用户名: 密码: 验证码:
深基坑支护细部结构优化及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深基坑工程是一个十分庞杂的系统工程,在其设计过程中既要保证支护结构安全可靠又要造价经济,为了协调两者的关系,深基坑支护工程的优化设计就应运而生。由于深基坑支护工程的优化存在诸多难点,例如,1.设计变量中的连续变量和离散变量共存,变量数目众多,变量组合庞大;2.优化目标和设计变量的关系复杂,各个设计变量对优化目标的敏感性不一致,建立合理的显性表达式比较困难,所以传统的优化算法面对复杂的深基坑优化的问题往往无能为力,因此,寻找一种合理的、可行的优化算法成为关键。为了实现深基坑的优化设计,首先要解决以下四个方面的问题:一是建立一个以造价为目标的深基坑支护细部结构优化设计模型;二是分析不同支护型式的土压力计算方法;三是建立深基坑支护设计力学模型;四是寻求能求出的优化设计模型最优解的优化算法。为此,本文以国家“十一五”科技支撑计划课题《基坑支护优化设计集成系统研究及深大基坑工程示范》为依托,选择了上述四个问题作为论文的研究课题。
     ①对深基坑工程细部结构优化设计问题的进行了数学描述,给出了设计变量的选取、约束条件的确定、目标函数的建立三方面的内容。分别对不同的支护结构的设计变量进行了敏感性分析,筛选出对优化结果影响较大的设计变量,归纳总结了深基坑支护细部结构的主要约束条件,构造出以综合造价为优化目标的最终优化目标函数,进而建立了深基坑支护细部结构优化设计数学模型;
     ②为了求解优化设计模型中的约束条件,研究了深基坑不同支护型式的土压力和支护结构计算分析方法。首先从土压力的理论发展出发,研究了考虑墙背与土之间相互摩擦引起的剪切作用及放坡角度的土钉墙侧向土压力;然后分析了排桩和地下连续墙这两种支护结构在土拱效应下的土压力原理,分别对圆弧和悬链线两种拱形的土拱效应进行了分析,并两种拱形的计算结果进行了比较。根据两种土拱形状计算其平均竖直应力,由此得到了对应于不同内摩擦角和外摩擦角的侧土压力系数;将其用于水平微分单元法求解支护结构主动土压力,得到了其主动土压力强度、土压力合力和合力作用点的解析公式;
     ③针对三种不同的深基坑支护结构,分别提出了各自稳定性约束的计算方法。首先,运用简单条分法对层状非均质土中土钉支护结构进行了稳定性分析,得出了最危险滑动面的搜索模型和最小安全系数的计算公式。然后,采用半无限大弹性空间内部水平矩形荷载作用下的Mindlin解来模拟弹簧刚度K,运用到排桩支护结构的弹性地基梁模型的弹簧刚度求解中,得到其内力和变形的理论计算式;最后,对半无限大弹性空间内部水平线性荷载作用下的Melan公式进行推导,得到条形荷载作用下的位移解答,并将解答运用在矩阵位移法中得到了地下连续墙的受力情况;同时,为了考虑逐步开挖和加撑的支护结构的变形和内力,采用增量法对施加在支护结构上的荷载进行修正,得出的支护结构的位移和内力更加符合实际情况;
     ④采用动态自适应技术改进交叉算子p_c和变异算子p_m,提出了新的优化算法DAGA。这种算法克服了传统的遗传算法在迭代过程中出现的适应度值标定方式复杂、过早的收敛到局部最优解和在最优值附近收敛速度慢等缺点,从而大大提高了优化算法的收敛速度和计算精度;在此基础上,建立了土钉墙、排桩和地下连续墙的优化系统,开发了“深基坑优化设计软件”。该软件在开发过程中,运用了VC进行了数据的控制与界面的开发,而对于改进遗传算法的实现则采用了Matlab,再通过COM组件的方法将二者相结合。在软件实现过程中成功地解决了程序的结构设计和COM组件部分这两类的技术难点,并完成了这两部分的封装,最终实现了软件的完整功能。
     ⑤应用深基坑优化设计软件对北京王府井海港城项目深基坑支护工程进行优化分析。在优化设计中,保持深基坑支护结构原设计中预应力锚杆参数不变,对设计变量支撑位置、桩径、桩间距、嵌固深度和混凝土强度等级进行了优化。通过对原设计和优化结果的比较,验证了该软件完全适用于深基坑支护细部结构的优化设计领域。
Deep excavation engineering is a huge systematic project. It is designed both toensure the safety of retaining structure and to reduce engineering cost. In order toharmonize the relationship between the cost and reliability of engineering, theoptimization design of retaining structure for deep excavation was born. Many problemsexist in the optimization design, for example,1. The optimization design of retainingstructure usually comes down to a great lot kind of design variables and combinationvariables, including continuously variable and discrete variables.2. The relationbetween optimization target and design variables is relatively complex. Since thesensitivity of design variables towards optimization target are abhorrent, it is difficult toestablish the dominant relationships between them. As a result, to search for aoptimization algorithm is key. For the sake of the optimization design of retainingstructure, its contents involve primarily the following aspects:①It is necessary toestablish the optimization design model for retaining structure of deep excavation.②The calculation method of earth pressure for different retaining type are described.③The mechanical model for retaining structure of deep excavation was set up.④A newoptimization method based on genetic algorithm for solving this model is presented.Thus, With the support of the country “11th Five-Year Plan” to support science andtechnology project-Study on the Optimization Design System and EngineeringDemonstration of Retaining Structure for Deep Excavation, the above-mentionedproblems were chosen as research project, which has important academic significanceand application value.
