用户名: 密码: 验证码:
锻造操作机主运动机构电液比例控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国科技发展对大型锻件需求量的不断增加,锻造装备正朝着重载化、自动化的方向发展,锻造操作机是一种辅助锻造液压机工作的大型操作设备,其在大负载时的灵活性大大提升了工件的锻造效率。作为辅助设备,操作机需要密切配合压机的运动,这对操作机的控制性能提出了很高的要求,而电液系统承担着操作机所有动作的完成,其控制性能决定着操作机的整机性能,因此电液系统的设计和控制是锻造操作机的关键技术之一。环境恶劣、工况复杂及负载惯量大等特点给操作机电液系统控制带来了很大的挑战,而操作机主运动机构电液系统,包括提升系统、俯仰系统和缓冲系统,存在着运动耦合,控制难度较其他系统更高,因此如何实现操作机重载下的精确控制和保证其与压机配合过程中的良好缓冲性能,是锻造操作机主运动机构电液系统设计面临的重大挑战。
     针对一种重载锻造操作机,进行了主运动机构电液系统的原理设计并建立了其数学模型,建立了锻件的弹塑性形变模型以及操作机主运动机构的运动学和动力学模型,结合电液系统数学模型,搭建了锻造操作机“锻件-机构-液压”复合仿真模型。借助该复合仿真模型,分析了电液系统的负载特性和控制特点,研究了重载和软管连接等对系统控制性能的影响,并针对比例方向阀和软管特性,设计了阀芯位移补偿算法和软管补偿算法,借助仿真和模拟试验台,验证了补偿算法的有效性。为了研究夹钳的运动控制性能,仿真分析了主运动机构电液系统之间的耦合特性,并提出了夹钳运动策略,进行了双动进给快速锻造过程仿真。为了提高操作机的缓冲性能,借助复合仿真模型对工件的拔长过程进行了仿真分析,研究发现,提高提升系统的位移跟踪精度和增加蓄能器模块都有助于提高夹钳在竖直方向上的缓冲性能,在缓冲系统中增加配置合理的蓄能器模块有助于提高夹钳在水平方向上的缓冲性能。
     本论文具体研究内容如下:
     第一章,概述了锻造操作机的工作原理及国内外发展历程,阐述了锻造操作机电液系统驱动与控制技术现状,并对操作机常见构型做了介绍,分析了本课题的研究背景及研究意义,介绍了课题的主要研究内容。
     第二章,针对一种巨型重载锻造操作机,分析了其主运动机构结构特点,并设计了前后提升系统、俯仰系统、缓冲系统的液压原理图;在建立电液系统各元器件数学模型的基础上,借助MATLAB/Simulink软件,搭建了三个电液系统的仿真模型,采用各电液系统最常用工况为对象,初步分析了提升系统位移控制性能以及缓冲系统的缓冲性能。
     第三章,以一种新构型重载操作机为对象,建立了主运动机构电液系统的负载数学模型,包括锻件塑性形变和弹性形变数学模型以及主运动机构的动力学模型,并搭建了操作机“锻件-机构-液压”复合仿真模型,并给出了电液系统初始压力设置方法。借助复合仿真模型,研究了提升、俯仰以及缓冲系统的等效重量负载和等效惯量负载,分析了三个系统的负载特性和控制性能。
     第四章,针对锻造操作机电液比例系统的控制特性,研究了控制阀与液压缸之间的连接软管、比例方向阀的低频响及死区特性等对操作机提升系统控制精度的不利影响,针对大惯性负载及软管弹性导致的系统频响低、控制器参数调定困难等特点,设计了基于比例阀压力流量特性的阀芯位移补偿策略。同时研究了控制阀与执行器之间连接的软管对轨迹跟踪精度的影响,并针对性的设计了基于模型的软管补偿策略。
     第五章,建立了操作机提升系统AMESim仿真模型,通过与常规PID控制的对比仿真,分析了比例方向阀阀芯位移补偿策略及软管补偿策略的作用,并研究了补偿策略对系统稳定性的影响。针对操作机系统位移跟踪的实际要求,搭建了提升系统位移跟踪负载模拟试验台,借助模拟试验台开展了补偿策略对系统闭环位移控制的影响研究,重点对比了带补偿策略的比例控制与常规PID控制的位移跟踪性能。借助仿真模型对提升系统进行线性化分析,研究了补偿策略对系统稳定性的影响。
     第六章,分析了操作机主运动机构电液系统之间的耦合特性,设计了夹钳位姿观测器和夹钳运动控制策略,并仿真研究了操作机的双动进给快速锻造过程。以工件的拔长过程为分析对象,针对操作机夹钳的缓冲运动过程开展了仿真研究,分析了提升系统的控制性能对其缓冲性能的影响,研究了蓄能器在提升系统和缓冲系统中的作用。
     第七章,对本文的研究工作进行了概述,给出了研究结果和主要结论,指出了本文的创新点,并展望了进一步的研究方向和内容。
With the development of the technology and economic of our country, the demand for large forgings is increasing deeply, thus the heavy load and automation are the main direction of the forging equipment. Forging manipulator, whose dexterity under heavy load increases the efficiency of the forging, is large ancillary equipment for the forging press in a free forging center. As auxiliary equipment, the manipulator has to cooperate with the movement of the forging press closely, so the control performance of the manipulator is very important. In a forging manipulator, all the movements are controlled by the electro-hydraulic system and its control performance has an impact on the property of the manipulator, thus the design and control of the electro-hydraulic system is one of the key technologies for the forging manipulator. Extreme environment, complex working condition and heavy load bring challenges to the control of the systems, especially the electro-hydraulic systems of the major-motion mechanisms, including front and rear lifting systems, pitching system and buffering system, as they are coupling together. In this condition, how to get precise control under heavy load and good buffering performance during the corporation work is the main problem for the electro-hydraulic systems of the forging manipulator.
