用户名: 密码: 验证码:
镁铝及镁稀土合金中析出相的电子显微学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在轻质高强镁合金中,镁铝系合金特别是Mg-9.0wt.%A1-1.0wt.%Zn镁合金,以其在可铸性、机械强度和延展性各方面的优势赢得愈来愈广阔的应用前景,材料研究工作者愈来愈重视对它的研究,特别是研究影响其强度和韧性的微观机理。本论文采用X射线衍射(XRD),扫描电子显微术(SEM)和透射电子显微术(TEM),研究了几种镁合金在固溶处理后时效过程中沉淀相的析出规律、晶体学特征及其时效强化机理。
     采用加热样品台,在透射电子显微镜内,对693K固溶后的铸态Mg-9.0wt.%Al-1.0wt.%Zn-4.0wt.%Sn合金的时效过程(403K温度下时效一个小时),进行了实时原位观察。实验中未观察到G.P.或过渡相的出现,此外实验结果表明Mg-9.0wt.%A1-1.0wt.%Zn-4.0wt.%Sn合金中的连续析出沉淀相(γ-Mg17Al12)的颗粒数密度值(Nv=4.92×1010/mm3)大于同样热处理条件下的Mg-9.0wt.%Al-1.0wt.%Zn(AZ91)镁铝合金的连续析出颗粒数密度(N,=2.7×X109/mm3).同时对比了Mg-9.0wt.%A1-1.0wt.%Zn-4.0wt.%Sn样品与AZ91合金样品在传统时效方式(马弗炉内)523K时效48小时的沉淀相(γ-Mg17Al12)连续析出颗粒数密度值,同样证实了这一结果。由此,添加少量的Sn元素促进了镁铝合金中沉淀相(γ-Mg17Al12)连续析出,因而将提高合金的时效硬化效果。
     固溶处理(693K时效24小时)后采用传统时效方式(马弗炉内)在温度523K时效48小时的Mg-9.0wt.%Al-1.0wt.%Zn-4.0wt.%Sn合金中观测到连续析出γ-Mg17Al12颗粒与α-Mg基体间的一种新晶体学取向关系(0001)α//(321)γ,[1210]α//[133]γ。此外,还在该样品中观察到{1012}_α。类型的孪晶,并在该孪晶区域内观测到连续析出γ-Mg17Al12相与a-Mg基体间的另一种新晶体学取向关系:(0001)α//(T21)γ,[1210]α//[111]γ。孪晶区域中的这种晶体学取向关系的γ-Mg)7Al12颗粒的长轴取向沿着[0001]_α方向,在一定程度上阻碍基体α-Mg在(0001)。晶面上的滑移,因而对提高合金的强度有贡献。
     对快速凝固技术制备的Mg-9.0wt.%A1-1.0wt.%Zn-4.0wt.%Sn合金样品进行研究,确定其微观组织主要由a-Mg基体相、γ-Mg17Al12相和β-Mg2Sn相组成,该方法制备的合金与传统方法浇铸的合金相比,晶粒尺寸大大减小:由几微米降至几百纳米,由霍尔佩奇关系式σ_s=σ_0+kd~(-1/2),因镁合金的k值较大,所以晶粒细化后镁合金的强韧性可大幅度提高。首次确定出晶界处的γ-Mg17Al12相以及弥散分布在晶内的γ-Mg17Al12相均与α-Mg基体之间呈Burgers取向关系。弥散分布在晶内的球形β-Mg2Sn相与α-Mg基体间的取向关系为(0001)_α//(110)_β,[1210]_α//[112]_β,这一取向关系与目前报道的铸态的Mg-Sn系合金样品中的取向关系都不相同。
     在773K温度下固溶16小时后的Mg-9.05wt.%Gd-2.85wt.%Zn合金中,实验观察到存在14H类型的长周期结构。本文提出了Mg-9.05wt.%Gd-2.85wt.%Zn合金中14H类型的长周期结构模型,采用运动学理论模拟计算了电子衍射花样,与实验对比符合较好。采用实时原位透射电子显微术对固溶处理后(773K固溶16小时)的Mg-9.05wt.%Gd-2.85wt.%Zn样品的时效过程进行实时的原位观察(时效温度为523K),观察到早期的析出序列为:过饱和固溶体→G.P.区或γ″相→γ′相。在固溶处理(773K固溶16小时)后离位时效(马弗炉内623K时效0.5小时)的样品中,采用透射电子显微术(TEM)观察到少量的14H和18R类型的长周期结构交替存在区域。
Among lightweight and high-strength magnesium-based alloys, magnesium-aluminum alloys, especially the Mg-9.0wt.%Al-1.0wt.%Zn (AZ91) alloy, have been showing increasingly broad application aspects due to their various advantages in castability, mechanical strength and ductility. Now, much attention in the material researches has been paid to the alloys, and especially investigations of the microstructures and mechanism for improving their strength and toughness have been carried out. In this thesis, the precipitation process, the precipitates'crystallography and the age-hardening mechanism for several typical magnesium-based alloys have been investigated using X-ray diffraction (XRD) technology, scanning electron microscopy (SEM) and transmission electron microscopy (TEM).
