R., et al., FACE‐ing the facts: inconsistencies andinterdependence among field, chamber and modeling studies of elevated [CO2] impacts on cropyield and food supply [J]. New Phytol,2008b,179:5-9.
    98. Andrei A.B., Vera I.S., Viktor E.T., et a1.. Genetic variability in tolerance to cadmium andaccumulation of heavy metals in pea (Pisum sativum L.)[J]. Euphytica,2003,131:25-35.
    99. Arao T., and Ae N., Genotypic variations in cadmium levels of rice grain [J]. Soil Sci Plant Nutr,2003,49:473-479.
    100. Baker J.T., and Allen Jr L.H., Effects of CO2and temperature on rice: A summary of five growingseasons [J]. J Agric Meteorol,1993,48:575-582.
    101. Bates G.H., A device for t he observation of root growth in t he soil. Nature,1937,139:966-967.
    102. Booker F.L., Maier C.A., Atlnospheric carbon dioxide, irrigation, and fertilization effects onPhenolic and nitrogen concentrations in loblolly Pine (Pinustaeda) needles [J]. Tree Physiology,2001,21:609-616.
    103. Boussama N., Ouariti O., Ghorbal M.H. Changes in growth and nitrogen assimilation in barleyseedlings under cadmium stress [J]. J. PlantNutr,1999,22:731-752.
    104. Chaney R.L., Reeves P.G., Ryan J.A., et al. An improved understanding of soil Cd risk to humansand low cost methods to remediate soil Cd risks [J]. Biometals,2004,17:549-553.
    105. Chang E., Zhang S., Wang Z., et al., Effect of Nitrogen and Phosphorus on the Amino Acids inRoot Exudates and Grains of Rice During Grain Filling [J]. Acta Agronomica Sinica,2008,34:612-618.
    106. Cheng L., Zhu J., Chen G., et al., Atmospheric CO2enrichment facilitates cation release from soil[J]. Ecol Lett,2010,13:284-291.
    107. Cheng W., Coleman D.C., Box Jr J.E., Root dynamics, production and distribution inagroecosystems on the Georgia Piedmont using minirhizotrons [J]. J Appl Ecol,1990,27:592-604.
    108. Cheng W.G., Sakai H., Yagi K., et al., Interactions of elevated [CO2] and night temperature on ricegrowth and yield [J]. Agr Forest Meteorol,2009,149(1):51-58.
    109. Chien H.F., Kao C.H., Accumulation of ammonium in rice leaves inresponse to excess cadmium[J]. Plant Sci,2000,156:111-115.
    110. Crous K.Y., Wallters M.B., Ellsworth D.S., Elevated CO2concentration affects leafphotosynthesis–nitrogen relationships in Pinus taeda over nine years in FACE. Tree Physiol,2008,28:607-614.
    111. Cui Y.J., Zhang X.H., Zhu Y.G., Does copper reduce cadmium uptake by different rice genotypes? JEnviron Sci,2008,20(3):332-338.
    112. Das S., Bhattacharyya P., Adhya T.K., Interaction effects of elevated CO2and temperature onmicrobial biomass and enzyme activities in tropical rice soils [J]. Environ Monit Assess,2011,182:555-569.
    113. De Graaff M.A., Van Groenigen K.J., Six, J., et al., Interactions between plant growth and soilnutrient cycling under elevated CO2: A meta‐analysis [J]. Global Change Biol,2006,12:2077-2091.
    114. De Souza A.P., Gaspar M., Da S.E., et al., Elevated CO2increases photosynthesis, biomass andproductivity, and modifies gene expression in sugarcane [J]. Plant Cell Environ,2008.31:1116-1127.
    115. Duval B.D., Blankinship J.C., Dijkstra P., et al., CO2effects on plant nutrient concentration dependon plant functional group and available nitrogen: a meta-analysis [J]. Plant Ecol,2012,213:505-521.
    116. Duval B.D., Dijkstra P., Natali S.M., et al., Plant Soil Distribution of Potentially Toxic Elementsin Response to Elevated Atmospheric CO2[J]. Environ Sci Technol,2011,45:2570-2574.
    117. Eds. Parry M.L., Canziani O.F., Palutikof J.P., et al., Climate Change2007synthesis report.Cambridge University Press, UK.2007.
    118. Fu J., Zhou Q., Liu J., et al., High levels of heavy metals in rice (Oryza sativa L.) from a typicalE-waste recycling area in southeast China and its potential risk to human health [J]. Chemosphere,2008,71:1269-1275.
