用户名: 密码: 验证码:
ECAP变形AZ61-4Si和ZK60-4Si耐热镁合金组织与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为目前可应用的最轻的金属结构材料,具有优异的室温性能,但当温度超过120℃时,抗蠕变性能显著下降,其应用受到了极大的限制。因此,提高镁合金的高温性能尤其是高温抗蠕变性能,是镁合金研究开发的重要方向。目前工业化的耐热镁合金主要是稀土耐热镁合金和镁基复合材料,这两种合金由于价格昂贵,难以适应民用工业的需要,开发新型低成本耐热镁合金成为目前耐热镁合金研究的热点。目前镁合金结构件主要是铸造镁合金,其强度低,塑性差。变形镁合金具有高强度和高伸长率等优点,能够满足更高的设计要求。将等通道转角挤压(ECAP)技术应用于耐热镁合金的研发,系统的研究ECAP技术对耐热镁合金组织及性能的影响规律,为开发低成本,综合性能优良的耐热变形镁合金材料奠定理论基础。
     本文选用Mg-Al系和Mg-Zn系中较典型的AZ61和ZK60合金,加入较多量元素Si形成高温增强相Mg2Si来提高其耐热性,制成AZ61-4Si和ZK60-4Si耐热镁合金,再利用ECAP技术细化合金组织,提高合金力学性能。采用金相显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)及能量分散光谱仪(EDS)分析了材料的微观组织;采用电子万能拉伸实验机测试了材料的室温力学性能,并测试了高温蠕变性能。对ECAP细化镁合金的机制、镁合金拉伸变形及断裂机制、Mg2Si相形貌对镁合金室温及高温蠕变性能的影响机制进行了探讨。研究结果表明:
     (1)ECAP可显著细化镁合金组织。AZ61-4Si合金经4道次变形基休晶粒山铸态300μm细化为10μm,汉字状Mg2Si由铸态的最大70μm细化为7μm;8道次变形使基体进一步细化为6μm, Mg2Si颗粒细化为5μm。ZK60-4Si合金经4道次变形基体晶粒由铸态400μm细化为55μm,汉字状Mg2Si由铸态的最大76μm细化为18μm;8道次变形使基体进一步细化为25μm, Mg2Si细化为极细小颗粒。ECAP细化镁合金机制为大塑性引起的连续动态再结晶。
     (2)由于ECAP细化了实验合金组织,使合金力学性能得到大幅度提高。AZ61-4Si合金经4道次变形屈服强度提高128%,抗拉强度增加89%,伸长率提高340%;8道次后,屈服强度进一步提高;但抗拉强度与伸长率略有降低。ZK60-4Si合金经4道次变形后屈服强度提高90%,抗拉强度提高63%,伸长率提高203%;ECAP8道次后,屈服强度略有下降,抗拉强度有较大幅度提高,实验合金硬度随挤压道次增加而增大
     (3)实验合金铸态组织中Mg2Si相为汉字状,拉伸断裂时,a-Mg/Mg2Si相界面微裂纹成为主要的裂纹源,且裂纹易沿a-Mg/Mg2Si相界面扩展,导致材料发生脆性断裂。ECAP使Mg2Si相碎化为颗粒状,合金的断裂为微孔形核的韧性断裂机制。
     (4)经ECAP后合金AZ61-4Si和ZK60-4Si高温抗蠕变性能均得到显著提高,其机制是大量高温稳定相Mg2Si颗粒分布于晶内和晶界,既阻碍了晶内位错运动,又阻止了晶界滑移。
As the lightest structural metallic materials applied currently, magnesium alloys show excellent room temperature performance. However, when the temperature exceeds120℃, the creep resistance significantly decreases and its application is extremely limited. Enhancing the high temperature properties of magnesium alloys, especially high-temperature creep resistance, is an important direction for the research and development of magnesium alloys. The industrialized heat-resistant magnesium alloys are mainly rare earth heat-resistant magnesium alloys and magnesium matrix composites which are difficult to meet the need of the civilian industry due to the expensive price. The research emphasis of heat-resistant magnesium alloys is focus on the development of new low-cost heat-resistant magnesium alloys recently. The magnesium alloy structural components which are mainly made of cast magnesium alloy show lower strength and poor plasticity. Deformation magnesium alloys with high strength and high elongation, etc. can meet higher design requirements. Thus, using equal channel angular processing (ECAP) technology in the R&D of heat-resistant magnesium alloy and systematically investigating the effect law of ECAP technology on the microstructure and properties of heat-resistant magnesium alloy can establish the basis for the development of new heat-resistance magnesium alloys with low-cost and excellent combination properties.