     The aging process of the solution-treated Mg-9.0wt.%Al-1.0wt.%Zn-4.0wt.%Sn alloy was carried out and observed in-situ on a transmission electron microscope (TEM) with a heating-stage for the specimen (403K for1hour). Either the G.P. zone or the transition phase was not observed during the aging process. Besides, the results show that the number of the continuous precipitates per unit volume (Nv=4.92×1010/mm3) for the above specimen is larger than that in AZ91(Nv=2.7×109/mm3) under the same condition. Meanwhile, the number of the continuous precipitated γ-Mg17Al12particles per unit volume in the Mg-9.0wt.%Al-1.0wt.%Zn-4.0wt.%Sn and AZ91alloy aged at523K for48hours under traditional aging condition (heated in a muffle furnace) had been measured and compared, and the similar conclusion was achieved. Therefore, a small amount addition of Sn to Mg-9.0wt.%Al-1.0wt.%Zn (AZ91) alloy will accelerate the continuous precipitation of the γ-Mg17Al12phase, and will devote to improving the age-hardening effect for the Mg-9.0wt.%Al-1.0wt.%Zn-4.0wt.%Sn alloy.
     A new crystallographic orientation relationship (OR) between continuous precipitated γ-Mg17Al12particles and a-Mg matrix has been determined as (0001)α//(321)γ,[1210]α//[133]γ in the as-cast Mg-9.0wt.%Al-1.0wt.%Zn-4.0wt.%Sn alloy which was solution-treated at693K for24hours and then aged at523K for48hours in a traditional aging condition (heated in a muffle furnace). Besides, another new crystallographic OR between the y-Mg17Al12and the a-Mg matrix has been observed as (0001)α//(121)γ,[1210]α//[111]γ in a{1012}α type twin region in the same above alloy. The long axis of the continuous precipitated γ-Mg17Al12particles with this latter OR in this {1012}α type twin area is along the [0001]α direction, which will be as obstacles to the dislocation movements on the basal (0001)α plane of the a-Mg matrix. Consequently, this will contribute to the improvement of the mechanical strength of the alloy.
     The microstructure investigation of rapidly solidified ribbons of Mg-9.0wt%Al-1.0wt%Zn-4.0wt%Sn alloy shows that the microstructure is constituted by α-Mg, γ-Mg17Al12and β-Mg2Sn phases. Compared to as-cast condition, the grain size with several hundred microns was significantly reduced to several hundred nanometers in rapidly solidified condition. According to the Hall-Petch relationship σs=σ0+kd-1/2and with a large value of k to the magnesium based alloys, the toughness of the magnesium based alloy will be improved greatly when the grain size is decreased as above. It is the first time to identify that, the OR between α-Mg phase and the y-Mg17Al12phase which exists at the grain boundaries is the Burgers OR, and the OR between α-Mg phase and a γ-Mg17Al12particle which exists in a grain is also the Burgers OR. In addition, the OR between α-Mg phase and a spherical particle of β-Mg2Sn phase distributed diffusely in α-Mg grains is in form of (0001)α//(110)β,[1210]α//[112]β, which is different from all the ORs reported in the as-cast Mg-Sn alloys.
