用户名: 密码: 验证码:
600kN/1500kN·m锻造操作机控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锻造操作机是锻造机组的重要组成部分,具有响应快速,控制精度高等特点,而且容易实现计算机自动化控制。本文针对600kN/1500kN?m锻造操作机控制系统的特点,采用基于模糊自整定PID算法的PLC系统,实现锻造操作机的大车行走和夹钳旋转等动作的自动化控制,并通过MATLAB/Simulink和AMESim联合仿真技术对锻造操作机的控制系统进行建模和仿真。
     基于锻造操作机控制系统非线性的特点,本文提出一种采用模糊自整定PID算法的控制系统。利用MATLAB/Simulink强大的运算能力和AMESim完善的模型库,通过联合仿真技术,建立了锻造操作机控制系统的仿真模型。分别采用普通PID算法和模糊自整定PID算法,在不同负载情况下对比操作机自动控制的精度和响应速度。仿真结果表明,采用模糊自整定PID算法的控制系统鲁棒性更好,控制精度更高。
     结合锻造操作机的控制特性和用户的生产需求,采用工控机,西门子PLC控制器和触摸屏监视器组成操作机的控制系统,可实现操作机的手动控制,自动控制以及和压机的联动控制。操作机大车最高运行速度达800mm/s,精度±5mm;夹钳旋转速度最快15r/min,精度±1°。控制系统采用Step7编写,通过存储器间接寻址的方式,在PLC上实现基于模糊自整定PID算法的自动控制,有效的提高了操作机的控制精度和响应速度。
Forging manipulator, which is an important part of the forging unit, is easy to carry out in computer automation system with fast response and high precision control. In this paper, for the characteristics of forging manipulator control system, an automation control system on manipulator movement and clamp rotation of the forging manipulator is accomplished by siemens PLC system, based on fuzzy self-tuning PID algorithm. Meanwhile, it's modeled and simulated on the control system of forging manipulator by MATLAB/Simulink and AMESim co-simulation technology.
     For the nonlinear characteristics of forging manipulator control system, it is proposed a control system that based on fuzzy self-tuning PID algorithm. By the powerful computing capability of MATLAB/Simulink and perfect model library of AMESim, a simulation model of the forging manipulator control system is established through co-simulation technology. Compare the control precision and the response speed of forging manipulator control system under different load conditions, by ordinary PID algorithm and fuzzy self-tuning PID algorithm. Simulation results show that the control system by fuzzy self-tuning PID control algorithm has better robustness and control precision.
     With the characteristics of forging manipulator control system and the production needs of users, the forging manipulator control system is composed by IPC, Siemens PLC controller and touch screen monitor to achieve manual control, automation control and linkage control with press. The maximum operation speed of the manipulator cart is 800mm/s and the accuracy of the movement is±5mm; the maximum rotation speed of the manipulator clamp is 15r/min and the accuracy is±1°. The automation control system based on fuzzy self-tuning PID algorithm is coded by memory indirect addressing way on PLC. It is an effective way to improve the control accuracy and response speed of the forging manipulator.
引文
[1]余发国,高峰,郭为忠,葛浩.锻造操作机的回顾与展望[C].中国机构与机器科学应用国际会议论文集,2007.
    [2]郭会光,田继红.大型锻造的质量控制和研究方略[J].大型铸锻件,2007,2:45-46.
    [3]王凤喜.锻造操作机技术近期的发展[J].重型机械,1994,6:12-17.
    [4]王凤喜.大锻件生产行业与锻造技术发展[J].锻压机械,2002,4:3-6.
    [5]聂绍珉.现代大中型锻造液压机的特点及发展趋势(上)[J].金属加工(热加工),2008,23:20-23.
    [6]聂绍珉.现代大中型锻造液压机的特点及发展趋势(下)[J].金属加工(热加工),2009,1:40-42.
    [7]梁音,赵绪平,王驰,秦剑,杨全国.大型锻造操作机研究发展[J].科技成果纵横,2010,2:55-57.
    [8]孝桥要二,杨尽臣.日本新建以8000吨锻造液压机为核心设备的大型铸锻件厂[J].重型机械,1977,6:55-65.
    [9]李结.锻造操作机的发展近况[J].锻压装备与制造技术.1978,3:17-22.
    [10]梁音,赵绪平,王驰,秦剑,杨全国.大型锻造操作机研究进展[J].科技成果纵横,2010,2:55-57.
    [11]吴根茂,邱敏秀,王庆丰,魏建华,孔晓武,付新等.新编实用电液比例技术[M].浙江:浙江大学出版社,2006,9:3-5.
    [12]傅新,徐明,王伟,邹俊,杨华勇.锻造操作机液压系统设计与仿真[J].机械工程学报,2010,46(11):49-54.