    119. GarréS., Laloy E., Javaux M., et al., Parameterizing a dynamic architectural model of the rootsystem of spring barley from minirhizotron data [J]. Vadose Zone Journal,2012,11(4):1-17.
    120. Geissler N., Hussin S., Koyro H.W., Elevated atmospheric CO2concentration ameliorates effectsof NaCl salinity on photosynthesis and leaf structure of Aster tripolium L. J Experi Bot,2009a,60:137-151.
    121. Geissler N., Hussin S., Koyro H.W., Interactive effects of NaCl salinity and elevated atmosphericCO2concentration on growth, photosynthesis, water relations and chemical composition of thepotential cash crop halophyte Aster tripolium L. Environ Experi Bot,2009b,65:220-231.
    122. Gifford R.M., Barrett D.J., Lutze J.L., The effects of elevated [CO2] on the C: N and C: P massratios of plant tissues [J]. Plant Soil,2000,224:1-14.
    123. Grant C.A., Buckley W.T., Bailey L.D., et al., Cadmium accumulation in crops [J]. Can J Plant Sci,1998,78:1-17.
    124. Gray S.B., Strellner R.S., Puthuval K.K., et al., Minirhizotron imaging reveals that nodulation offield-grown soybean is enhanced by free-air CO2enrichment only when combined with droughtstress [J]. Funct Plant Biol,2013,40:137-147.
    125. Guo H., Zhu J., Zhou H., et al., Elevated CO2levels affects the concentrations of copper andcadmium in crops grown in soil contaminated with heavy metals under fully open-air fieldconditions [J]. Environ Sci Technol,2011,45:6997-7003.
    126. Guo H.Y., Jia H.X., Zhu J.G., et al., Influence of the environmental behavior and ecological effectof cropland heavy metal contaminants by CO2enrichment in atmosphere. Chinese J Geochem,2006,25:212.
    127. Guo J., Zhang W., Zhang M., et al., Will elevated CO2enhance mineral bioavailability in wetlandecosystems? Evidence from a rice ecosystem [J]. Plant Soil,2012,355:251-263.
    128. Gussarson M., Asp H., Adalateeinsson S., et al., Enhancement of cadmium effects on growth andnutrient composition of birch (Betulapendula) by buthionine sulphoximine (BSO)[J]. J ExpBot,1996,47:211-215.
    129. Hansson A.C., Aifen Z., Andrén O., Fine-root production and mortality in degraded vegetation inHorqin Sandy Rangeland in Inner Mongolia, China [J]. Arid Land Res Manag,1995,9:1-13.
    130. Hendrick R.L., and Pregitzer K.S., The demography of fine roots in a northern hardwood forest [J].Ecology,1992,73(3):1094-1104.
    131. Hendrick R.L., and Pregitzer K.S., The dynamics of fine root length, biomass, and nitrogen contentin two northern hardwood ecosystems [J]. Canadian J Forest Res,1993,23:2507-2520.
    132. Hendrick, R.L., and Pregitzer, K.S., Applications of minirhizotrons to understand root function inforests and other natural ecosystems [J]. Plant Soil,1996,185:293-304.
    133. Hodge A., Berta G., Doussan C., et al., Plant root growth, architecture and function. Plant Soil,2009,321(1-2):153-187.
    134. Hooker J.E., Black K.E., Perry R.L., et al., Arbuscular mycorrhizal fungi induced alteration to rootlongevity of poplar [J]. Plant Soil,1995,172:327-329.
    135. Huang Y., Hu Y., Liu Y., Combined toxicity of copper and cadmium to six rice genotypes (Oryzasativa L.)[J]. J Environ Sci-China,2009,21:647-653.
    136. Hungate B.A., Holland E.A., Jackson R.B., et al., The fate of carbon in grasslands under carbondioxide enrichment [J]. Nature,1997,388:576-579.
    137. Imai K., Coleman D., Yanagisawa T., Increase in atmospheric partial pressure of carbon dioxideand growth and yield of rice (Oryzasativa L.)[J]. Jpn J Crop Sci,1985,54:413-418.
    138. Ishikawa S., Ae N., Sugiyama M., et al., Genotypic variation in shoot cadmium concentration inrice and soybean in soils with different levels of cadmium contamination [J]. Soil Sci PlantNutrition,2005,51:101-108.
    139. Jia H.X., Guo H.Y., Yin Y., et al., Responses of rice growth to copper stress under free-air CO2enrichment (FACE). Chinese Sci Bull,2007,52:2636-2641.