     In the solution-treated as-cast Mg-9.05wt.%Gd-2.85wt.%Zn alloy (at773K for16hours), the14H LPSO structure have been observed. By the proposed atomic structure model for the14H LPSO structure and kinetic theory, the electron diffraction patterns have been calculated, and the simulated have shown good agreement with the experimental results. The aging process of the solution-treated as-cast Mg-9.05wt.%Gd-2.85wt.%Zn alloy (at773K for16hours) was in-situ observed in a TEM with a heating-stage maintained at the temperature523K for the specimen. The experimental results show that the precipitation sequence at the early aging stage is that: supersaturated solid solution (SSS)→G.P. zone or γ" phase→γ' phase. In an as-cast Mg-9.05wt.%Gd-2.85wt.%Zn alloy, which have been solution treated at773K for16hours and then aged at623K for0.5hour in the muffle furnace, the14H and18R type long period stacking ordered (LPSO) structures have been observed by TEM methods.
引文
[1]丁文江等,镁合金科学与技术.北京:科学出版社,2007.
    [2]潘复生,韩恩厚等,高性能变形镁合金及加工技术.北京:科学出版社,2007.
    [3]康煜平,金属固态相变及应用.北京:化学工业出版社,2007.
    [4]朱景川,来忠红,固态相变原理.北京:科学出版社,2010.
    [5]刘宗昌,袁泽喜,刘永长,固态相变.北京:机械工业出版社,2010.
    [6]Orowan E. Symposium on internal stresses in metals and alloys. Institute of Metals. London:1948, 451.
    [7]刘楚明,朱秀荣,周海涛,镁合金相图集.长沙:中南大学出版社,2006.
    [8]张静,潘复生,郭正晓,丁培道,汪凌云,含铝和含锰镁合金系中的合金相.2002年材料科学与工程新进展(上册),冶金工业出版社,2003:759-765.
    [9]Schobinger-Papamantellos P, Fischer P. Kurze originalmitteilungen. Naturwissenschaften,1970, 57:128-129.
    [10]Clark J B. Age hardening in a Mg-9wt.%Al alloy. Acta Metallurgica,1968,16:141-152.
    [11]Duly D, Simon J P, Brechet Y. On the competition between continuous and discontinuous precipitations in binary Mg-Al alloys. Acta Metallurgica et Materialia,1994,43:101-106.
    [12]Celotto S. TEM study of continuous precipitation in Mg-9wt.%Al-1wt.%Zn alloy. Acta Materialia.2000,48:1775-1787.
    [13]Zhang M X, Kelly P M. Crystallography of Mg17Al12 precipitates in AZ91D alloy. Scripta Materialia,2003,48:647-652.
    [14]Zhou J P, Zhao D S, Wang R H, Sun Z F, Wang J B, Gui J N, Zheng O. In situ obervation of ageing process and new morphologies of continuous precipitates in AZ91 magnesium alloy. Materials Letters,2007,61:4707-4710.
    [15]Pitsch W, Schrader A, Die Ausscheidungsform des Zementits im Ferrit. Archs. Eisenhiitt 1958,29: 715.
    [16]Zhang M, Zhang W Z, Ye F. Interpretation of precipitation crystallography of Mg17Al12 in a Mg-Al alloys. Metallurgical Materials Transactions A 2005,36A:1681-1688.
    [17]Duly D, Zhang W Z, Audier M. High-resolution electron microscopy observations of the interface structure of continuous precipitates in a Mg-Al alloy and interpretation with the O-lattice theory. Philosophical Magazine A,1995,71:187-204.