    [13]余发国,高峰,史巧硕.基于Gf集的锻造操作机构型方法[J].机械工程学报,2010,44(11):152-159.
    [14] S. Kleinsteuber,N. Sepehri.A polynomial network modeling approach to a class oflarge-scale hydraulic systems [J].Computers & Electrical Engineering,1996,22(2):151-168.
    [15] Brain W. Rooks.Software synchronization for radial forging machine manipulators [J].Industrial Robot,1996,23(6):19-23.
    [16] Yan C.,Gao F.,Guo W..Coordinated kinematic modeling for motion planning of heavy-duty manipulators in an integrated open-die forging centre[J].Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2009,2333(10):1299-11313.
    [17]范苗苗,范玉顺,黄双喜.面向锻造操作机系统的设计与仿真支撑平台[J].机械工程学报,2010,46(11):76-82.
    [18]关立文,程宁波.锻造操作机相似模型逆动力学建模与非线性控制器设计[J].机械工程学报,2010,46(11):55-60.
    [19] T. J. Nye,A. M. Elbadan,G. M. Bone.Real-time process characterization of open die forging for adaptive control[J].Journal of Engineering Materials and Technology,2001,123(4):511-516.
    [20] Yunpeng Ren , Chongshao Lu , Qingkai Han , Tianxia Zhang , Bangchun Wen.Simulated Comparison on Kinematics Properties of Two Typical Mechanisms of Forging Manipulator [J].Proceeding of the SPIE - The International Society for Optical Engineering,2007,6794:6794N1-6.
    [21] Collins F. Adetu,Carl A. Moore,Jr.,Rodney G. Roberts.Dynamic modeling and control of the omega-3 parallel manipulator[C].Proceedings of the 2009 IEEE International Conference on Systems,2009:3599-3604.
    [22] Xuesong Wang,Guangzheng Peng.Modeling and control for pneumatic manipulator based on dynamic neural network[C] . Proceedings of the IEEE International Conference on Systems,Man and Cybernetics,2003,3:2231-2236.
    [23]翟富刚,孔祥东,姚静,刘杰.锻造操作机夹钳回转系统动态特性仿真研究[J].液压与气动,2010,3:61-63.
    [24] L. P?onecki,W. Trampczynski,J. Cendrowicz.A concept of digital control system to assist the operator of hydraulic excavators[J].Automation in Construction.1998,7(5):401-411.
    [25] Clarence W. de Silva.Applications of fuzzy logic in the control of robotic manipulators[J].Fuzzy sets and systems,1995,70(2-3):223-234.
    [26]郑江.锻造操作机电液比例位置控制系统研究[D].武汉:华中科技大学,2003.
    [27]王怀彬.锻造操作机运动学与逆动力学分析[D].上海:上海交通大学,2008.
    [28]许勇.重载夹持装置液压同步驱动系统的建模及内模控制研究[D].长沙:中南大学,2009.
    [29]刘杰.基于虚拟样机的锻造操作机阀控马达系统仿真研究[D].秦皇岛:燕山大学,2010.
    [30]陈柏金,熊晓红,黄树槐.8MN快速锻造液压机组及其控制系统[J].锻压机械,1999,1:33-35.
    [31]万胜狄,王运赣,沈元彬,李明典,聂振铭,韩英淳.锻造机械化与自动化[M].北京:机械工业出版社,1983.
    [32]刘海丽.基于AMESim的液压系统建模与仿真技术研究[D].西安:西北工业大学,2006.
    [33]王怀彬.锻造操作机运动学与逆动力学分析[D].上海:上海交通大学,2008.
    [34]邓勇.智能PID控制器在阀控液压控制系统中的应用[D].哈尔滨:哈尔滨工业大学,2007.
    [35]何存兴,张铁华.液压传动与气压传动[M].武汉:华中科技大学出版社,2000.
    [36]李刚,刘兴堂,徐安民.智能控制理论及发展[J].空军工程大学学报(自然科学版),2003,4(3):75-78.
    [37]马晓宏.电液比例阀控缸位置控制系统的研究与应用[D].上海:东华大学,2008.
    [38] Yun Li,Kiam Heong Ang,Chong G C Y .PID control system analysis and design[J].IEEE Control Systems Magazine,2006,26(1):32-41.
    [39]杨叔子,杨可充,吴波,熊良才.机械工程控制基础[M].武汉:华中科技大学出版社,2005.
    [40]吴玲燕.基于模糊自适应PID算法的研究以及在连续热镀锌生产线张力控制系统中的应用[D].北京:北京机械工业自动化研究所,2007.
    [41]孟欣佳.快锻液压机的工作过程数值仿真与液压控制策略研究[D].秦皇岛:燕山大学,2009.
    [42]吴丰顺,熊晓红,万里.材料成型装备控制技术[M].北京:机械工业出版社,2008.
