用户名: 密码: 验证码:
多位点修饰内吗啡肽及其类似物的构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿片样肽是最早在神经系统中被确认的神经肽类物质,类阿片及阿片受体广泛分布于哺乳动物的中枢神经系统和外周组织。植物性阿片制剂吗啡在临床上应用于缓解急性疼痛,但是吗啡在产生镇痛作用的同时也伴随着许多的副作用,如呼吸抑制、便秘、心率过缓、血压降低以及容易成瘾产生耐受等,μ-阿片受体系统是寻找新型镇痛药物的重要靶点,内吗啡肽-1和2是对μ-阿片受体具有高亲和性和选择性的内源性阿片肽激动剂,它们同吗啡一样在较低剂量时对急性疼痛有很强的镇痛作用,同时在镇痛剂量条件下缺少部分吗啡样副作用,这就使得内吗啡肽取代吗啡成为新型镇痛药物成为可能,然而内吗啡肽镇痛作用持续时间短,体内快速被酶降解(氨肽酶及二肽基肽酶Ⅳ),通过血脑屏障到达中枢的能力差以及口服无效等缺点也大大限制了其在临床上的应用。因此本文通过对内吗啡肽加以修饰改造希望寻找有强效镇痛作用且其抗酶解能力强,持续作用时间长,副作用低的新型镇痛药物模型。
     本论文将非天然氨基酸或二肽片段(Sar,D-Ala-Gly,Phg,Hfe)引入到EM-1的2和3位,且将其4位全部用D-Val4-NH-Bzl取代,通过经典液相法合成了四个EM-1的类似物并对它们的生理和药理学活性进行了检定,包括受体亲和实验,离体生物学活性检定,酶解稳定性以及在体镇痛活性的测定。我们发现所有类似物酶解稳定性都比EM-1高,只有类似物1[Sar2,D-Val4-NH-Bzl]EM-1的μ-阿片受体的亲和活性,离体生物学活性以及镇痛活性效能均比EM-1高;类似物2对μ-阿片受体亲和活性略低于EM-1,但是在所有类似物中对6-阿片受体亲和活性最高(δ)Ki达到了142nM,而EM-1的(6)Ki是5093nM,表明Tyr-D-Ala-Gly作为信息序列对配体与δ-阿片受体之间的作用产生了一定的影响,推测类似物2可能对μ和δ-阿片受体同时产生激动作用,具有双受体激动效应;其余两个类似物除了抗酶解能力均比EM-1强之外,它们对μ-阿片受体的亲和活性,离体生物学活性以及镇痛活性效能均不同程度的下降,尤其是类似物4[Phg3,D-Val4-NH-Bzl]EM-1基本上丧失了对μ-阿片受体的亲和活性和激动活性。
The opioids were among the earliest neuropeptides identified in the nervous system, opioid receptors are most abundant in the central nervous system, but have also been localized in many peripheral tissues of the mammalian organism. Centrally acting plant opiates, such as morphine, are usually used analgesics for relief of the severe pain, but their usefulness is confined by a number of well-known side effects, including respiratory depression, constipation, bradycardia, hypotension, tolerance and physical dependence and so on. Theμ-opioid receptor system is a significant target in the search for novel analgesics. Endomorphin-1 and 2 are two potent and hinghly selectiveμ-opioid receptor agonists, simultaneously they could show a strong ananlgesic activity in acute pain similar to that of morphine even at low doses, but endomorphins are thought to inhibit pain without some of the undesirde side effects of plant opiates. It is possible that endomorphins instead of morphine in the development of novel analgesics. However, endomorphins still suffers from serious limitations including short duration of action, lack of activity after oral administration, relative inability to cross the blood-brain barrier (BBB) into the central nervous system (CNS) and rapidly degradation by individual enzymes (such as dipeptidyl peptidase IV and aminopeptidases). Therefore, we hope to search novel analgesics which possess long duration of action, good metabolic stability without side effects, based various modification on endomorphins.
     In this paper, we introduced unnatural amino aid and dipeptide fragment (Sar, D-Ala-Gly, Phg, Hfe) into posotion 2 and 3 of endomorphin-1, which C-terminal was substituted by D-Val4-NH-Bzl. Four analogs of EM-1 were synthesized by classic solution-phase method, and their physiological and pharmacological activities were determined, including receptor binding affinity and bioassay activity, isolated tissue assays and in vivo assays. We found that all of the analogs exhibited increased in vitro metabolic stability to EM-1 in mouse brain homogenate. Only analogs 1 ([Sar2, D-Val4-NH-Bzl](EM-1) showed higher affinity and agonist activity toμ-opioid receptor and increased in antinociceptive activity to that of EM-1. Analogs 2 had a less lower affinity and agonist activity toμ-opioid receptor compared with that of EM-1, however, Analogs 2 exhibited aδ-opioid receptor affinity 36-fold higher than that of EM-1, it suggested that Tyr-D-Ala-Gly is important toδ-opioid receptor ligand as "message sequence". We supposed that analogs 2 isμ/δ-opioid receptor agonist with bifunctional activities. The other two analogs all decreased in affinity and antinociceptive activity. Particularly analogs 4 exhibited significantly low affinity and agonist activity toμ-opioid receptor.
引文
1. Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan GA, Morris HR. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature(Lond),1975,258,577-580.