    [18]Caceres C H, Davidson C J, Griffiths J R, Newton C L. Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy. Materials Science and Engineering A,2002,325:344-355.
    [19]Crawley A F, Lagowski B. Effect of two-step aging on the precipitate structure in magnesium alloy AZ91. Metallurgical Transactions,1974,5:949-951.
    [20]Porter D A, Edington J W. Microanalysis and cell boundary velocity measurements for the cellular reaction in a Mg-9%A1 alloy Proc. R. Soc. A,1977,358:335-350.
    [21]Gjonnes J, Ostmoe T. Precipitation and pre-precipitation in a Mg-Al alloy. Z Metallkunde,1970, 61:604-606.
    [22]肖晓玲,罗承萍,聂建锋,Muddle B C. AZ91 Mg-Al合金中β-Mg17Al12析出相的形态及其晶体学特征.金属学报,2001,37(1):1-7.
    [23]Zheng O, Zhou J P, Zhao D S, Wang J B, Wang R H, Gui J N, Xiong D X, Sun Z F, The crystallography of continuous precipitates with a newly observed orientation relationship in an Mg-Al based alloy. Scripta Materilia,2009,60:791-794.
    [24]Zhang M X, Kelly P M, Edge-to-edge matching and its applications Part Ⅱ. Application to Mg-Al, Mg-Y and Mg-Mn alloys. Acta Materilia,2005,53:1085-1096.
    [25]Crawley A F, Milliken K S. Precipitate morphology and orientation relationships in an aged Mg-9%Al-1%Zn-0.3%Mn alloy. Acta Materilia,1974,22:557-562.
    [26]Nie J F, Xiao X L, Luo C P, Muddle B C. Characterization of precipitate phases in magnesium alloys using electron microdiffraction. Micron,2001,32:857-863.
    [27]Luo C P, Xiao X L, Liu J W, Nie J F, Muddle B C. AZ91 Mg-Al合金中γ-Mgl7A112析出相的多重位向关系及{112}γ伪孪晶关系.Acta Materilia Sinica 2002,38:709-714.
    [28]肖纪美,合金相与相变.北京:冶金工业出版社,2004.
    [29]Wechsler M S, Lieberman D S, Read T A. On the theory of the formation of martensite. Transactions AIME,1953,197:1503-1515.
    [30]Bowles J S, Mackengie J K. The crystallography of Martensite transformation I. Acta Metallurgica,1954,2(1):129-137.
    [31]冯端等,金属物理学(第二卷相变).北京,科学出版社,1990.
    [32]罗承萍,肖晓玲,刘江文,吴东晓.不变线应变原理及其在相变晶体学研究中的应用.自然科学进展,2000,10(3):193-200.
    [33]Dahmen U. Orientation relationships in precipitation systems. Acta Metallurgica,1982,30: 63-73.
    [34]Dahmen U, Ferguson P, Westmacott K H. Invariant line strain and Needle-precipitate growth direction in Fe-Cu. Acta Metallurgica,1984,32(5):803-810.
    [35]Dahmen U.The role of the invariant line in the search for an optimum interphase boundary by O-lattice theory. Scripta Metallurgica,1981,15:77-81.
    [36]Bilby B A, Christian J W. Martensitic transformations. In:The Mechanism of Phase Transformations in Metals. Mongraph and Report Series No.18.1956, London:Institute of Metals.p121.
    [37]Luo C P, Weatherly G C. The invariant line and precipitation in a Ni-45%Cr alloy. Acta Metallurgica,1987,35:1963-1972.
    [38]Luo C P, Weatherly G C.The interphase boundary structure of precipitates in a Ni-Cr alloy. Philosophical Magazine A,1988,58:445-462.
    [39]Luo C P, Dahmen U, Westmacott K H. Morphology and crystallography of Cr precipitates in a Cu-0.33 wt% Cr alloy. Acta Metallurgica et Materialia,1994,42:1923-1932.