    [43] Alfred Lynn,Edzko Smid,Moji Eshraghi,Niall Caldwell,Dan Woody.Modeling hydraulic regenerative hybrid vehicles using AMESim and Matlab/Simulink[J].Proceeding of the SPIE– The Internatinal Society for Optical Engineering,2005,5805(1):24-40.
    [44] Marian Blejan,Iulian Dutu,Bogdan Lupu,Corneliu Cristescu.Data acquisition and control unit for electro hydraulic application[C].Proceedings 2009 32nd International Spring Seminar on Electronics Technology (ISSE),Hetero System Integration,the path to New Solutions in the Modern Electronics,2009:5.
    [45]鄂加强.智能故障诊断及其应用[M].湖南:湖南大学出版社,2006.
    [46] L. A. Zaheh.Fuzzy sets[J].Information and Control,1965,8(3):338-353.
    [47]王益群,宁淑荣,刘建.热轧立辊电液伺服系统的自适应模糊控制[J].机械工程学报,2007,43(12):1-4。
    [48]费树辉.数字泵控缸位置控制方法研究[D].呼和浩特:内蒙古工业大学,2007.
    [49]朱继东.模糊PID自整定控制在基于PLC的撤叉焊机上的应用[D].上海:上海交通大学,2009.
    [50]徐晖.模糊PID控制在压注机电液控制系统的应用[D].哈尔滨:哈尔滨工业大学,2008.
    [51] W. Li,X. G. Chang,Jay Farrell,F. M. Wahl.Design of an enhanced hybrid fuzzy P+ID Controller for a mechanical manipulator[J].IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics),2001,31(6):938-945.
    [52] W. Li,X. G. Chang,F. M. Wahl,S. K. Tso.Hybrid fuzzy P+ID control of manipulators under uncertainty[J].Mechatronics,1999,9(3):301-315.
    [53] Ertu?rul ?am,?lhan Kocaarslan.A fuzzy gain scheduling PI controller application for an interconnected electrical power system[J].Electric Power Systems Research,2005,73(3):267-274.
    [54]石辛民,郝整清.模糊控制及其MATLAB仿真[M].北京:清华大学出版社,北京交通大学出版社,2008.
    [55]王晓冲.模糊参数自整定PID温控系统[D].长沙:中南大学,2007.
    [56]闻新,周霞,李东江,贝超.MATLAB模糊逻辑工具箱的分析与应用[M].北京:科学出版社,2001.
    [57]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [58]李楠.22MN快锻液压机计算机控制系统设计与应用研究[D].秦皇岛:燕山大学,2009.
    [59]江玲玲,张俊俊.基于AMESim与Matlab\Simulink联合仿真技术的接口与应用研究[J].流体传动与控制,2007,3:26-27.
    [60]李建平,王晓冲,谢敬华.基于PLC的模糊参数自整定温度控制系统研究[J].微计算机信息,2007,23(6):21-23.
    [61]孟欣佳.快锻液压机的工作过程数值仿真与液压控制策略研究[D].秦皇岛:燕山大学,2009.
    [62]赵飞.基于AMESim的气动系统建模与仿真技术研究[D].秦皇岛:燕山大学,2010.
    [63]王荣.双液压马达同步驱动控制与系统辨识研究[D].哈尔滨:哈尔滨工业大学,2007.
    [64]李瑾,邓卫华.AMESim与MATLAB/Simulink联合仿真技术及应用[J].情报指挥控制系统与仿真技术,2004,26(5):61-64.
    [65]邢科礼,冯玉,金侠杰,李庆.基于AMESim/Matlab的电液伺服控制系统的仿真研究[J].机床与液压,2004,10:57-58.
    [66]孔祥东,刘杰,翟富刚,姚静,艾超.基于AMESim的锻造操作机大车行走液压控制系统仿真研究[J].机床与液压,2010,38(13):128-129,107.
    [67]赵海英,刘坤,吴忠强.电液位置伺服系统的模糊神经网络控制[J].微计算机信息(测控自动化),2009,25(1):61-63.
    [68] Yan. Changya,Gao. Feng.Dynamic stability analysis of a novel forging manipulator [C].Intelligent Robotics and Applications-First International Conference,2008,449-458.
    [69] Liu. De-Shi,Li. Gang.Dynamic behavior of the forging manipulator under the press motions[J].Key Engineering Materials,2010,419-420:417-420.
    [70]逄振旭,倪其民,李从心,阮雪榆.快速锻造操作机的计算机控制[J].锻压机械,2000,1:53-54.
    [71]张海平,钟廷修.能自动从图编程的液压系统仿真软件包HYCAD[J].机床与液压,1986,6:4-9.
    [72]付永领,祁晓野.AMESim系统建模和仿真:从入门到精通[M].北京:北京航空航天大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700