    140. Jia Y., Ju X., Liao S., et al., Phytochelatin synthesis in response to elevated CO2under cadmiumstress in Lolium perenne L [J]. J Plant Physiol,2011,168:1723-1728.
    141. Jia Y., Tang S., Wang R., et al., Effects of elevated CO2on growth, photosynthesis, elementalcomposition, antioxidant level, and phytochelatin concentration in Lolium mutiforum and Loliumperenne under Cd stress [J]. J Hazard Mater,2010,180:384-394.
    142. Johnson M.G., Tingey D.T., Phillips D.L., et al., Advancing fine root research with minirhizotrons[J]. Environ Exp Bot,2001,45:263-289.
    143. Joslin J.D., Wolfe M.H., Disturbances during minirhizotron installation can affect root observationdata [J]. Soil Sci Soc Am J,1999,63:218-221.
    144. Kage H., Kochler M., Stützel H., Root growth and dry matter partitioning of cauliflower underdrought stress conditions: measurement and simulation [J]. Eur J Agron,2004,20:379-394.
    145. Kastori R., Petrovic M., Petrovic N., Effects of excess lead, cadmium, copper and zinc on waterrelations in sunflower [J]. Journal of plant nutrition,1992,15:2427-2439.
    146. Kim H., Lieffering M., Kobayashi K., et al., Effects of free-air CO2enrichment and nitrogensupply on the yield of temperate paddy rice crops [J]. Field Crop Res,2003,83:261-270.
    147. Kim H., Lim S., Kwak J., et al., Dry matter and nitrogen accumulation and partitioning in rice(Oryza sativa L.) exposed to experimental warming with elevated CO2[J]. Plant Soil,2011,342:59-71.
    148. Kim H.Y., Lieffering M., Miura S., et al., Growth and nitrogen uptake of CO2‐enriched riceunder field conditions [J]. New Phytol,2001,150:223-229.
    149. Kim S., and Kang H., Effects of Elevated CO2and Pb on phytoextraction and enzyme activity [J].Water, Air, Soil Pollution,2011,219:365-375.
    150. Kim Y.O., Rodriguez R.J., Lee E.J., et al., Phytolacca americana from contaminated andnoncontaminated soils of South Korea: effects of elevated temperature, CO2and simulated acidrain on plant growth response [J]. J Chem Ecol,2008,34:1501-1509.
    151. Krupa Z., Moniak M., The stage of leaf maturity implicates the response of the photosyntheticapparatus to cadmium toxicity [J]. Plant Sci,1998,138:149-156.
    152. Li L.Z., Zhou D.M., Wang P., et al., Effect of cation competition on cadmium uptake from solutionby the earthworm Eisenia fetida [J]. Environ Toxicol Chem,2009,28:1732-1738.
    153. Li P., Wang X.X., Zhang T.L., et al., Effects of several amendments on rice growth and uptake ofcopper and cadmium from a contaminated soil. J Environ Sci,2008,20(4):449-455.
    154. Li W.L., Han X.Z., Zhang Y.Y., et al., Effects of elevated CO2concentration, irrigation andnitrogenous fertilizer application on the growth and yield of spring wheat in semi-arid areas. AgrWater Manage,2007,87(1):106-114.
    155. Li Z., Tang S., Deng X., et al., Contrasting effects of elevated CO2on Cu and Cd uptake bydifferent rice varieties grown on contaminated soils with two levels of metals: implication forphytoextraction and food safety [J]. J Hazard Mater,2010,177:352-361.
    156. Lidon F.C., Henriques F.S., Copper toxicity in rice: diagnositic criteria and effect on tissue Mn andFe [J]. Soil Sci,1992,154(2):130-135.
    157. Lidon F.C., Henriques F.S., Effects of copper toxicity on growth and uptake and translocation ofmetals in rice plants [J]. J Plant Nutr,1993,16:1449-1464.
    158. Lidon F.C., Henriques F.S., Role of rice shoot vacuoles in copper toxicity regulation [J]. EnvironExp Bot,1998,39(3):197-201.
    159. Lieffering M., Kim H., Kobayashi K., et al., The impact of elevated CO2on the elementalconcentrations of field-grown rice grains [J]. Field Crop Res,2004,88:279-286.