     In this dissertation, the electro-hydraulic systems of the major-motion mechanism for a heavy duty forging manipulator are designed and mathematic models are built accordingly. The plastic deformation and elastic deformation models of the forging, and the kinematics and dynamics of the major-motion mechanism are built in the dissertation, combined with the mathematic models of the electro-hydraulic systems, the co-simulation model of the major-motion mechanism is built in MATLAB/Simulink. With the co-simulation model, the characteristic of the loads for the hydraulic systems is studied, and the control characteristic of the lifting system is analyzed. In order to improve the control performance of the lifting system, the influence of heavy load and hose of the system are studied, then spool displacement compensation is designed based on the characteristics of the proportional valve and hose compensation is designed based on the mathematical model of the rubber hose. Both simulation and experiment results show that the compensation strategies are effective in improving the displacement tracking precision of the lifting system. With the digital prototype, the coupling characteristic of the major-motion mechanism is analyzed and control strategy for the pose of the clamp is designed. In order to improve the buffering performance of the clamp, a stretching process of a flat-tool is simulated and it is shown that the vertical buffering performance of the clamp will be improved by increasing the tracking precision of the lifting system and the horizontal buffering performance of the clamp will be improved by arranging well-adjusted accumulators to the buffering system.
     The main contents of the dissertation are presented as follows:
     In chapter1, the working principle and the developing history of the forging manipulator in our country and abroad were outlined, the drive and control technology of the electro-hydraulic system and the common structure of the forging manipulator were summarized, the researching background and significance were also analyzed and the main contents of the subject were introduced.
     In chapter2, the characteristic of major-motion mechanism was analyzed according to a heavy duty forging manipulator and the schematic diagram of the lifting systems, the pitching system and the buffering system were designed. Simulation models of the hydraulic systems were built in MATLAB/Simulink based on the mathematic models of the components in the hydraulic circuits. Aiming at the fundamental motion, the control performance of the lifting system and the buffering performance of the buffering system were preliminarily studied.
     In chapter3, one new type heavy load forging manipulator was introduced and the loads of the hydraulic systems, including the plastic deformation and elastic deformation of the work piece and the dynamic model of the major-motion mechanisms. The co-simulation model of the work piece, the mechanism and the hydraulic system was built. Then equivalent gravity loads and equivalent inertia loads of the hydraulic systems were calculated with the co-simulation model, the characteristic of the load was analyzed.
     In chapter4, the lifting system of the forging manipulator was studied, and it was shown that the rubber hose connected from the control valve to the cylinder, the dead zone and low natural frequency of the proportional valve make it difficult to get good tracking precision. Aiming at these disadvantages of the lifting system, spool displacement compensation and hose compensation strategies were designed based on the mathematical model of the system.