    2. Li CH, Chung D. Isolation and structure of an untriakonta peptide with opiate activity from camel pituitary glands. Proc. Natl. Acad. Sci. USA,1976, 73,1145-1148.
    3. Goldstein A, Tachibana S, Lowney LI, Hold L. Dynorphin A(1-13), anextraordinary potent opioid peptide. Proc. Natl. Acad. Sci. USA,1979,76, 6666-6670.
    4. Lowney LI, Gentleman SB, Goldstein A. A pituitary endorphin with novel properties. Life Sci.,1979,24,2377-2384.
    5. Lachowicz JE, Shen Y, Monsma FJ Jr, Sibley DR. Molecular cloning of a novel G protein-coupled receptor related to the opiate receptor family. J. Neurochem., 1995,64,34-40.
    6. Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma Jr. FJ, Civelli O. Orphanin FQ:a neuropeptide that activates an opioidlike G-protein-coupled receptor. Science, 1995,270,792-794.
    7. Meunier JC, Mollereau C, Toll L, Suaudesu C, Moisand C, Alvinerie P, et al. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature,1995,377,532-535.
    8. Mollereau C, Parmentier M, Mailleux P, Butour JL, Moisand C, Chalon P, et al. ORLI, a novel member of the opioid receptor family cloning, functional expression and localization. FEBS Lett.,1994,341,33-38.
    9. Chen Y, Fan Y, Liu J, Mestek A, Tian M, Kozak CA,Yu L. Molecular cloning, tissue distribution and chromosomal of a novel member of the opiod receptor gene family. FEBS Lett.,1994,347,279-283
    10. Wick MJ, Minnerath SR, Lin XQ, Elde R, Law PY, Loh HH. Isolation of a novel cDNA encoding a putative membrane receptor with high homology to the cloned μ、δ and κ opioid receptors. Mol. Brain Res.,1994,27,37-44.
    11. Zadina JE, Hackler L, Ge L-J, Kastin AJ. A potent and selective endogenous agonist for the μ-opiate receptor. Nature,1997,386,499-502.
    12. Hackler L, Zadina JE, Ge L-J, Kastin AJ. Isolation of relatively large amounts of endomorphin-1 and endomorphin-2 from human brain cortex. Peptides.1997,18, 1635-1639.
    13.韩济生,万有.“内吗啡肽”的发现是阿片肽研究的一次突破,生理科学进展,1997,28,237-239.
    14. Kakizawa K, Shimohira I, Sakurada S, Fujimura T, Murayama K, Ueda H. Parallel stimulations of in vitro and in situ [35S]GTPyS binding by endomorphin 1 and DAMGO in mouse brains. Peptides,1998,19,755-758.
    15. Zadina JE, Martin-Schild S, Gerall AA, Kastin AJ, Hackler L, Ge L-J, Zhang X. Endomorphins:novel endogenous μ-opiate receptor agonists in regions of high μ-opiate receptor density. Ann. N. Y. Acad. Sci.,1999,897,136-144.
    16. Martin-Schild S, Gerall AA, Kastin AJ, Zadina JE. Differential distribution of endomorphin-1 and endomorphin-2 like immunoreactivities in the CNS of the rodent. J. Comp. Neurol.,1999,405,450-471.
    17. Terskiy A, Wannemacher KM, Yadav PN, Tsai M, Tian B, Howells RD. Search of the human proteome for endomorphin-1 and endomorphin-2 precursor proteins. Life Sci.,2007,81,1593-1601.
    18. Goldberg IE, Rossi GC, Letchworth SR, Mathis JP, Ryan-Moro J, Leventhal L, Su W. Pharmacological characterization of endomorphin-1 and endomorphin-2 in mouse brain. J. Phamacol. Exp. Ther.1998,286,1007-1013.
    19. Hosohata K, Burkey TH, Alfaro-Lopez J, Varga E, Hruby VJ, Roeske WR, Yamamura HI. Endomorphin-1 and endomorphin-2 are partial agonists at the human μ-opioid receptor. Eur. J. Pharmacol.,1998,346,111-114.
    20. North RA. Opioid receptor types and membrane ion channels. Trends Neurosci., 1986,9,114-117.
    21. Schreff M, Schulz S, Wiborny D, Hollt V. Immunofluorescent identification of endomorphin-2 containing nerve fibers and terminals in the rat brain and spinal cord. NeuroReport,1998,9,1031-1034.
    22. Martin-Schild S, Gerall AA, Kastin AJ, Zadina JE. Differential distribution of endomorphin 1-and endomorphin-2-like immunoreactivities in the CNS of the rodent. J. Comp. Neurol.1999,405,450-471.
    23. Pierce TL, Wessendorf MW. Immunocytochemical mapping of endomorphin-2 immunoreactivity in rat brain. J. Chem. Neuroanat.,2000,18,181-207.
    24. Jessop DS, Major GN, Coventry TL, Kaye SJ, Fulford AJ, Harbuz MS, De Bree FM. Novel opioid peptides endomorphin-1 and endomorphin-2 are present in mammalian immune tissues. J. Neuroimmunol.,2000,106,53-59.
    25. Mousa SA, Machelska H, Schafer M, Stein. Immunohistochemical localization of endomorphin-1 and endomorphin-2 in immune cells and spinal cord in model of inflammatory pain. Neuroimmunol.,2002,126,5-15.