     In this study, typical AZ61magnesium among Mg-Al system and ZK60alloy among Mg-Zn system was selected as matrix materials. Higher amounts of element Si was added to form high temperature phase Mg2Si for improving its heat resistance. The AZ61-4Si and ZK60-4Si heat-resistance magnesium alloys were made. ECAP technique was used to refine the alloys microstructure and to improve its mechanical properties. Optical microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to analyze the alloys microstructure. Electronic universal tensile testing machine was used to test the alloys room temperature mechanical properties and high temperature creep resistance. The magnesium alloys refinement mechanism by ECAP, magnesium alloy tensile deformation and fracture mechanisms and the effect mechanism of Mg2Si phase morphology on the room temperature mechanical properties and high temperature creep resistance of the magnesium alloys were studied. The research results are shown as follows:
     (1) The microstructure of magnesium alloys can be significantly refined by ECAP. After4-pass ECAP, the matrix grains of AZ61-4Si alloy are changed from300μm of the as cast alloy to10μm. Chinese script type Mg2Si particles are changed from the maximal70μm of the as cast alloy to7μm. After8-pass ECAP, the matrix grains are further refined to6μm and the Mg2Si particles to5μm. The matrix grains of ZK60-4Si alloy are changed from400μm for as cast alloy to55μm. Chinese script type Mg2Si particles are changed from the maximal76μm of the as-cast alloy to18μm after4-pass ECAP. The matrix grains are further refined to25μm and the Mg2Si particles are very small particles after8-pass ECAP. The refinement mechanism of magnesium alloy by ECAP is continuous dynamic recrystallization caused by large plastic deformation.
     (2) The mechanical properties of the experimental alloy improve due to the microstructure refinement effect by ECAP. The yield strength, tensile strength and elongation of AZ61-4Si alloy after4-pass ECAP increase by128%,89%and340%, respectively. The yield strength of the8-pass ECAP AZ61-4Si alloy further improves while the tensile strength and elongation slightly reduce. The yield strength, tensile strength and elongation of ZK60-4Si alloy after4-pass ECAP are improve by90%,63%and203%, respectively. The yield strength of the8-pass ECAP ZK60-4Si alloy slightly decreases while the tensile strength increases significantly. The hardness of the experimental alloy increases with the pressing times increasing.
     (3) Mg2Si phase is shown with Chinese script type in the as-cast microstructure of the experimental alloy. The micro-cracks in the a-Mg/Mg2Si phase interface become the main crack source. The crack propagation easily along the a-Mg/Mg2Si phase interface can result in the brittle fracture of the materials. However, the Mg2Si was broken into grainy by ECAP. The fracture of the alloy shows a ductile fracture mechanism with nucleation model.
     (4) Both the high temperature creep resistances of the AZ61-4Si alloy and ZK60-4Si alloy improve remarkably by ECAP. The mechanism is that a large number of high-temperature stable phase of Mg2Si particles are distributed in the grain interior and grain boundaries, which not only hinder the intragranular dislocation movement, but also prevent grain boundary sliding.
引文
[1]丁文江.镁合金科学与技术[M].北京:科学出版社,2007.
    [2]刘静安,盛春磊.镁及镁合金的应用及市场发展前景[J].有色金属加工,2007,36(2):1-6.
    [3]刘正,张奎,‘泞小勤.镁基轻质合金理论基础及应用[M].北京:机械工业出版社,2002.