     In chapter5, simulation model of the lifting system was built in the environment of AMESim and the compensation strategies were tested in comparing with traditional PID control. Displacement tracking test rig of the lifting system was built according to the lifting system of the forging manipulator. Comparative experiments were carried out between the optimal traditional PID control and P control with the compensation strategies. Besides, the simulation model of the lifting system was linearized in AMESim, and the stability was studied and results showed that it is independent of the compensation strategies.
     In chapter6, the coupling characteristic of the major-motion mechanism and the motion control property of the clamp were analyzed, the motion control strategy of the clamp was designed, and the quick forging mode of the manipulator was studied with the control strategy. Aiming at the stretching process of a plat-tool, the buffering behavior of the clamp was simulated with the co-simulation model. The effect of the displacement tracking performance and the accumulator were studied based on the optimization of the lifting and the buffering systems.
     In chapter7, the main results and conclusions were summarized, the achievements were concluded, and suggestions were provided for the future work.
引文
[1]巨型重载操作装备的基础科学问题项目组,机械工程学报编辑部.开展重载操作装备基础研究提升大型装备自主创新能力[J].机械工程学报.2010.46.(11).
    [2]高峰,郭为忠,宋清玉,杜凤山.重型制造装备国内外研究与发展[J].机械工程学报.2010.(019).92-107.
    [3]余发国,高峰,郭为忠,葛浩.锻造操作机的回顾与展望[C].2007.
    [4]童幸,高峰,张勇.操作机主运动机构的解耦性研究[J].机械工程学报.2010.(011).14-20.
    [5]易达云.重载夹持装置双马达消隙传动系统的建模与控制[D].中南大学.2009.
    [6]王凤喜.锻造操作机技术近期的发展[J].重型机械.1994.(006).12-17.
    [7]童幸.锻造操作机主运动机构性能研究[D].上海交通大学.2011.
    [8]葛浩.锻造操作机构型设计与动力学性能研究[D].上海交通大学.2011.
    [9]尚永刚.平均流量原理在全液压自由锻造操作机上的应用[J].锻造与冲压.2008.(8).44-44.
    [10]Willich Ludwig Schussler, Dusseldorf. Forging Manipulators [P]. United States Patent. 3715908,1973.
    [11]R. H. Harrison. Forging Manipulator [P]. United States Patent.3696651,1972.
    [12]Willich Dusseldorf Ludwig Schussler. CONTROL OF A FORGING MANIPULATOR COOPERATING WITH A FORGING PRESS [P]. United States Patent.3557601,1971.
    [13]L. S. Wulich. MEANS FOR CONTROLLING THE MOVEMENTS OF A MANIPULATOR [P]. United States Patent.3590616,1971.
    [14]J. M. Thomas. APPARATUS TO AVOID BENDING DURING FORGING [P]. United States Patent.3427853,1969.
    [15]E. Kost, W. Folta. Gripper feed and gripper resilience cylinders on forging manipulators [P]. United States Patent.4420287,1983.
    [16]Hosel Manfred Ernst Theodor Sack, Dusseldorf-Benrath Hansen, Dusseldoif-Rath Horst Schenk. Mobile forging manipulators [P]. United States Patent.3370452,1968.
    [17]K. W. Lilly, A. S. Melligeri. Dynamic simulation and neural network compliance control of an intelligent forging center[J]. Journal of Intelligent & Robotic Systems.1996.17. (1).81-99.
    [18]P. H. Kim, M. S. Chun, J. J. Yi, Y. H. Moon. Pass schedule algorithms for hot open die forging[J]. Journal of materials processing technology.2002.130.516-523.
    [19]E. Appleton, W. B. Heginbotham, D. Law. Open die forging with industrial robots[J]. Industrial Robot:An International Journal.1979.6. (4).191-194.
    [20]C. Yan, F. Gao, W. Guo. Coordinated kinematic modelling for motion planning of heavy-duty manipulators in an integrated open-die forging centre[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture.2009.223. (10). 1299-1313.
    [21]C. Yan, F. Gao, Y. Zhang. KINEMATIC MODELING OF A SERIAL-PARALLEL FORGING MANIPULATOR WITH APPLICATION TO HEAVY-DUTY MANIPULATIONS[J]. Mechanics based design of structures and machines.2010.38. (1). 105-129.
    [22]童幸,高峰,张勇.操作机主运动机构的解耦性研究[J].机械工程学报.2010.(011).14-20.