    [40]罗承萍,吴东晓,肖晓玲.Cr-Ni合金中BCC/FCC析出相变晶体学特征.中国学术期刊文摘(科技快讯),1996,2(10):121-132.
    [41]Luo C P, Weatherly G C. The precipitation behavior of a Zr wt pct Nb alloy. Metallurgical Transaction A,1988,19A:1153-1162.
    [42]肖晓玲,罗承萍,刘江文.相变不变线及其晶体学特征.中国科学(E辑),2002,32:8-13.
    [43]Xiao X L, Luo C P, Liu J W. Invariant line crystallography of HCP←BCC precipitation. Science in China(E),2002,45(1):58.
    [44]Zhang M X, Kelly P M. Edge-to-edge matching and its applications Part I. Application to the simple HCP/BCC system. Acta Materilia,2005,53:1073-1084.
    [45]Duly D. Application of the invariant line model for B.C.C./H.C.P. couples:a criterion based on surface variations. Acta Metallurgica et Materialia,1993,41(5):1559-1566.
    [46]Hences S, Gerold V, Metallkde Z.1962,53:743 (in German).
    [47]Mendis C L, Bettles C J, Gibson M A, Gorsse S, Hutchinson C R, Refinement of precipitate distributions in an age-hardenable Mg-Sn alloy through microalloying, Philosophical Magazine. Letters,2006,86:443-456.
    [48]Sasaki T T, Oh-ishi K, et al, Enhanced age hardening response by the addition of Zn in Mg-Sn alloys, Scripta Materialia,2006,55:251-254.
    [49]Mendis C, C L, Bettles C J, Gibson M A, Hutchinson C R, An enhanced age hardening response in Mg-Sn based alloys containing Zn, Materials Science and Engineering A,2006,435-436: 163-171.
    [50]祝国珍,Mg-Sn-Mn-Si合金中Mg2Sn的晶体学研究.清华大学综合论文训练,2007
    [51]Zhang M, Zhang W Z, Zhu G Z, Yu K, Crystallography of Mg2Sn precipitates in Mg-Sn-Mn-Si alloy, Transactions of Nonferrous Metals Society of China,2007 (17),1428-1432.
    [52]郭可信,叶恒强,吴玉琨.电子衍射图在晶体学中的应用。北京:科学出版社,1983:452-454.
    [53]Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy. Materials Science and Engineering A 2005; 393: 269-274.
    [54]Abe E, Ono A, Itoi T, Yamasaki M, Kawamura Y. Polytypes of long-period stacking structures synchronized with chemical order in a dilute Mg-Zn-Y alloy. Philosophical Magazine Letter. 2011; 91:690-696.
    [55]Kawamura Y, Hayashi K, Inoue A, Masumoto T. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa. Materials. Transactions. JIM,2001,42:1172-1176.
    [56]Itoi T, Seimiya T, Kawamura Y, Hirohashi M. Long period stacking structures observed in Mg97Y2Zn alloy. Scripta Materilia,2004,51:107-111.
    [57]Matsuda M, Ando S, Nishida M. Dislocation structure in rapidly solidified Mg97Zn1Y2 alloy with long period stacking order phase. Materials Transactions,2005,46:361-364.
    [58]陈振华,周涛,陈鼎.快速凝固高性能镁合金研究进展——长周期堆垛有序结构镁合金.材料导报,2007,21:50-55.
    [59]Chino Y, Mabuchi M, Hagiwara S, Iwasaki H, Yamamoto A, Tsubakino H. Novel equilibrium two phase Mg alloy with the long-period ordered structure. Scripta Materilia.2004,51:711-714.
    [60]Luo Z P, Zhang S Q. High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy. Journal of Materials Science Letter.2000,19:813-815.