    160. Lima A.I.G., Pereira S.I.A., De Almeida Paula Figueira E.M., et al., Cadmium detoxification inroots of Pisum sativum seedlings: relationship between toxicity levels, thiol pool alterations andgrowth [J]. Environ Exp Bot,2006,55:149-162.
    161. Liu J.G., Liang J.S., Li K.Q., et al., Correlations between cadmium and mineral nutrients inabsorption and accumulation in various genotypes of rice under cadmium stress [J]. Chemosphere,2003,52:1467-1473.
    162. Liu J.G., Qian M., Cai G.L., et al., Uptake and translocation of Cd in different rice cultivars and therelation with Cd accumulation in rice grain. J Hazard Mater,2007,143(1-2):443-447.
    163. Lobell D.B., Field C.B., Estimation of the carbon dioxide (CO2) fertilization effect using growthrate anomalies of CO2and crop yields since1961. Global Change Biol,2008,14:39-45.
    164. Loladze, I., Rising atmospheric CO2and human nutrition: toward globally imbalanced plantstoichiometry?[J]. Trends Ecol Evol,2002,17:457-461.
    165. Lorenz S.E., Hamon R.E., Holm P.E., et al., Cadmium and zinc in plants and soil solutions fromcontaminated soils [J]. Plant Soil,1997,189:21-31.
    166. Lorenz S.E., Hamon R.E., McGrath S.P., et al., Applications of fertilizer cations affect cadmiumand zinc concentrations in soil solutions and uptake by plants [J]. Eur J Soil Sci,1994,45:159-165.
    167. Lou Y., Inubushi K., Mizuno T., et al., CH4emission with differences in atmospheric CO2enrichment and rice cultivars in a Japanese paddy soil [J]. Global Change Biol,2008,14:2678-2687.
    168. Lu Y., Gong Z., Zhang G., et al., Concentrations and chemical speciations of Cu, Zn, Pb and Cr ofurban soils in Nanjing, China [J]. Geoderma,2003,115:101-111.
    169. Lynch J.M., Moffat A.J., Bioremediation–prospects for the future application of innovative appliedbiological research [J]. Annals Applied Biology,2005,146(2):217-221.
    170. Madan P., Jagadish S.V., Craufurd P.Q., et al., Effect of elevated CO2and high temperature onseed-set and grain quality of rice [J]. J Exp Bot,2012,63:3843-3852.
    171. Majdi H., Pregitzer K., Moren A., et al., Measuring fine root turnover in forest ecosystems [J].Plant Soil,2005,276:1-8.
    172. Malandrino M., Abollino O., Buoso S., et al., Accumulation of heavy metals from contaminatedsoil to plants and evaluation of soil remediation by vermiculite [J]. Chemosphere,2011,82:169-178.
    173. Manderscheid R., Bender J., J ger H., et al., Effects of season long CO2enrichment on cereals. II.Nutrient concentrations and grain quality [J]. Agric Ecosyst Environ,1995,54:175-185.
    174. Melgar J.C., Syvertsen J.P., García-sánchez F., Can elevated CO2improve salt tolerance in olivetrees? J Plant Physiol,2008,165:631-640.
    175. Moon C., Zhang Z., Shimbo S., et al., Dietary intake of cadmium and lead among the generalpopulation in Korea [J]. Environ Res,1995,71:46-54.
    176. Mulligan C.N., Yong R.N., Gibbs B.F., Remediation technologies for metal-contaminated soils andgroundwater: an evaluation [J]. Eng Geol,2001,60:193-207.
    177. Mu oz-Romero V., Benítez-Vega J., López-Bellido L., et al., Monitoring wheat root developmentin a rainfed vertisol: Tillage effect [J]. Eur J Agron,2010,33:182-187.
    178. Nakadaira, H., and Nishi, S., Effects of low-dose cadmium exposure on biological examinations [J].Sci Total Environ,2003,308:49-62.
    179. Nie M., Lu M., Bell J., et al., Altered root traits due to elevated CO2: a meta‐analysis [J]. GlobalEcol Biogeogr,2013,22:1095-1105.
    180. Ok Y.S., Usman A.R., Lee S.S., et al., Effects of rapeseed residue on lead and cadmiumavailability and uptake by rice plants in heavy metal contaminated paddy soil [J]. Chemosphere,2011,85:677-682.
    181. Peijnenburg W.J.G.M., Posthuma L., Eijsackers H.J.P., et al., A conceptual framework forimplementation of bioavailability of metals for environmental management purposes. EcotoxEnviron Safe,1997,37:163-172
    182. Poorter H., Pot S., Lambers H., The effect of an elevated atmospheric CO2concentration on growth,photosynthesis and respiration of Plantago major. Physiol Plantarum,2006,73:553-559.