    [23]王武荣,陈关龙,林忠钦.大型锻件操作装备机锻耦合仿真分析[J].上海交通大学学报.2009.43.(001).33-37.
    [24]C. Yan, F. Gao, Q. J. Ge. Compound stiffness modelling of an integrated open-die forging centre with serial-parallel heavy-duty manipulators[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture.2010.224. (12). 1841-1853.
    [25]W. Chen, X. Zhang, Z. Cui. Numerical Simulations of Open-Die Forging Process for Manipulator Design[J]. Intelligent Robotics and Applications.2008.650-658.
    [26]G. E. Hao, GAO Feng. Type Design for Heavypayload Forging Manipulators[J]. CHINESE JOURNAL OF MECHANICAL ENGINEERING.2011.24. (6).1.
    [27]H. Wang, K. Zhao, G. L. Chen, Z. Q. Lin. Energy Distribution Index for robot manipulators and its application to buffering capability evaluation[J]. SCIENCE CHINA Technological Sciences.2011.54. (2).457-470.
    [28]孔祥东,翟富刚,张杨,庞逢祥,陈赞.锻造操作机夹钳平行升降机构运动学特性分析[J].燕山大学学报.2011.(03).198-202.
    [29]许允斗,姚建涛,赵永生.一种典型DDS锻造操作机运动学分析[J].机械工程学报.2012.(03).50-56.
    [30]许允斗,姚建涛,赵永生.锻造操作机提升机构设计方法[J].机械工程学报.2012.(05).28-33.
    [31]Q. Li, D. Gao, H. Deng. Analysis of contact forces for forging manipulator grippers[C].2008. 716-719
    [32]L. Miao, Y. Wenyu, Z. Xiaoping. Analysis of indeterminate force in multi-contact friction grasp based on potential energy minimization[C].2010.801-806
    [33]J. Mao, W. Yang. Computing Contact Force and Deformation in the Heavy-Duty Gripping with Over-Constraint[J]. Intelligent Robotics and Applications.2008.256-264.
    [34]Y. Wenyu, L. Miao, Z. Xiaoping. Robust robotic grasping force optimization with uncertainty [J]. Intelligent Robotics and Applications.2010.264-275.
    [35]J. Wu, J. Wang, L. Wang, T. Li. Dynamic formulation of redundant and nonredundant parallel manipulators for dynamic parameter identification [J]. Mechatronics.2009.19. (4).586-590.
    [36]王立平,吴旻,关立文.锻造操作机相似试验台设计和仿真[J].制造技术与机床.2009.(08).57-62.
    [37]陈博翁,关立文,李铁民.基于ADAMS的锻造操作机动力学仿真及优化设计[J].机械设计与制造.2009.(03).6-8.
    [38]关立文,程宁波.锻造操作机相似模型逆动力学建模与非线性控制器设计[J].机械工程学报.2010.(11).55-61.
    [39]姜琳,刘衍珩,关立文,程宁波.基于决策树与模糊神经网络的双机协调控制设计[J].吉林大学学报(工学版).2010.(05).1350-1354.
    [40]郑江.锻造操作机电液比例位置控制系统研究[D].华中科技大学.2003.
    [41]徐明昊.600kN/1500kN·m锻造操作机控制系统研究[D].华中科技大学.2011.
    [42]孔祥东,刘杰,翟富刚,姚静,艾超.基于AMESim的锻造操作机大车行走液压控制系统仿真研究[J].机床与液压.2010.(13).128-129+107.
    [43]翟富刚,孔祥东,姚静,刘杰.锻造操作机夹钳回转系统动态特性仿真研究[J].液压与气动.2010.(03).61-63.
    [44]何春栋.200KN正弦泵控操作机机液系统联合仿真及节能特性研究[D].燕山大学.2010.
    [45]刘治宇.锻造操作机夹钳升降液压系统建模与仿真[D].东北大学.2008.
    [46]许勇.重载夹持装置液压同步驱动系统的建模及内模控制研究[D].中南大学.2009.
    [47]胡香平.锻造操作机夹钳旋转机构的位置与负载均衡控制[D].中南大学.2011.
    [48]杨丽新.重载夹持装置动态夹持力分析及夹持驱动策略研究[D].中南大学.2011.