    26. Horvath G. Endomorphin-1 and endomorphin-2:pharmacology of the selective endogenous μ-opioid receptor agonists. Pharmacol. Ther.,2000,88,437-463.
    27. Fichna J, do-Rego JC, Kosson P, Schiller PW, Costentin J, Janecka A. Characterization of [35S]GTPyS binding stimulated by endomorphin-2 and morphiceptin analogues in rat thalamus. Biochem. Biophys. Res. Commun.,2006, 345,162-168.
    28. Fichna J, Gach K, Piestrzeniewicz M, Burgeon E, Poels J, Vanden Broeck J, Janecka A. Functional characterization of opioid receptor ligands by aequorin luminescence-based calcium assay. J. Pharmacol. Exp. Ther.,2006,317,1150-1154.
    29. Sim LJ, Liu Q, Childers SR, Selley DE. Endomorphin-stimulated [35S]GTPyS binding in rat brain:evidence for partial agonist activity at μ-opioid receptors. J. Neurochem.,1998,70,1567-1576.
    30. Tseng LF. Recent advances in the search for the μ-opioidergic system the antinociceptive properties of endomorphin-1 and endomorphin-2 in the mouse. Jpn. J. Pharmacol.,2002,89,216-220.
    31. Ohsawa M, Mizoguchi H, Narita M, Nagase H, Kampine JP, Tseng LF. Differential antinociception induced by spinally administered endomorphin-1 and endomorphin-2 in the mouse. J. Pharmacol. Exp. Ther.,2001,298,592-597.
    32. Grass S, Xu IS, Wiesenfeld-Hallin Z, Xu X-J. Comparison of the effect of intrathecal endomorphin-1 and endomorphin-2 on spinal cord excitability in rats. Neurosci. Lett.,2002,324,197-200.
    33. Sakurada S, Hayashi T, Yuhki M, Fujimura T, Murayama K, Yonezawa A, et al. Differential antagonism of endomorphin-1 and endomorphin-2 spinal antinociception by naloxonazine and 3-methoxynaltrexone. Brain Res.,2000,881, 1-8.
    34. Tseng LF, Narita M, Suganuma C, Mizoguchi H, Ohsawa M, Nagase H, Kampine JP. Differential antinociceptive effects of endomorphin-1 and endomorphin-2 in the mouse. J. Pharmacol. Exp. Ther.,2000,292,576-583.
    35. Wu HE, Mizoguchi H, Terashvili M, Leitermann RJ, Hung K-C, Fujimoto JM, Tseng LF. Spinal pretreatment with antisense oligodeoxynucleotides against exon-1,-4, or-8 of μ-opioid receptor clone leads to differential loss of spinal endomorphin-1 and endomorphin-2 induced antinociception in the mouse. J. Pharmacol. Exp. Ther.,2002,303,867-873.
    36. Garzon J, Rodriguez-Munoz M, Lopez-Fando A, Garcia-Espana A, Sanchez-Blazquez PR. GSZ1 and GAIP regulate μ but not δ-opioid receptors in mouse CNS:role in tachyphylaxis and acute tolerance. Neuropsycho. Pharmacology,2004,29,1091-1104.
    37. Pasternak GW. Pharmacological mechanisms of opioid analgesic. Clin. Neuropharmacol.,1993,16,1-18.
    38. Mima H, Morikawa H, Fukuda K, Kato S, Shoda T, Mori K. Ca2+channel inhibition by endomorphins via the cloned μ-opioid receptor expressed in NG108-15 cells. Eur. J. Pharmacol.,1997,340, R1-R2.
    39. Monory K, Bourin MC, Spetea M, et al. Specific activation of the opioid μ-receptor(MOR) by endomorphin 1 and endomorphin 2. Eur. J. Neurosci.,2000, 12,577-584.
    40. Harrison C, McNulty S, Smart D, Rowbotham DJ, Grandy DK, Devi LA, Lambert DG. The effects of endomorphin-1 and endomorphin-2 in CHO cells expressing recombinant μ-opioid receptors and SH-SY5Y cells. Br. J. Pharmaco-l.,1999,128,472-478.
    41. Liu HM, Liu XF, Yao JL, Wang CL, Yu Y, Wang R. Utilization of combined chemical modifications to enhance the blood-brain barrier permeability and pharmacological activity of endomorphin-1. J. Pharmacol. Exp. Ther.,2006,319, 308-316.
    42. Liu HM, Zhang BZ, Liu XF, Wang CL, Ni JM, Wang R. Endomorphin-1 analogs with enhanced metabolic stability and systemic analgesic activity:design, synthesis, and pharmacological characterization. Bioorg. Med. Chem.,2007,15, 1694-1702.
    43. Yu Y, Shao X, Wang CL, Liu HM, Cui Y, Fan YZ, Liu J, Wang R. In vitro and in vivo characterization of opioid activities of endomorphins analogs with novel constrained C-terminus:evidence for the important role of proper spatial disposition of the third aromatic ring. Peptides,2007,28,859-870.
    44. Zhao QY, Chen Q, Yang DJ, FengY, Long Y, Wang P, Wang R. Endomorphin 1 [ψ] and endomorphin 2[ψ], endomorphins analogues containing a reduced(CH2NH) amide bond between Tyr1 and Pro2, display partial agonist potency but significant antinociception. Life Sci.2005,77,1155-1165.