    [4]任文量,李安全,石雅静等.抗蠕变耐热镁合金的发展现状[J].上海有色金属,2009,30(1):37-42.
    [5]Diem W. Magnesium in Different Applications[J]. Auto Technology,2001,1:40-41
    [6]Colleen J B, Mark A G. Current wrought magnesium alloys Strengths and Weaknesses[J]. JOM,2007,57(5):46-49.
    [7]余琨,黎文献,王日初等.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277-288
    [8]陈维平,詹美燕,陈宛德等.变形镁合金的塑性加工技术研究及展望[J].特种铸造及有色合金,2007,27(1):40-43
    [9]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005.
    [10]潘复生,韩恩厚.高性能变形镁合金及加工技术[M].北京:科学出版社,2007.
    [11]李爱文,朱红梅,焦东玲等.合金化提高镁合金抗蠕变性能的研究进展[J].材料导报,2008,22(11):74-78.
    [12]Asm International. Magnesium and Magnesium Alloy [M]. OH:Metal Park,1999.
    [13]Polmear I J. Magnesium alloys and applications [J]. Mater Sci & Tech,1994,10(1): 1-16.
    [14]Kojima Y. Platform science and technology for advanced magnesium alloy[J]. Mater Sci Forum,2000,350-351:3-12
    [15]Lu L, Froyen L. Mechanically alloyed high strength Mg5Al10.3Ti4.7B alloy[J]. Script Mate,1999,40 (10):1117-1122.
    [16]Mordike B L. Magnesium technique [J]. Magnesium,1998,27(2):1-4.
    [17]Eliezer D, Aghi on E, Froes F H. The science and technique of magnesium alloy[J]. Advan Perfor Mater,1998, (5):201-203.
    [18]Aghion E,Bronfin B.Magnesium alloys development towards the 21st century [J]. Mater Sci Forum,2000,350-351:19-29.
    [19]张雷,杨续跃,霍庆欢等.AZ31镁合金板材低温双向反复弯曲变形及退火过程的组织演化[J].金属学报,2011,47(8):990-996.
    [20]任国成,赵国群,徐淑波等.AZ31镁合金等通道转角挤压变形均匀性有限元分析[J].中国有色金属学报,2011,21(4):848-855.
    [21]付雪松,陈国清,王中奇.AZ31镁合金热轧变形的动态再结晶机制[J].稀有金属材料与工程,2011,40(8):1473-1477.
    [22]张丁非,齐福刚,石国梁等.Mn含量对Mg-Zn-Mn变形镁合金显微组织和力学性能的影响[J].稀有金属材料与工程,2010,39(12):2205-2209.
    [23]孔晶,侯文婷,彭勇辉等.T型通道挤压变形ZK60镁合金的组织与力学性能[J].中国有色金属学报,2011,21(6):1199-1204.
    [24]曹凤红,龙思远,G. S. COLE.挤压态AZ81镁合金的热压缩变形行为[J].中国有色金属学报,2011,21(6):1214-1219.
    [25]郭学锋,任昉.快速凝固结合严酷变形镁合金丝的组织与性能[J].中国稀土学报,2010,28(6):671-675.
    [26]曲家惠.镁合金塑性变形的组织和织钩的研究[D].沈阳:东北大学,2008.
    [27]周海涛,马春江,曾小勤等.变形镁合金材料的研究进展[J].材料导报,2003,17(11):16-18,55.
    [28]Pan Fusheng, Mao Jianjun, Chen Xianhua etc. Influence of impurities on microstructure and mechanical properties of ZK60 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China,2010,20 (7):1299-1304.
    [29]G.M. Xiel, Z.Y. Ma, L. Geng. Effect of Y Addition on microstructure and mechanical properties of friction stir welded ZK60 alloy [J]. Journal of Materials Science & Technology,2009,25 (3):351-355.
    [30]张佩武,夏伟,刘英等.变形镁合金成形工艺研究及其应用[J].材料导报,2005,19(7):82-85.