    [49]傅新,徐明,王伟,邹俊,杨华勇.锻造操作机液压系统设计与仿真[J].机械工程学报.2010.(011).49-54.
    [50]J. Hou, H. Zhou, J. Zou, X. Fu. Velocity control of the horizontal buffer system for heavy load forging manipulator[J]. Intelligent Robotics and Applications.2010.296-304.
    [51]张晓萍,机械加工.锻压生产过程自动控制[M].机械工业出版社,1998,
    [52]孙雅权,方春林.200tm锻造操作机液压系统的维修方法[J].一重技术.1996.2.
    [53]刘波.液压缸缓冲结构和缓冲过程的研究[D].浙江大学.2004.
    [54]卓耀彬.液压缓冲器特性及其检测方法研究[D].浙江大学.2006.
    [55]章一明.液压缓冲器设计参数研究[J].华东冶金学院学报.1994.11.(3).56-57.
    [56]林玮,苗明,李丽.液气缓冲器节流阀的参数优化[J].起重运输机械.2007.(8).33-36.
    [57]寿庆丰.一种可调节小型高效液压缓冲器[J].机床与液压.1999.(002).66-66.
    [58]E. Kost, W. Folta. Gripper feed and gripper resilience cylinders on forging manipulators
    [59]许同乐,马金英,霍玉玲.液压缓冲器的研制[J].矿山机械.2000.5.
    [60]刘同义.矿用提升设备液压缓冲器的设计[J].矿山机械.1999.27.(002).36-37.
    [61]E. T. Sack. Mobile forging manipulators
    [62]任建勋.联动的2600吨快速锻造液压机和40吨·米锻造操作机[J].重型机械.1973.2.
    [63]张学凤,李波.进口200t·m操作机钳杆压力平衡装置电气线路的改进[J].一重技术.1994.4.
    [64]W. Liu, T. J. Nye. Adaptive control for intelligent open die forging[C].2004.
    [65]宋晓波,杨庆光,宋清玉.大型锻造操作机液压缸定位的位置-压力控制方法[P].中国专利.CN101444817,2009.
    [66]M. H. Raibert, J. J. Craig. Hybrid position/force control of manipulators[J]. Journal of Dynamic Systems, Measurement, and Control.1981.103.126.
    [67]逢振旭,倪其民.快速锻造操作机的计算机控制[J].锻压机械.2000.35.(001).53-54.
    [68]熊晓红,李从心,黄树槐.快速锻造液压机组的计算机控制[J].华中理工大学学报.1996.23.(5).58-60.
    [69]陈博翁.一种锻造操作机的机构分析及其虚拟样机建模[D].清华大学.2009.
    [70]M. B. Nazir, W. Shaoping. Optimization based on convergence velocity and reliability for hydraulic servo system[J]. Chinese journal of Aeronautics.2009.22. (4).407-412.
    [71]G. A. Sohl, J. E. Bobrow. Experiments and simulations on the nonlinear control of a hydraulic servosystem[J]. Control Systems Technology, IEEE Transactions on.1999.7. (2).238-247.
    [72]S. Tafazoli, C. W. de Silva, P. D. Lawrence. Tracking control of an electrohydraulic manipulator in the presence of friction[J]. Control Systems Technology, IEEE Transactions on. 1998.6. (3).401-411.
    [73]H. E. Merritt. Hydraulic control systems[M]. John Wiley & Sons Inc,1967,14-18.
    [74]林建杰.液压电梯闭式回路节能型电液控制系统研究[D].杭州:浙江大学.2005.
    [75]吴根茂,邱敏秀,王庆丰.新编实用电液比例技术[M].浙江大学出版社,2006,
    [76]范苗苗,范玉顺,黄双喜.面向锻造操作机系统的设计与仿真支撑平台[J].机械工程学报.2010.(11).76-82.
    [77]范苗苗,范玉顺.基于HLA的锻造操作机系统协同仿真技术研究[J].新技术新工艺.2009.(05).41-44.
    [78]M. M. Fan, Y. S. Fan. A HLA-Enabling Method in Collaborative Simulation Environment for Complex Product Development[J]. Applied Mechanics and Materials.2009.16.234-238.
    [79]C. Yan, F. Gao. Simulation of programmed incremental open-die forging processes based on spread coefficient and geometric transformation[J]. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering.2010.224. (2).129.