    45. Przewlocka B, Mika J, Labuz D, Toth G, Przewlocki R. Spinal analgesic action of endomorphins in acute, inflammatory and neuropathic pain in rats. Eur. J. Pharmacol.,1999,367,189-196.
    46. Smith RR, Martin-Schild S, Kastin AJ, Zadina JE. Decreases in endomorphin-2 like immunoreactivity concomitant withchronic pain after nerve injury. J. Neuroscience,2001,105,773-778.
    47. Wang YQ, Zhu CB, Wu GC, Cao XD, Wang Y, Cui DF. Effects of orphanin FQ on endomorphin-1 induced analgesia. Brain Res.,1999,835,241-246.
    48. Wang JL, Zhu CB, Cao XD, Wu GC. Distinct effect of intracerebroventricular and intrathecal injections of nociceptin/orphanin FQ in the rat formalin test. J.
    Regul Pept.,1999,79,159-163.
    49. Fichna J, Janecka A, Costentin J, Do Rego JC. The endomorphin system and its evolving neurophysiological role. Pharmacol. Rev.,2007,59,88-123.
    50. Hung K-C, Wu H-E, Mizoguchi H, Leitermann R, Tseng LF. Intrathecal treatment with 6-hydroxydopamine or 5,7-dihydroxytryptamine blocks the antinociception induced by endomorphin-1 and endomorphin-2 given intracerebroventricularly in the mouse. J. Pharmacol. Sci.,2003,93,299-306
    51. Kolesnikov Y, Pasternak GW. Topical opioids in mice:analgesia and reversal tolerance by a topical N-methyl-D-aspartate antagonist. J. Pharmacol. Exp. Ther., 1999,290,247-252.
    52. Nozaki-Taguchi NMD, Yaksh TL. Characterization of the antihyperalgesic action of a novel peripheral mu-opioid receptor agonist-loperamide. Anesthesiology,1999,90,225-234.
    53. Li ZH, Shan LD, Jiang XH, Guo SY, Yu GD, Hisamitsu T, Yin Q-Z. Analgesic effect of endomorphin-1. Acta Pharmacol. Sin.,2001,22,976-980.
    54. Spampinato S, Qasem AR, Calienni M, Murari G, Gentilucci L, Tolomelli A, Cardillo G. Antinociception by a peripherally administered novel endomorphin-1 analogue containing β-proline. Eur. J. Pharmacol.,2003,469,89-95.
    55. Wolfe D, Hao S, Hu J, Srinivasan R, Goss J, Mata M, Fink DJ, Glorioso JC. Engineering an endomorphin-2 gene for use in neuropathic pain therapy. Pain, 2007,133,29-38.
    56. Hao SL, Wolfe D, Glorioso JC, Mata M, Fink DJ. Effects of transgene-mediated endomorphin-2 in inflammatory pain. Eur. J. Pain,2009,13,380-386.
    57. Allescher HD, Storr M, Brechmann C, Hahn A, Schusdziarra V. Modulatory effect of endogenous and exogenous opioids on the excitatory reflex pathway of the rat ileum. Neuropeptides,2000,34,62-68.
    58. Tonini M, Fiori E, Balestra B, Spelta V, D' Agostino G, Di Nucci A, Brecha NC, Sternini C. Endomorphin-1 and endomorphin-2 activate μ-opioid receptorsin myenteric neurons of the guinea-pig small intestine. N.-S. Arch. Pharmacol., 1998,358,686-689.
    59. Storr M, Gaffal E, Schusdziarra V, Allescher HD. Endomorphins 1 and 2 reduce relaxant non-adrenergic, non-cholinergic neurotransmission in rat gastricfundus. Life Sci.,2002,71,383-389.
    60. Yokotani K,Osumi Y. Involvement of μ-receptor in endogenous opioid peptide mediated inhibition of acetylcholine release from rat stomach. Jpn. J. Pharmaco., 1998,1,93-95.
    61. Czapla MA, Champion HC, Zadina JE, Kastin AJ, Hackler L, Ge LJ, Kadowitz PJ. Endomorphin 1 and 2, endogenous μ-opioid agonists, decrease systemic arterial pressure in the rat. Life Sci.,1998,62,175-179.
    62. Kwok EH, Dun NJ. Endomorphins decrease heart rate and blood pressure possibly by activating vagal afferents in anesthetized rats. Brain Res.,1998,803, 204-207.
    63. Makulska-Nowak HE, Gumulka SW, Lipkowski AW, Rawa MA. Effects of endomorphin-2 on arterial blood pressure and pain threshold in spontaneously hypertensive rats and modification of these effects by β-funaltrexamine and norbinaltorphimine. Life Sci.,2001,69,581-589.
    64. Viard E, Sapru HN. Endomorphin-2 in the medial NTS attenuates the responses to baroreflex activation. Brain Res.,2006,1073-1074,365-373.
    65. Kasamatsu K, Chitravanshi VC. Depressor and bradycardic responses to microinjections of endomorphin-2 into the NTS are mediated via ionotropic glutamate receptors. Am. J. Physiol.,2004,287,715-728.
    66. Champion HC, Bivalacqua TJ, Zadina JE, Kastin AJ, Hyman AL, Kadowitz PJ. Role of nitric oxide in mediating vasodilator responses to opioid peptides in the rat. Clin. Exp. Pharmacol. Physiol.,2002,29,229-232.