    [31]卢志文,汪凌云,潘复生等.变形镁合金及其成形工艺[J].材料导报,2004,18(9):39-42.
    [32]杨明波,胡红军,代兵等.阻燃镁合金的研究现状及进展[J].铸造,2007,56(10):1031-1034.
    [33]周娜,董杰,靳丽等.镁合金化阻燃的研究进展[J].材料导报,2009,23(6):109-112.
    [34]朱超,李培杰,李振华等.新型保护气体在镁合金熔炼中的应用[J].特种铸造及有色合金,2010,30(3):282-284.
    [35]Burns J R. Beryllium in Magnesium Casting alloys[J]. Transactions of the ASM,1948, (40):143-148.
    [36]赵云虎,曾小勤,丁文江等.Be和Ca对Mg-9Al-0.5Zn合金表面氧化行为的影响[J].中国有色金属学报,2000,10(6):847-852.
    [37]韩富银,王萍,田林海等Be、RE对AZ91D阻燃性、组织及力学性能的影响[J].铸造技术,2011,32(9):1261-1263.
    [38]韩富银,张金山,杨巧莲等.阻燃镁合金AZ91D-0.3%Be-Sr的研究[J].铸造,2005,54(11):1128-1130.
    [39]范超,李华基,饶劲松.阻燃镁合金的研究现状和发展趋势[J].冶金从刊,2005,(6):38-40.
    [40]Han Fuyin, Tian Linhai, Wang Hongxia. Influence of Sr addition on microstructure and mechanical properties of ignition-proof AZ91D-0.3Be magnesium alloy[J]. Advanced Materials and Structures,2011,335-336 (9):783-786.
    [41]韩富银,田林海,梁伟等.阻燃镁合金AZ91D-0.3Be-RE的研究[J].材料热处理学报,2007,28(4):26-29.
    [42]Sakamoto M. Suppression of ignition and burning of molten Ag alloys by Ca bearing stable oxide film. Journal of Materials Science Letters,1997,16(12):1048-1050.
    [43]Sakamoto M. Mechanism of Non-combustibility and Ignition of Ca- bearing Mg melt[C]. Proceedings of the fifth asian foundry congress. Nanjing:Southeast University Press,1997.
    [44]黄晓锋,周宏,何镇明.阻燃镁合金起燃温度的研究[J].稀有金属材料与工程,2002,31(3):221-224.
    [45]周慧琳,于汇泳.镁合金的阻燃研究现状[J].河南机电高等专科学校学报,2008, 16(3):74-76.
    [46]黄晓锋,周宏,何振明.AZ91D加铈阻燃镁合金氧化膜结构分析[J].中国稀土学报,2002,20(1):49-52.
    [47]Huang X F, Zhou H, He Z M. Structure analysis of oxidation film of ignition-inhibition AZ91 magnesium alloy added[J]. Journal of Rare Earths,2003,21 (1):73-75. with Cerium
    [48]李华基,薛寒松.镧、铈和富镧混合稀土对镁合金起燃温度的影响[J].中国稀土学报,2001,19(增刊):188-190.
    [49]邹永良,李华基,薛寒松等.混合稀土对ZM5镁合金熔炼起燃温度的影响[J].重庆大学学报,2003,26(5):33-36.
    [50]姚三九,刘卫华,陈日月.高锌镁合金研究[J].特种铸造及有色合金,2001,(5):18-19,46.
    [51]姚三九.铝对高锌镁合金力学性能的影响[J].铸造,2002,51(6):355-357,368.
    [52]杨明波Mg-Al-Si基和Mg-Zn-Al基镁合金组织控制的基础研究[D].重庆:重庆大学,2006.
    [53]杨明波,潘复生,李忠盛等.Mg-Al系耐热镁合金中的合金元素及其作用[J].材料导报,2005,19(4):46-49.
    [54]陈振华.耐热镁合金[M ].北京:化学工业出版社,2007.