    183. Pritchard S.G., Taylor B.N., Cooper E.R., et al., Long‐term dynamics of mycorrhizal root tips ina loblolly pine forest grown with free-air-CO2-enrichment and soil N fertilization for six years [J].Global Change Biol,2014,20(4):1313-1326.
    184. Rodrigues S.M., Cruz N., Coelho C., et al., Risk assessment for Cd, Cu, Pb and Zn in urban soils:Chemical availability as the central concept [J]. Environ Pollut,2013,183:234-242.
    185. Rogers H.H., Runion G.B., Krupa S.V., Plant responses to atmospheric CO2enrichment withemphasis on roots and the rhizosphere [J]. Environ Pollut,1994,83:155-189.
    186. Sandalio L.M., Dalurzo H.C., Gomez M., et al., Cadmium-induced changes in the growth andoxidative metabolism of pea plants [J]. J Exp Bot,2001,52(364):2115-2126.
    187. Sanitàdi T., Gabbrielli R., Response to cadmium in higher plants [J]. Environ Exp Bot,1999,41:105-130.
    188. Seneweera P.S., Conroy P.J., Growth, grain yield and quality of rice (Oryza sativa L.) in responseto elevated CO2and phosphorus nutrition [J]. Soil Sci. Plant Nutr,1997,43:1131-1136.
    189. Seneweera S.P, Blakeney A.B., Milham P., Influence of rising atmospheric CO2and phosphorusnutrition on the grain yield and quality of rice (Oryza sativa cv. Jarrah). Cereal Chem,1996,73:239-243.
    190. Seregin L.V., Ivanov V.B., Physiological aspects of cadmium and lead toxity effects on higherplants [J]. Russ. J Plant Physiol,2001,48(4):606-630.
    191. Shahwan T., Zunbul B., Eroglu A.E., et al., Effect of magnesium carbonate on the uptake ofaqueous zinc and lead ions by natural kaolinite and clinoptilolite [J]. Appl Clay Sci,2005,30:209-218.
    192. Shi J., Li L., Pan G., Variation of grain Cd and Zn concentrations of110hybrid rice cultivarsgrown in a low-Cd paddy soil [J]. J Environ Sci,2009,21:168-172.
    193. Shimono H., Okada M., Yamakawa Y., et al., Genotypic variation in rice yield enhancement byelevated CO2relates to growth before heading, and not to maturity group [J]. J Exp Bot,2009,60:523-532.
    194. Song N., Wang F., Zhang C., et al., Fungal inoculation and elevated CO2mediate growth ofLolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability inmetal-contaminated soil: evidence from DGT measurement [J]. Int J Phytoremediation,2013,15:268-282.
    195. Srivastava P., Singh B., Angove M., Competitive adsorption behavior of heavymetals on kaolinite[J]. J Colloid Interfaee Sei,2005,290(l):28-38.
    196. Tang S., Xi L., Zheng J., et al., Response to elevated CO2of Indian mustard and sunflowergrowing on copper contaminated soil [J]. B Environ Contam Tox,2003,71:988-997.
    197. Taub D.R., Miller B., Allen H., Effects of elevated CO2on the protein concentration of food crops:a meta‐analysis [J]. Global Change Biol,2008,14:565-575.
    198. Tong Y., Kneer R., Zhu Y., Vacuolar compartmentalization: a second-generation approach toengineering plants for phytoremediation [J]. Trends Plant Sci,2004,9:7-9.
    199. Unuabonah E.I., Adebowale K.O., Olu-Owolabi B.I., Kinetic and thermodynamic studies of theadsorption of lead (Ⅱ) ions onto phosphate-modified kaolinite clay [J]. J Hazard Mater,2007,144:386-395.
    200. Uprety D., Sen S., Dwived, N., Rising atmospheric carbon dioxide on grain quality in crop plants[J]. Physiol Mol Biol Plants,2010,16:215-227.
    201. Verma S., Dubey R.S. Effect of cadmium on soluble sugars and enzymes of their metabolism inrice [J]. Biol Plantarum,2001,44(1):117-123.
    202. Voigt A., Hendershot W.H., Sunahara G.I., Rhizotoxicity of cadmium and copper in soil extracts[J]. Environ Toxicol Chem,2006,25:692-701.