    67. Champion HC, Kadowitz PJ. D-[Ala2-endomorphin 2] and endomorphin 2 have nitric oxide-dependent vasodilator activity in rats. Am. J. Physiol.,1998,274, 1690-1697.
    68. Dai X., Cui SG, Wang T, Liu Q, Song H.J, Wang R. Endogenous opioidpeptides, endomorphin-1 and-2 and deltorphin I, stimulate angiogenesis in the CAM assay. Eur. J. Pharmacol.,2008,579,269-275.
    69. Dai X., Song HJ, Cui SG, Wang T, Liu Q, Wang R. The stimulative effects of endogenous opioids on endothelial cell proliferation,migration and angiogenesis in vitro. Eur. J. Pharmacol.,2010,628,42-50.
    70. Czapla MA, Gozal D, Alea OA, Beckerman RC, Zadina JE. Differential cardio respiratory effects of endomorphin 1, endomorphin 2, DAMGO, and morphine. Am. J. Respir. Crit. Care. Med.,2000,162,994-999.
    71. Czapla MA, Zadina JE. Reduced suppression of CO2-induced ventilatory stimu-lation endomorphins relative to morphine. Brain Res.,2005,1059,159-166.
    72. Fischer A, Undem BJ. Naloxone blocks endomorphin-1 but not endomorphin-2 induced inhibition of tachykinergic contractions of guinea-pig isolated bronchus. Br. J. Pharmacol.,1999,127,605-608.
    73. Yu Y, Cui Y, Wang X, Fan YZ, Liu J, Yan X, Wang R. Endomorphin 1 and endomorphin 2, endogenous potent inhibitors of electrical field stimulation-(EFS)-induced cholinergic contractions of rat isolated bronchus. Peptides,2006, 27,1846-1851.
    74. Patel HJ, Venkatesan P, Halfpenny J, Yacoub MH, Fox A, Barnes PJ, Belvisi MG. Modulation of acetylcholine release from parasympathetic nerves innervating guinea-pig and human trachea by endomorphin-1 and-2. Eur. J. Pharmacol., 1999,374,21-24.
    75. Belvisi MG, Stretton CD, Verleden GM, Ledingham SJ, Yacoub MH, Barnes PJ. Inhibition of cholinergic neurotransmission in human airways by opioids. J. Appl. Physiol.,1992,72,1096-1100.
    76. Asakawa A, Inui A, Ueno N, Fujimiya M, Fujino MA, Kasuga M.Endomorphin-1, an endogenous μ-opioid receptor-selective agonist, stimulates oxygen consumption in mice. Horm. Metab. Res.,2000,32,51-52.
    77. Ferry B, McGaugh JL. Role of amygdala norepinephrine in mediating stress hormone regulation of memory storage. Acta Pharmacol. Sin.,2000,21,481-493.
    78. Ukai M, Lin HP. Endomorphins 1 and 2 induce amnesia via selective modulation of dopamine receptors in mice. Eur. J. Pharmacol.,2002,446,97-101.
    79. Ukai M, Lin HP. Involvement of μ-opioid receptors and cholinergic neurotransmission in the endomorphins-induced impairment of passive avoidance learning in mice. Behav. Brain Res.,2002,129,197-201.
    80. Zhang H, Torregrossa MM, Jutkiewicz EM, Shi Y-G, Rice K-C, Woods JH, Watson SJ, Ko MC. Endogenous opioids upregulate brain-derived neurotrophic factor mRNA through δ-and μ-opioid receptors independent of antidepressant-like effects. Eur. J. Neurosci.,2006,23,984-994.
    81. Asakawa A, Inui A, Momose K, Ueno N, Fujino MA, Kasuga M. Endomorphins have orexigenic and anxiolytic activities in mice. NeuroReport,1998,9,2265-2267.
    82. Leventhal L, Silva RM, Rossi GC, Pasternak GW, Bodnar RJ. Morphine-6β-glucuronide-induced hyperphagia:characterization of opioid action by selective antagonists and antisense mapping in rats. J. Pharmacol. Exp. Ther.,1998,287, 538-544.
    83. Sinchak K, Micevych PE. Progesterone blockade of estrogen activation of μ-opioid receptors regulates reproductive behaviour. J. Neurosci.2001,21,5723-5729.
    84. Farhadinasaba A, Shahidib S, Najafib A, Komakib A. Role of naloxone as an exogenous opioid receptor antagonist in spatial learning and memory of female rats during the estrous cycle. Brain Res.,2009,1257,65-74.
    85. Parra-Gamez L, Garcia-Hidalgo A, Salazar-Juarez A, Anton, Raul G. Paredes. Endomorphin-1, effects on male sexual behavior. Physiol. Behav.,2009,97,98-101.
    86. Bujdoso E, Jaszberenyi M, Gardi J, Foldesic I, Telegdy G. The involvement of dopamine and nitric oxide in the endocrine and behavioural action of endomorphin-1. Neurosci.,2003,120,261-268.
    87. Mehta A, Bot G, Reisine T, Chesselet M-F. Endomorphin-1:induction of motor behavior and lack of receptor desensitization. J. Neurosci.,2001,21,4436-4442.