    [80]A. Tomlinson, J. D. Stringer. Spread and elongation in flat tool forging[J]. J. of Iron Steel Institute.1959.193.157-162.
    [81]任云鹏,张计磊,韩清凯,张天侠.锻造操作机结构系统的动力有限元建模方法研究[J].机械设计与制造.2008.(7).130-130.
    [82]刘杰.基于虚拟样机的锻造操作机阀控马达系统仿真研究[D].燕山大学.2010.
    [83]M. Tie, Y. Fan. HLA Based Multidisciplinary Collaborative Simulation Framework for Forging and Manipulating Process[J]. Intelligent Robotics and Applications.2008.1256-1264.
    [84]H. Zhou, J. Y. Hou. Vertical Load Analysis of the Lifting Systems for Forging Manipulator during the Forging Process[J]. Advanced Materials Research.2011.317.764-769.
    [85]X. He. Effects of manipulator compliant movements on the quality of free forgings based on FEM simulation[M].2011,1-9.
    [86]B. Eryilmaz, B. H. Wilson. Improved tracking control of hydraulic systems[J]. Journal of Dynamic Systems, Measurement, and Control.2001.123.457.
    [87]S. Tafazoli, C. W. de Silva, P. D. Lawrence. Tracking control of an electrohydraulic manipulator in the presence of friction [J]. Control Systems Technology, IEEE Transactions on. 1998.6. (3).401-411.
    [88]A. Alleyne, R. Liu. On the limitations of force tracking control for hydraulic servosystems[J]. Journal of dynamic systems, measurement, and control.1999.121.184.
    [89]张玮,冀宏,于振燕,王峥嵘.管道配置对阀控缸液压系统动态特性的影响[J].机床与液压.2008.36.(10).74-76.
    [90]张洪.基于MATLAB的液压管路动态特性的仿真[J].液压与气动.2003.(009).28-30.
    [91]赵喜荣,任德志.管道对液压系统静动特性的影响[J].机床与液压.1997.(005).41-42.
    [92]K. H. Ang, G. Chong, Y. Li. PID control system analysis, design, and technology[J]. IEEE Transactions on Control Systems Technology.2005.13. (4).559-576.
    [93]K. J. Str M, T. H Gglund. The future of PID control[J]. Control Engineering Practice.2001.9. (11).1163-1175.
    [94]E. M. Jafarov, MNA Parlakci, Y. Istefanopulos. A new variable structure PID-controller design for robot manipulators[J]. Control Systems Technology, IEEE Transactions on.2005.13. (1). 122-130.
    [95]K. S. Tang, K. F. Man, G. Chen, S. Kwong. An optimal fuzzy PID controller[J]. Industrial Electronics, IEEE Transactions on.2001.48. (4).757-765.
    [96]J. Sun, D. H. Zhang, X. Li, J. Zhang, D. S. Du. Smith Prediction Monitor AGC System Based on Fuzzy Self-Tuning PID Control[J]. Journal of Iron and Steel Research, International.2010. 17. (2).22-26.
    [97]G. P. Liu, S. Daley. Optimal-tuning nonlinear PID control of hydraulic systems[J]. Control Engineering Practice.2000.8. (9).1045-1053.
    [98]G. P. Liu, S. Daley. Optimal-tuning PID control for industrial systems[J]. Control Engineering Practice.2001.9. (11).1185-1194.
    [99]G. P. Liu, S. Daley. Optimal-tuning PID controller design in the frequency domain with application to a rotary hydraulic system[J]. Control Engineering Practice.1999.7. (7).821-830.
    [100]G. J. Silva, A. Datta, S. P. Bhattacharyya. PID controllers for time-delay systems[M]. Birkhauser,2005,
    [101]陈娟.基于软件计算的流量反馈液压电梯速度控制系统的研究[D].浙江大学.2003.
    [102]顾临怡,王庆丰.采用计算流量反馈的流量控制方法及特性研究[J].机械工程学报.1999.35.(004).96-98.
    [103]王庆丰,韩波.比例节流控制的流量数字压力补偿(特性校正)研究[J].机床与液压.1995.(004).187-191.
    [104]许小庆,权龙,王永进.伺服阀流量动态校正改善电液位置系统性能的理论和方法[J].机械工程学报.2009.45.(008).95-100.