    203. Wang P., Zhou D., Kinraide T.B., et al., Cell membrane surface potential (ψ0) plays a dominantrole in the phytotoxicity of copper and arsenate [J]. Plant Physiol,2008,148:2134-2143.
    204. Wang P., Zhou D.M., Li L.Z., et al., Evaluating the biotic ligand model for toxicity and thealleviation of toxicity in terms of cell membrane surface potential. Environ Toxicol Chem,2010,29:1503–1511
    205. Wang Y., Frei M., Song Q., et al., The impact of atmospheric CO2concentration enrichment onrice quality–A research review [J]. Acta Ecologica Sinica,2011,31:277-282.
    206. Wells C.E., Glenn D.M., Eissenstat D.M., Soil insects alter fine root demography in peach (Prunuspersica)[J]. Plant, Cell&Environment,2002,25:431-439.
    207. Wu H., Tang S., Zhang X., et al., Using elevated CO2to increase the biomass of a Sorghumvulgare x Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. and to triggerhyperaccumulation of cesium [J]. J Hazard Mater,2009,170:861-870.
    208. Xu J.K., Yang L.X., Wang Z.Q., et al., Toxicity of copper on rice growth and accumulation ofcopper in rice grain in copper contaminated soil. Chemosphere,2006,62(4):602-607.
    209. Yamakawa Y., Saigusa M., Okada M., et al., Nutrient uptake by rice and soil solution compositionunder atmospheric CO2enrichment [J]. Plant Soil,2004,259:367-372.
    210. Yang, L., Huang, J., Yang, H., Zhu, J., Liu, H., Dong, G., Liu, G., Han, Y., Wang, Y.,2006. Theimpact of free-air CO2enrichment (FACE) and N supply on yield formation of rice crops withlarge panicle [J]. Field Crop Res98,141-150.
    211. Yang L., Wang Y., Dong G., et al., The impact of free-air CO2enrichment (FACE) and nitrogensupply on grain quality of rice [J]. Field Crop Res,2007,102:128-140.
    212. Yaru B.T., Buckley R.T., Rau M.T., Plant-metal (Al, Cd, Fe, Mn, Mo, Pb, Zn) interactions incontaminated freshwater sediments of the Fly River Floodplain, Papua New Guinea [J]. Wetlands(Australia),2010,20:1-27.
    213. Yin R., Feng X., Foucher D., er al., High precision determination of mercury isotope ratios usingonline mercury vapor generation system coupled with multicollector inductively coupledplasma-mass spectrometer [J]. Chinese J Anal Chem,2010,38:929-934.
    214. Zeng Y., Huang W., Su L., et al., Effects of elevated CO2on the nutrient compositions andenzymes activities of Nilaparvata lugens nymphs fed on rice plants [J]. Sci China Life Sci,2012,55:920-926.
    215. Zhang G.P., Fukami M., Sekimoto H. Influence of cadmium on mineral concentrations and yieldcomponents in wheat genotypes differing in Cd tolerance at seedling stage [J]. Field Crop Res,2002,77:93-98.
    216. Zhang H., Feng X., Larssen T., et al., In inland China, rice, rather than fish, is the major pathwayfor methylmercury exposure [J]. Environ Health Persp,2010,118:1183.
    217. Zheng J., Wang H., Li Z., et al., Using elevated carbon dioxide to enhance copper accumulation inPteridium revolutum, a copper-tolerant plant, under experimental conditions [J]. Int JPhytoremediati,2008,10:159-170.
    218. Zheng N., Wang Q., Zheng D., Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants aroundHuludao Zinc Plant in China via consumption of vegetables [J]. Sci Total Environ,2007,383:81-89.
    219. Zhou H.H., Chen Y.N., Li W.H., et al., Photosynthesis of Populus euphratica and its response toelevated CO2concentration in an arid environment. Prog Nat Sci,2009,19:443-451.
    220. Zhou Y.H., Zhang Y.L., Wang X.M., et al., Effects of nitrogen form on growth, CO2assimilation,chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants [J]. JZhejiang Univ Sci B,2011,12:126-134.
    221. Zhuang P., Zou B., Li N.Y., et al., Heavy metal contamination in soils and food crops aroundDabaoshan mine in Guangdong, China: implication for human health [J]. Environ Geochem Health,2009,31:707-715.
    222. Ziska L.H., Weerakoon W., Namuco O.S., et al., The influence of nitrogen on the elevated CO2response in field-grown rice [J]. Funct Plant Biol,1996,23:45-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700