    [55]田树科,郭学锋,崔红保等.耐热镁合金的研究进展[J].铸造技术,2011,32(8):1174-1177.
    [56]闫蕴琪,张廷杰,邓炬.耐热镁合金的研究现状与发展方向[J].稀有金属材料与工程,2004,33(6):561-565.
    [57]谢建昌,李全安,李建弘等.耐热镁合金及其开发思路[J].铸造技术,2008,29(1):124-127.
    [58]张洪杰,孟健,唐定骧.高性能镁—稀土结构材料的研制、开发与应用[J].中国稀土学报,2004,22(1):40-47.
    [59]王小强,李全安,张兴渊.国内耐热铸造镁合金的研究进展[J].轻金属,2007,(6):45-49.
    [60]张龙,刘六法,卫中山.合金元素对镁合金耐热性能的优化作用及机理[J].铸造技术,2005,26(8):697-700.
    [61]于学花,张代东.含碱土元素耐热镁合金的研究现状[J].新材料产业,2010,(8):29-32.
    [62]钮洁欣,徐乃欣,张承典等.碱土金属钙和锶对镁合金耐蚀性的影响[J].腐蚀与防护,2008,29(1):1-6.
    [63]李海东,彭晓东.碱土镁合金的研究及开发[J].轻金属,2006(6):39-44.
    [64]孙扬善,翁坤忠,袁广银.Sn对镁合金显微组织和力学性能的影响[J].中国有色金属学报,1999,9(1):55-58.
    [65]田树科,郭学锋,崔红保等.耐热镁合金的研究进展[J].铸造技术,2011,32(8):1174-1177.
    [66]杨明波,潘复生,张静.Mg-Al系耐热镁合金的开发及应用[J].铸造技术,2005,26(4):331-335.
    [67]Zhang Z, Couture A, Luo A. An investigation of the properties of Mg-Zn-Al alloys[J]. Scripta Materialia,1998,39 (1):45-53.
    [68]Zhang Z, Tremblay R, Dube D etc. Solidification microstructure of ZA102, ZA104 and ZA106 magnesium alloys and its effect on creep deformation[J]. Canadian Metallurgical Quarterly,2000,39(4):503-512.
    [69]张静,潘复生,李忠盛.耐热镁合金材料的研究和应用现状[J].铸造,2004,53(10):770-774.
    [70]张俊善.材料的高温变形与断裂[M].北京:科学出版社,2007.
    [71]Wang K K, Peng H, Wang N etc. Method and Apparatus for Injection Molding of Semi-solid Metals[P]. US Patent:5501266,1996.
    [72]罗思东.镁合金在汽车上的开发与应用[J].汽车工艺与材料,2004,(6):38-41.
    [73]陈亚莉.航空用压铸镁合金的发展[J].航空制造工程,1998,(5):24-26.
    [74]钟错,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景阴[J].航空工程与维修,2002,(4):41-42.
    [75]Segal V M. Materials processing by simple shear[J]. Materials Science and Engineering A,1995,197 (2):157-164.
    [76]艾桃桃,冯小明.等通道转角挤压工艺参数对镁合金组织与性能的影响[J].轻金属,2009,(2):42-45,48.
    [77]Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation[J]. Progress in Materials Science,2000,45(2):103-189.
    [78]Valiev R Z, Krasi lnikov N A, Tsenev N K. Plastic deformation of alloys with submicron grained structure[J]. Materials Science and Engineering A,1991,137(15):35-40.
    [79]Iwahashi Y, Wang J, Horita Z etc. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials[J]. Scripta Materialia,1996,35(2):143-146.
    [80]宋国肠,穆龙.等通道转角挤压的工艺特点及应用前景[J].热加工工艺,2009,38(21):117-127.
    [81]索涛,李玉龙.等径通道挤压中晶粒细化影响因素的研究进展[J].材料科学与工程学报,2004,22(1):132-137.
    [82]雷力明,黄旭,段锐.等通道转角挤压工艺研究进展[J].材料工程,2009,(5):76-80.