    88. Fichna J, Janecka A, Piestrzeniewicz M, Costentin J, do-Rego JC. Antidepressant-like effect of endomorphin-1 and endomorphin-2 in mice. Neuropsychopharm.,2006,31,1-9
    89. AzumaY, Ohura K, WangPL, Shinohara M. Endomorphins delay constitutive apoptosis and alter the innate host defense functions of neutrophils. Immunol. Lett.,2002,81,31-40.
    90. AzumaY, Ohuxa K, WangPL, Shinohara M. Endomorphin 1 and 2 modulate chemotaxis, phagoeytosis and superoxide anion produetion by mieroglia. J. Neuroirnrnunol.,2001,119,51-56
    91. AzumaY, Ohura K. Endomorphin-2 modulates productions of TNF-a, IL-1β, IL-10, IL-2, and alters functions related to innate immune of macrophages. Inflanunation,2002,26,223-32.
    92. Anton B, Leff P, Calva Juna C, Acevedo R, Salazar A, Matus M, et al. Endomorphin 1 and endomorphin 2 suppress in vitro antibody formation at ultra-low concentrations:Anti-peptide antibodies but not opioid antagonists block the activity. Brain Behav. Immun.,2008,22,824-832.
    93. Labuz D, Przewlocki R, Przewlocka B. Cross-tolerance between the different μ-opioid receptor agonists endomorphin-1, endomorphin-2 and morphine at the spinal level in the rat. Neurosci. Lett.,2002,334,127-130
    94. Yamazaki T, Ro S, Goodman M, Chung NN, Schiller PW. A topochemical approach to explain morphiceptin bioactivity. J. Med. Chem.,1993,36,708-719.
    95. Cowell SM, Lee YS, Cain JP, Hruby VJ. Exploring Ramachandran and Chi space:Conformationally constrained amino acids and peptides in the design of bioactive polypeptide ligands. Curr.Med.Chem.,2004,11,2785-2798.
    96. Janecka A, Staniszewska R, Fichna J. Endomorphin analoges. Curr.Med.Chem 2007,14,3201-3208
    97. Podlogar BL, Paterlinib MG, Ferguson DM, Leoa GC, Demetera DA, Browna FK, Reitza AB. Conformational analysis of the endogenous μ-opioid agonist endomorphin-1 using NMR spectroscopy and molecular modeling. FEBS Lett. 1998,439,13-20.
    98. Fiori S, Renner C, Cramer J, Pegoraro S, Moroder L. Preferred conformation of endomorphin-1 in aqueous and membrane-mimetic environments. J. Mol. Biol., 1999,291,163-175.
    99. In Y, Minoura K, Ohishi H, Minakata H. Kamigauchi M, Sugiura M, Ishida T. Conformational comparisonof μ-selective endomorphin-2 with its C-terminal free acid in DMSO solution, by 1H NMR spectroscopy andmolecular modeling calculation. J. Pept. Res.,2001,58,399-412.
    100.Okada Y, Fukumizu A, Takahashi M, Shimizu Y, Tsuda Y, Yokoi T, et al. Synthesis of stereoisomeric analogues of endomorphin-2, H-Tyr-Pro-Phe-Phe-NH2, and examination of their opioid receptor binding activities and solution conformation. Biochem. Biophys. Res. Commun.,2000,276,7-11.
    101.Paterlini MG, Avitabile F, Ostrowski BG, Ferguson DM, Portoghese PS. Stereochemical requirements for receptor recognition of the μ-opioid peptide endomorphin-1. Biophys.J.,2000,78,590-599.
    102.Fichna J, do-Rego JC, Kosson P, Costentin J, Janecka A. Characterization of antinociceptive activity of novel endomorphin-2 and morphiceptin analogs modified in the third position. Biochem. Pharmacol.,2005,69,179-185.
    103.T6mboly C, Kover KE, Peter A, Tourwe D, Biyashev D, Benyhe S, et al. Structure-activity study on the Phe side chain arrangement of endomorphins using conformationally constrained analogues. J. Med. Chem.,2004,47,735-743.
    104. Sasaki Y, Sasaki A, Niizuma H, Goto H, Ambo A. Endomorphin 2 analogues containing Dmp residue as an aromatic amino acid surrogate with high mu-opioid receptor affinity and selectivity. Bioorg. Med. Chem.,2003,11,675-678.
    105.Kruszynski R, Fichna J,do-Rego JC, Janecki T, Kosson P, Pakulska W, Costentin J, Janecka A. Synthesis and biological activity of N-methylated analogs of endomorphin-2. Bioorg. Med. Chem.,2005,13,6713-6717.
    106.Janecka A, Kruszynski R, Fichna J, Kosson P, Janecki T. Enzymatic degradation studies of endomorphin-2 and its analogs containing N-methylated amino acids. Peptides,2006,27,131-135.
    107.Gao YF, Liu X, Liu WX, Qi YM, Liu XF, Zhou YF, Wang R. Opioid receptor binding and antinociceptive activity of the analogues of endomorphin-2 and morphiceptin with phenylalanine mimics in the position 3 or 4. Bioorg. Med. Chem. Lett.,2006,16,3688-3692.
    108.Cardillo G, Gentilucci L, Melchiorre P, Spampinato S. Synthesis and binding activity of endomorphin-1 analogues containing β-amino acids. Bioorg. Med. Chem. Lett.,2000,10,2755-2758.