    [61]Luo Z P, Zhang S Q, Tang Y L, Zhao D S. Microstructures of Mg-Zn-Zr-RE alloys with high RE and low Zn. Journal of alloys and compound,1994,209:275-278.
    [62]张松,袁广银,卢晨,丁文江.长周期结构增强镁合金的研究进展.材料导报,2008,22:61-63,81.
    [63]Abe E, Kawamura Y, Hayashi K, Inoue A. Long-period ordered structure in a high-strength nano-crystalline Mg-lat%Zn-2at%Y alloy studied by atomic-resolution Z-contrast STEM. Acta Materilia.2002,50:3845-3857.
    [64]Zhu Y M, Weyland M, Morton A J, Oh-ishi K, Hono K, Nie J F. The building block of long-period structures in Mg-RE-Zn alloys. Scripta Materilia,2009,60:980-983.
    [65]Yamasaki M, Sasaki M, Nishijima M, Hiraga K, Kawamura Y. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature. Acta Materilia,2007,55:6798-6805.
    [66]刘林林,孙威,王飞,张泽.Mg-Gd-Y-Zn合金中长周期堆垛结构形成的原位准动态背散射电子显微研究.电子显微学报.2008,27:266-270.
    [67]付建强,孙威,谢中柱,刘林林,张泽.合金元素对铸态镁合金中长周期堆垛结构的形成与特征的影响.金属学报,2008,44:428-432.
    [68]Li D J, Zeng X Q, Dong J, Zhai C Q, Ding W J. Microstructure evolution of Mg-10Gd-3Y-1.2Zn-0.4Zr alloy during heat-treatment at 773K. Journal of Alloys and Compounds.2009,468:164-169.
    [69]Egrsa D, Abe E. The structure of long period stacking/order Mg-Zn-RE phases with extended non-stoichiometry ranges. Acta Materialia 2012,60:166-178.
    [70]Zhu Y M, Morton A J, Nie J F, the 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys. Acta Materialia 2010,58:2936-2947.
    [71]黎文献镁及镁合金.长沙:中南大学出版社.2005:174-216.
    [72]Singh A, Nakamura M, Watanabe M, Kato A, Tsai A P, Quasicrystal strengthened Mg-Zn-Y alloys by extension. Scripta Materialia,2003,49(7):417-422.
    [73]Singh A, Watanabe M, Kato A, Tsai A P, Microstructure and strength of quasicrystal containing extruded Mg-Zn-Y alloys for elevated temperature application. Materials Science and Engeering A,2004,385:382-396.
    [74]Xu D K, Tang W N, Liu L, Xu Y B, Han E H, Effect of W-phase on the mechanical properties of as-cast Mg-Zn-Y-Zr alloys. Journal of Alloys and Compounds,2008,461:248-252.
    [75]Mabuchi M, Higashi K, Strengthening mechanisms of Mg-Si alloys. Acta materialia,1996, 44(11):4611-4618.
    [76]Shaw C, Jones H. The contributions of different alloying additions to hardening in rapidly solidified magnesium alloys. Materials Science and Engineering A.1997,226-228(15):856-860.
    [77]Han B Q, Dunand D C. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids. Materials Science and Engineering A,2000,277:297-304.
    [78]Turnbll D, Fisher J. C, Rate of nucleation in condensed system, Journal of Chemical Physics, 1949,17:71-73.
    [79]Turnbll D, Formation of Crystal Nuclei in Liquid Metals, Journal of Applied Physics,1950,21: 1022-1028.
    [80]Spaepen F, A Strcutural model for the solid-liquid interface in monatomic system, Acta Materialia,1975,23:729-743.
    [81]Frenkel J, Statistical theory of condendation phenomenon, Journal of Chemical Physics,1939, 7(3):200-201.
    [82]Shao G, Tsakiropoulos P, Prediction of phase select in rapid solidification using time dependent nucleation theory, Acta Materialia,1994,42(9):2937
    [83]王祖锦,黄韬等,亚快速定向凝固中枝胞转变的原位观测,材料研究学报,1995,9:167-170.