    [83]Iwahashi Y, Horita Z, Nemoto M etc. The process of grain refinement in equal-channel angular pressing[J]. Scripta Materialia,1998,46 (9):3317-3331.
    [84]Iwahashi Y, Horita Z, Furukama M etc. Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel angular pressing[J]. Metallurgical and Materials Transaction A,1998,29 (9):2245-2252.
    [85]路国祥,陈体军,郝远.镁合金等通道转角挤压(ECAP)技术的研究和展望[J].材料导报,2008,22(4):84-87,92.
    [86]张忠明,王锦程,唐文亭等.等通道转角挤压(ECAP)工艺的研究现状[J].铸造技术,2004,25(1):10-12.
    [87]Liang Wei, Bian Li Ping, Xie Guo Yin. Transformation matrix analysis on the shear characteristics in multi-pass ECAP processing and predictive design of new ECAP routes[J]. Maters SciEng A,2010,527 (21-22):5557-5564.
    [88]Wang S Q, Liang W, Wang Y etc. A modified die for equal channel angular pressin[J]. Mater.Process.Technol,2009,209 (7):3182-3186.
    [89]Berbon P B, Furukawa M, Horita Z etc. Influence of processing speed on microstructural development in equal-channel angular pressing[J]. Metallurgical and Materials Transaction A,1999,30(8):1988-1990.
    [90]马高山,张颂阳,王含英.耐热变形镁合金的塑性变形研究[J].热加工工艺,2011,40(16):19-23.
    [1]肖晓玲,罗承萍.AZ91Mg-Al合金中β-(Mg17Al12)析出相的形态及其晶体学特征[J].金属学报,2001,37(1):1-7.
    [2]田君,李文芳,韩利发等.AZ91镁合金抗高温蠕变性能的研究和发展[J].材料导报,2009,23(6):113-117.
    [3]夏鹏举,蒋百灵,张菊梅.Mg-Al系镁合金离异共晶β相的研究[J].特种铸造及有色合金,2007,27(5):360-362.
    [4]Luo A A. Recent magnesium alloy development for elevated temperature applications [J]. International Materials Reviews,2004,49 (1):23-30.
    [5]张新明,彭卓凯,陈健美等.耐热镁合金及其研究进展[J].中国有色金属学报,2004,14(9):1443-1450.
    [6]闵学刚,孙扬善,杜温文等.Ca、Si和RE对AZ91合金的组织和性能的影响[J].东南大学学报(自然科学版),2002,32(3):1-6.
    [7]Jae Joong Kim, Do Hyang Kim, K S Shin etc. Modification of Mg2Si morphology in squeeze cast Mg-Al-Zn-Si alloys by Ca or P addition[J]. Scripta Materialia,1999,41 (3):333-340.
    [8]杨明波,潘复生,程仁菊等.Sr和Sb变质AZ61-0.7Si合金的铸态组织和力学性能.稀有金属材料与工程,2008,37(10):1737-1741
    [9]Yang Mingbo, Pan Fusheng, Seng Jia etc. Comparison of Sb and Sr on modification and refinement of Mg2Si phase in AZ61-0.7Si magnesium alloy[J]. Transactions of Nonferrous Metals Society of China,2009, (2):287-292.
    [10]Yang Mingbo, Seng Jia, Pan Fusheng etc. Effect of Sb on microstructure of semi-solid isothermal heat-treated AZ61-0.7Si magnesium alloy[J]. Transactions of Nonferrous Metals Society of China,2009, (1):32-39.
    [11]Yang Mingbo, Seng Jia, Bai Liang etc. Effects of Sr on the microstructure, tensile and creep properties of AZ61-0.7Si magnesium alloy[J]. International Journal of Minerals Metallurgy and Materials,2009,19 (1):89-95.
    [12]Yang Mingbo, Seng Jia. Modifi cation and refi nement mechanism of Mg2Si phase in Sr-containing AZ61-0.7Si magnesium alloy[J]. China Foundry,2009,6(1):37-42.