    109.Cardillo G, Gentilucci L, Qasem AR, Sgarzi F, Spampinato S. Endomorphin-1 analogues containing β-proline are μ-opioid receptor agonists and displayenhanced enzymatic hydrolysis resistance. J. Med. Chem.,2002,45, 2571-2578.
    110.Spampinato S, Qasem AR, Calienni M, Murari G, Gentilucci L, Tolomelli A, Cardillo G. Antinociception by a peripherally administered novel endomorphin-1 analogue containing β-proline. Eur. J. Pharm.,2003,469,89-95.
    111.Fujita Y, Tsuda Y, Li T, Motoyama T, Takahashi M, Shimizu Y, et al. Development of potent bifunctional endomorphin-2 analogues with mixed μ-/δ-opioid agonist and δ-opioid antagonist properties. J. Med. Chem.,2004,47, 3591-3599.
    112.Li T, Fujita Y, Tsuda Y, Miyazaki A, Ambo A, Sasaki Y, et al. Development of potent μ-opioid receptor ligands using unique tyrosine analogues of endomorphin-2. J. Med. Chem.,2005,48,586-592.
    113.Fichna J, do-Rego JC, Janecki T, Staniszewska R, Poels J, Broeck JV, et al. Novel highly potent μ-opioid receptor antagonist based on endomorphin-2 structure. Bioorg. Med. Chem. Lett.,2008,18,1350-1353.
    114.Dolle RE, Machaut M, Martinez-Teipel B, Belanger S, Cassel JA, Stabley GJ, et al. (4-Carboxamido) phenylalanine is a surrogate for tyrosine in opioid receptor peptide ligands. Bioorg. Med. Chem. Lett.,2004,14,3545-3548.
    115.Lengyel I, Orosz G, Biyashev D, Kocsis L, Al-Khrasani M, Ronai A, et al. Side chain modifications change the binding and agonist properties of endomorphin 2. Biochem. Biophys. Res. Commun.,2002,290,153-161.
    116.Al-Khrasani M, Orosz G, Kocsis L, Farkas V, Magyar A, Lengyel I, et al. Receptor constants for endomorphin-1 and endomorphin-l-ol indicate differences in efficacy and receptor occupancy. Eur. J. Pharmacol.,2001,421,61-67.
    117.Gao YF, Liu X, Wei J, Zhu BB, Chen Q, Wang R. Structure-activity relationship of the novel bivalent and C-terminal modified analogues of endomorphin-2. Bioorg. Med. Chem. Lett.,2005,15,1847-1850.
    118.Okada Y, Fujita Y, Motoyama T, Tsuda Y, Yokoi T, LI T, et al. Structural studies of [2',6'-dimethyl-L-tyrosinel] endomorphin-2 analogues:enhanced activityand cis orientation of the Dmt-Pro amide bond. Bioorg. Med. Chem.,2003,11, 1983-1994.
    119.Olma A, Tourwe D. Synthesis and binding properties of endomorphin-2 analogs containing a-hydroxymethyl amino acids. Lett. Pept. Sci.,2000,7,93-96.
    120.Hruby VJ, Balse PM. Conformational and topographical considerations in designing agonist peptidomimetics from peptide leads. Curr. Med. Chem.,2000, 7,945-970.
    121.Janecka A, Kruszynski R. Conformationally restricted peptides as tools in opioid oeceptor studies. Curr. Med. Chem.,2005,12,471-481.
    122.Cardillo G, Gentilucci L, Tolomelli A, Spunosa R, Calienni M, Qsaem AR, Spampinato S. Synthesis and evaluation of the affinity toward μ-opioid receptors of atypical, lipophilic ligands based on the sequence c[-Tyr-Pro-Trp-Phe-Gly-]. J. Med. Chem.,2004,47,5198-5203.
    123.Janecka A, Fichna J, Kruszynski R, Sasaki Y, Ambo A, Costentin J, do-Rego J-C. Synthesis and antinociceptive activity of cyclic endomorphin-2 and morphiceptin analogs. Biochem. Pharmacol.,2005,71,188-195.
    124.Perlikowska R, do-Rego JC, Cravezic A, Fichna J, Wyrebska A, Toth G, Janecka A. Synthesis and biological evaluation of cyclic endomorphin-2 analogs. Peptides,2010,31,339-345.
    125.Leitgeb, B. Structural Investigation of Endomorphins by Experimental and Theoretical Methods:Hunting for the Bioactive Conformation. Chem. Biodivers., 2007,4,2703-2724.
    126.T6th G, Keresztes A, Tomboly Cs, Peter A, Fulop F, Tourwe D, et al. New endomorphin analogs with μ-agonist and 8-antagonist properties. Pure. Appl. Chem.,2004,76,951-957.
    127.Keresztes A, Szucs M, Borics A, Kover KE, Forro E, Fulop F, et al. Endomorphin analogues containing alicyclic β-amino acids:influence on bioactive conformation and pharmacological profile. J. Med. Chem.,2008,51,4270-4279.
    128.Wei J, Shao X, Gong MZ, Zhu BB, Cui Y, Gao YF, Wang R. Structure-activity relationships of novel endomorphin-2 analogues with N-O turns induced by a-aminoxyacids. Bioorg. Med. Chem. Lett.,2005,15,2986-2989.
    129.Harrison BA, Gierasch TM, Neilan C, Pasternak GW, Verdine GL. High-affinity mu opioid receptor ligands discovered by the screening of an exhaustively stereodiversified library of 1,5-enediols. J. Am. Chem. Soc.,2002,45, 13352-13353.