    [84]胡汉起,金属凝固原理.第二版北京:机械工业出版社2000.
    [85]Van Der Planken J. Precipitation hardening in Mgnesium-Tin alloy. Journal of Materials Science, 1969,4:927-929.
    [86]Cohen S, Goren-Muginstein G R, Avraham S, Bamberger M, Phase formation, precipitation and strengthening mechanisims in Mg-Zn-Sn and Mg-Zn-Sn-Ca alloys. Magnesium Technology, 2004,301-305.
    [87]Bowles A L, Blawert C, N Hort, Kainer K U, Microstructural investigations of the Mg-Sn and Mg-Sn-Al alloy systems. Magnesium Technology,2004,307-310.
    [88]Kang D H, Park S S, Kim N J, Development of creep resistant die cast Mg-Sn-Al-Si alloy. Materials Science and Engineering A,2005,413-414; 555-560.
    [89]Williams D B, Carter C B, Transmission electron microscopy:A textbook for materials science, (1996) Plenum Press:New York, chaps 9,22.
    [90]朱静,叶恒强,王仁卉,温树林,康振川.高空间分辨分析电子显微学.北京:科学出版社,1987:111-121.
    [91]Kelly P M, Jostsons A, Blake R G, Napier J G, The determination of foil thickness by scanning transmission electron microscopy. Phys. Stat. Sol. (a),1975,31:771-780.
    [92]Allen S M, Foil thickness measurements from convergent-beam diffraction patterns. Philosophical Magazine A,1981,43:325-335.
    [93]Hirsch P, Howie A, Nicholson B R, Pashley D W, Whelan M J, Electron microscopy of thin crystals. New York:Robert E. Krieger Huntington,1977.
    [94]Kirkwood D H, Precipitate number density in a Ni-Al alloy at early stages of ageing. Acta Materialia,1970,18:563-570.
    [95]Hirata T, Kirkwood D H, The prediction and measurement of precipitate number densities in a nickel-6.05 wt.% aluminum alloy. Acta Materialia,1977,25:1425-1434.
    [96]Allen S M, Halle L, Foil thickness measurements from convergent-beam diffraction patterns. An experimental assessment of errors. Philosophical Magazine A,1982,46:243-253.
    [97]进藤大辅,及川哲夫(合著),刘安生(译),材料评价的分析电子显微方法,北京:冶金工业出版社,2001:15-49.
    [98]王岩国,高分辨电子显微术,材料科学与工程手册(上卷),化学工业出版社,2004:3-118~120.
    [99]Stanford N, Geng J, Chun Y B, Davies C H J, Nie J F, Barnett M R. Effect of plate-shaped particle distributions on the deformation behavior of magnesium alloy AZ91 in tension and compression. Acta Materilia,2012,60:218-228.
    [100]杨平,电子背散射衍射技术及其应用.北京:冶金工业出版社,2007.
    [101]Goo E, Kee T P. Application of the von Mises criterion to deformation twinning. Scripta Materilia,1989,23:1053-1056.
    [102]Shi Z Z, Zhang W Z. A transmission electron microscopy investigation of crystallography of T-Mg32(Al, Zn)49 precipitates in a Mg-Zn-Al alloy. Scripta Materialia 2011,64:201-204.
    [103]Castro-Fernandez F R, Sellars C M, Whiteman J A. Measurement of foil thickness and extinction distance by convergent beam transmission electron microscopy. Philosophical Magazine A 1985,52:289-303.
    [104]Ping D H, Hono K, Nie J F, Atom probe characterization of plate-like precipitates in a Mg-RE-Zn-Zr casting alloy. Scripta Materialia.2003,48:1017-1022.
    [105]Nie J F, Oh-ishi K, Gao X, Hono K, Solute segregation and precipitation in a creep-resistant Mg-Gd-Zn alloy. Acta Materialia.2008,56:6061-6076.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700