    [13]Song D H, Lee C W, Nam K Y et al. Microstructural characteristics and creep properties of Mg-5Al-2Si alloys modified with Sn and Sr[J]. Mater Sci Forum,2007, 539-543:1784-1789.
    [14]Srinivasan A, Pillai U T S, Swaminathan J etc. Observations of microstructural refinement in Mg-Al-Si alloys containing strontium[J]. Mater Sci,2006,41 (18): 6087-6089.
    [15]陈振华.耐热镁合金[M].北京:化学工业出版社,2007.
    [16]余永宁.金属学原理[M].北京:冶金工业出版社,2007.
    [17]陈晓.原位自生颗粒增强镁基复合材料的研究[D].长沙:中南大学,2005.
    [18]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版,1998.
    [19]周尧和,胡壮麒。介万奇.凝固技术[M].北京:机械工业出版社,1998.
    [20]胡汉起.金属凝固原理[M].北京:机械工业出版社,2000.
    [21]徐恒钧.材料科学基础[M].北京:北京工业大学出版社,2001.
    [22]郑娜.KBF4变质Mg-Si系合金中Mg2Si生长形态的影响因素[D].长春:吉林大学,2006.
    [23]丁文江.镁合金科学与技术[M].北京:科学出版社,2007.
    [24]Koike J, Kobayashi T, Mukai T etc. The activity of non-basal slip system and dynamic recovery at room temperature in fine-grained AZ31B Magnesium alloys[J]. Acta Materialia,2003,51 (7):2055-2065.
    [25]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005.
    [26]刘楚明,刘子娟,朱秀荣等.镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006,16(1):1-12.
    [27]Igarashi M, Khantha M, Vitek V. Nbody interatomic potentials for hexagonal close-packed metals[J]. Philosophical Magazine B,1991,63(3):603-627.
    [28]Barnett M R. Recrystallization during and following hot working of magnesium alloy[J]. Material Science Forum,2003,50 (1):419-422.
    [29]靳丽.等通道挤压变形镁合金微观组织与力学性能研究[D].上海:上海交通大 学,2006.
    [30]Emely E F. Principles of Magnesium technology[M]. Oxford:Pergamon Press,1966.
    [31]张俊善.材料的高温变形与断裂[M].科学出版社,2007.
    [32]Zhang J S, Li P E, Jin J Z. Combined matr/boundary precipitation strengthening in creep of Fe-15Cr-25Ni alloys. Acta Metall. Mater.,1991,39 (12):3063-3070
    [33]Li P E, Zhang J S, Wang F G, Jin J Z. Influence of intergranular carbide density and grain size on creep of Fe-15Cr-25Ni alloys. Metall. Trans.,1992,23A(4):1379-1381
    [1]陈振华.耐热镁合金[M].北京:化学工业出版社,2007.
    [2]马高山,张颂阳,王含英.耐热变形镁合金的塑性变形研究[J].热加工工艺,2011,40(6):19-23.
    [3]刘楚明,彭小仙,李慧中等.Dy和Y对ZK60镁合金铸态组织和力学性能的影响[J].中南大学学报(自然科学版),2010,41(4):1303-1309.
    [4]程仁菊,潘复生,杨明波等.Sr对ZK60镁合金晶粒细化的影响[J].北京科技大学学报,2008,30(12):1397-1401.
    [5]赵阔,张,莉,孙扬善等.Y对ZK60镁合金组织与性能的影响研究[J].中国材料进展,2009,28(7-8):72-77.
    [6]吴安如,夏长清.铈含量对ZK60镁合金组织和性能的影响[J].材料热处理学报,2006,27(1):45-48.
    [7]王忠军,张彩碚,崔建忠等.铒和钕对铸态ZK60镁合金显微组织和力学性能的影响[J].中国稀土学报,2006,24(6):710-715.
    [8]何运斌,潘清林,覃银江等.ZK60镁合金热变形过程中的动态再结晶动力学[J].中国有色金属学报,2011,21(6):1205-1213.