    [105]Z. Wang, Y. Zhang, H. Fang. Neural adaptive control for a class of nonlinear systems with unknown deadzone[J]. Neural Computing & Applications.2008.17. (4).339-345.
    [106]C. L. D. Machado, V. J. De Negri, M. A. B. Cunha. Experimental Implementation of the Cascade Controller with Adaptive Dead-Zone Compensation Applied to a Hydraulic Robot[C]. 2008.59-64
    [107]S. Ibrir, W. F. Xie, C. Y. Su. Adaptive tracking of nonlinear systems with non-symmetric dead-zone input[J]. Automatica.2007.43. (3).522-530.
    [108]W. M. Bessa, M. S. Dutra, E. Kreuzer. An adaptive fuzzy dead-zone compensation scheme and its application to electro-hydraulic systems[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering.2010.32. (1).1-7.
    [109]W. M. Bessa, M. S. Dutra, E. Kreuzer. Sliding mode control with adaptive fuzzy dead-zone compensation of an electro-hydraulic servo-system[J]. Journal of Intelligent & Robotic Systems. 2010.58.(1).3-16.
    [110]L. Lu, J. Zou, X. Fu, X. D. Ruan, X. W. Du, S. Ryu, M. Ochiai. Cavitating flow in non-circular opening spool valves with U-grooves[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science.2009.223. (10).2297-2307.
    [111]E. N. Viall, Q. Zhang. Determining the discharge coefficient of a spool valve[C].2000. 3600-3604 vol.5
    [112]孔晓武,邱敏秀.带长管道的阀控系统动态特性研究[J].中国机械工程.2002.13.(013).1141-1143.
    [113]J. S. Stecki, D. C. Davis. Fluid transmission lines—distributed parameter models Part 2: comparison of models[J]. ARCHIVE:Proceedings of the Institution of Mechanical Engineers, Part A:Power and Process Engineering 1983-1988 (vols 197-202).1986.200. (41).229-236.
    [114]蔡亦钢.流体传输管道动力学[M].浙江大学出版社,1990,
    [115]孔晓武.带长管道的负载敏感系统研究[D].浙江大学.2003.
    [116]赵宇,权龙,李银玉.考虑软管粘弹性的液压伺服系统建模与仿真研究[J].流体传动与控制.2005.(003).5-8.
    [117]X. Kong, J. Wei, M. Qiu, G. Wu. Improvement of fluid pipe lumped parameter model.[J]. Chinese Journal of Mechanical Engineering(English Edition).2004.17. (1).114-116.
    [118]AMESim. Chapter 4:Hydraulic Line modeling[J]. Iib_hydraulic.2010.
    [119]G. C. Goodwin, S. F. Graebe, M. E. Salgado. Control system design[M]. Prentice Hall New Jersey,2001,
    [120]孙彩丽.20 MN快锻液压机设计及整体工作性能分析[D].燕山大学.2007.
    [121]李楠.22MN快锻液压机计算机控制系统设计与应用研究[D].燕山大学.2009.
    [122]蔺永诚,陈明松.一种自动化锻造的操作机与压机联动轨迹规划方法[P].中国专利.CN102091752A,2010.
    [123]W. Wang, K. Zhao, Z. Lin, H. Wang. Evaluating interactions between the heavy forging process and the assisting manipulator combining FEM simulation and kinematics analysis[J]. The International Journal of Advanced Manufacturing Technology.2010.48. (5).481-491.
    [124]王江波,王建,侯立萍,杜绍辉.莱钢40t锻造操作机钳臂断裂分析与改进[J].莱钢科技.2007.(3).23-26.
    [125]赵凯.锻造操作机缓冲过程仿真与顺应性评价[D].上海交通大学.2009.
    [126]杨文玉,孟富明.锻造操作机顺应性能评价与优化方法[J].机械工程学报.2010.46.(23).
    [127]赵凯,王皓,陈关龙,林忠钦,何永波.自由锻造操作机顺应过程分析[J].机械工程学报.2010.46.(4).
    [128]施虎.盾构掘进系统电液控制技术及其模拟试验研究[D].浙江大学.2012.
    [129]陈柏金,黄树槐.锻造液压机液压系统传动方式研究[J].锻压技术.2003.28.(002).44-47.
    [130]王庆丰,魏建华,吴根茂,张彦廷.工程机械液压控制技术的研究进展与展望[J].机械工程学报.2003.39.(012).51-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700