    130.Harrison BA, Pasternak GW, Verdine GL.2,6-Dimethyltyrosine analogues of a stereodiversified ligand library:highly potent, selective, non-peptidic mu opioid receptor agonists. J. Med. Chem.,2003,46,677-680.
    131.Koda Y, Liang MT, T.Blanchfield J, Toth I. In vitro stability and permeability studies of liposomal delivery systems for a novel lipophilic endomorphin 1 analogue. Int. J. Pharm.,2008,356,37-43.
    1. Przewlocki R, Labuz D, Mika J, Przewlocka B, Tomboly Cs, Toth G. Pain inhibition by endomorphins. Ann. N. Y. Acad. Sci.,1999,897,154-164.
    2. Czapla MA, Gozal D, Alea OA, Beckerman RC, Zadina JE. Differential cardiorespiratory effects of endomorphin 1, endomorphin 2, DAMGO, and morphine. Am. J. Respir. Crit. Care. Med.,2000,162,994-999.
    3. Tomboly C, Peter A, Toth G. In vitro quantitative study of the degradation of endomorphins. Peptides,2002,23,1573-1580.
    4. Vanhoof G, Goossens F, De Meester I, Hendriks D, Scharpe S. Proline motifs in peptides and their biological processing. FASEB J.,1995,9,736-744.
    5. Ambler RP. Carboxypeptidases A and B. Methods Enzymol.,1972,25,262-272.
    6. Shane R, Wilk S, Bodnar RJ. Modulation of endomorphin-2 induced analgesia by dipeptidyl peptidase IV. Brain Res.,1999,815,278-286.
    7. Yu Y, Cui Y, Wang X, Fan YZ, Liu J, Yan X, Wang R. Endomorphinl and endomorphin2, endogenous potent inhibitors of electrical field stimulation-(EFS)-induced cholinergic contractions of rat isolated bronchus. Peptides,2006, 27,1846-1851.
    8. Yu Y, Shao X, Wang CL, Liu HM, Cui Y, Fan YZ, Liu J, Wang R. In vitro and in vivo characterization of opioid activities of endomorphins analogs with novel constrained C-terminus:evidence for the important role of proper spatial disposition of the third aromatic ring. Peptides,2007,28,859-870.
    9. Gao YF, Liu X, Liu WX, Qi YM, Liu XF, Zhou YF, Wang R. Opioid receptor binding and antinociceptive activity of the analogues of endomorphin-2 and morphiceptin with phenylalanine mimics in the position 3 or 4. Bioorg. Med. Chem. Lett.,2006,16,3688-3692.
    10. Cowell SM, Lee YS, Cain JP, Hruby VJ. Exploring Ramachandran and Chi space:Conformationally constrained amino acids and peptides in the design of bioactive polypeptide ligands. Curr.Med.Chem.2004,11,2785-2798.
    11. Mark JE, Goodman M. Conformational aspects of polypeptides. Part XXIV: conformational energies of poly-N-methyl-L-alanine chains. Biopolymers,1967, 5,809-814.
    12. Schmidt R, Kalman A, Chung NN, Lemieux C, Horvath C, Schiller PW. Structure-activity relationships of dermorphin analogues containing N-substituted amino acids in the 2-position of the peptide sequence. Int. J. Pept. Protein. Res., 1995,46,47-55.
    13. Janecka A, Kruszynski R, Fichna J, Kosson P, Janecki T. Enzymatic degradation studies of endomorphin-2 and its analogs containing N-methylated amino acids. Peptides,2006,27,131-135.
    14. Okada Y, Fukumizu A, Takahashi M, Shimizu Y, Tsuda Y,Yokoi T, et al. Synthesis of stereoisomeric analogues of endomorphin-2, H-Tyr-Pro-Phe-Phe-Nh(2), and examination of their opioid receptor binding activities andsolution conformation. Biochem. Biophys. Res. Commun.,2000,276,7-11.
    15. Paterlini MG, Avitabile F, Ostrowski BG, Ferguson DM, Portoghese PS. Stereochemical requirements for receptor recognition of the μ-opioid peptide endomorphin-1. Biophys. J.,2000,78,590-599.
    16. Yamada R, Kera Y. D-Amino acid hydrolysing enzymes. EXS,1998,85,145-155.
    17. Liu HM, Liu XF, Yao JL, Wang CL, Yu Y, Wang R. Utilization of combined chemical modifications to enhance the blood-brain barrier permeability and pharmacological activity of endomorphin-1. J. Pharmacol. Exp. Ther.,2006,319, 308-316.
    18. Liu HM, Zhang BZ, Liu XF, Wang CL, Ni JM, Wang R. Endomorphin-1 analogs
    with enhanced metabolic stability and systemic analgesic activity:design, synthesis, and pharmacological characterization. Bioorg. Med. Chem.,2007,15, 1694-1702.
    19. Leitgeb B, Toth G. Aromatic-aromatic and proline-aromatic interactions in endomorphin-1 and endomorphin-2. Eur. J. Med. Chem.,2005,40,674-686.
    20. Paterlini MG, Avitabile F, Ostrowski BG, Ferguson DM, Portoghese PS. Stereochemical requirements for receptor recognition of the μ-opioid peptide endomorphin-1. Biophys. J.,2000,78,590-599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700