    [9]郝艳君,陈立佳,吴伟.挤压态ZK 60镁合金的高温力学性能及其超塑性[J].沈阳工业大学学报,2004,26(3):261-264.
    [10]孔晶,侯文婷,彭勇辉等.T型通道挤压变形ZK60镁合金的组织与力学性能[J].中国有色金属学报,2011,21(6):1199-1204.
    [11]]王斌,易丹青,方西亚等.ZK60及ZK60(0.9Y)镁合金高温变形行为的热模拟研究[J].稀有金属材料与工程,2010,39(1):106-111.
    [12]何运斌,潘清林,刘晓艳等.ZK60镁合金加工图的构建及失稳分析[J].材料科学与工艺,2011,19(3):1-7.
    [13]麻彦龙,潘复生,左汝林.高强度变形镁合金ZK60的研究现状[J].重庆大学学报,2004,27(9):80-85.
    [14]王渠东,林金保,彭立明等.往复挤压变形对ZK60镁合金力学性能的影响[J].金属学报,2008,44(1):55-58.
    [15]周惦武,徐少华,张福全等.Sn合金化MgZn2相及Mg2Sn相结构稳定性的第原理研究[J].中国有色金属学报,2010,20(5):914-922.
    [16]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005.
    [17]麻彦龙,左汝林,汤爱涛.ZK60镁合金铸态显微组织分析[J].重庆大学学报,2004,27(8):52-56.
    [18]Wei L Y, Dunlop G L, Westengen H. The intergranular microstructure of cast Mg-Zn and Mg-Zn-Rare earth alloys[J]. Metallurgical and Materials Transaction,1995,26A: 1947-1955.
    [19]Yu Yoshida, Lawrence Cisar, Shigeharu Kamado etc. Texture development of AZ31 magnesium alloy during ECAE processing[J]. Materials Forum,2003,419-422: 533-538.
    [20]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [21]Akihiro Yamashita, Zenji Horita, Terence G Langdon. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation[J]. Materials Science and Engineering A,2001,300(1-2):142-147.
    [22]Chang Si-Young, Lee Sang-Woong, Kang Kae Myung etc. Improvement of mechanical characteristics in severely plastic-deformed Mg alloys[J]. Materials Transactions,2004, 45(2):488-492.
    [23]Gourdet S, Montheillet F. A model of continuous dynamic recrystallization[J]. Acta Mater,2003,51:2685-2699.
    [24]Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J]. Acta Materialia,2001,49(7):1199-1207.
    [25]何运斌,潘清林,刘晓艳等ECAP法制备细晶ZK60镁合金的微观组织与力学性能[J].材料工程,2011,(6):32-38.
    [26]何运斌,潘清林,覃银江等.等通道角挤压制备细晶ZK60镁合金的组织与力学性能[J].中国有色金属学报,2010,20(12):2274-2282.
    [27]Hiroyuki Watanabe, Toshiji Mukai, Koichi Ishikawa, Kenji Hgashi. Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion[J]. Scripta Materialia,2002,46(12):851-856.
    [28]Kim W J, Jeong H G. Mechanical properties and texture evolution in ECAP processed AZ61 Mg alloys[J]. Materials Science Forum,2003,419-422:201-206.
    [29]李锋.挤压变形Mg-Al和Mg-Zn系镁合金的力学行为[D].大连:大连理工大学,2006.
    [30]丁文江.镁合金科学与技术[M].北京:科学出版社,2007.
    [31]Kassner M E, Perez-Prado M T. Five-power-law creep in single phase metals and alloys[J]. Progress in Materials Science,2000,45(1):1-102.
    [32]D麦克林著,杨顺华译.金属中的晶粒间界[M].北京:科学出版社,1965.
    [33]钟群鹏,赵子华.断口学[M].北京:高等教育出版社,2006.
    [34]张俊善.材料的高温变形与断裂[M].科学出版社,2007.
    [35]孙茂才.金属力学性能[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [36]Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy[J]. Materials Transactions,2003,44(4):426-435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700