     ①The optimization design of retaining structure was mathematically described.The content was proposed which including selection of design variables, determinationof rectrained conditions and construction of objective functions. According to analysethe relationship among design variables, the range of preliminary values of designvariables are given for constraint conditions. Finally, the optimization model wasestablished.
     ②In order to solve the optimization design model with constraint condition, thecalculation methods of earth pressure and security for different retaining type aredescribed. First, based on the limit equilibrium theory and the hypothesis of planarsliding surface, a formula was proposed to compute the lateral earth pressure of soilnailing wall. Then, the earth pressure principle of row piles and diaphragm wall considering the effect of the soil arching is researched, and the two shapes of minorprincipal stress arch are theoretically analyzed. According to the shapes of minorprincipal stress arch, the coefficients of earth pressure corresponding to different angleof internal friction and that of wall friction are gained. Using the method of horizontaldifferential elemeng the theoretical formula for active earth pressure on retainingstructure, the resultant earth pressure and its acting point are obtained and comparedwith the Coulomb’S formula, the previous methods and some experimental observations.This overcomes the shortcoming involved with existed active earth pressure theory thatconsider soil arching effect but takes no consideration of the influence of the internalfriction angle on the inclination of sliding plane of soils behind retaining structure.
     ③Different calculating methods are put forward based on the stability analysis ofthree different kinds of support structure in deep foundation pit. Firstly, the formula ofminimum safety factor and search model of the most dangerous sliding surface areobtained by means of Simple-Swedish Slices Method for the stability analysis ofsoil-nail support structure in layered uneven soil; then, stiffness of the elastic foundationbeam model in row-pile support structure is figured out by the Mindlin formula used forthe horizontal and rectangular load in the elastic half-space, theoretical formula ofinternal forces and deformation can be obtained. Lastly, forcing cases of undergroundcontinuous wall can also be indicated by the displacement solution of strip load in thematrix displacement method based on the deduced Melan formula used for thehorizontal and linear load in the elastic half-space, meanwhile, taking the excavationand lateral brace into consideration step by step, the loads on the support structure arecorrected by the increment method, which can obtain the more actual displacement anddeformation.
     ④Based on the crossover operator and mutation operator improved by thedynamic adaptive technology, the new optimized algorithm DAGA is put forward,which can improve the convergence rate&calculating accuracy and can overcome suchdefects as complicated ways in determining the value of adaptability during the processof traditional genetic iteration, early convergence to the local optimized solution and theslow convergence rate nearby the optimized value. On the basis of the new optimizedalgorithm DAGA, the optimized system of soil-nail wall, row-pile and undergroundcontinuous wall is established and the software of optimized design in deep foundationpit is also developed. During the developing process of the software, VC is used tocontrol the data and develop the interface, and Matlab is also used to fulfill theimproved genetic algorithm, combined with the method of COM component. Fulfilled process of such software can successfully solve the technical difficulties inencapsulating the structural design and COM component, which leads to the fulfillmentof the entire functions.
     ⑤The optimization design software for deep excavation has been used in theoptimization design of the project,"the retaining structure for deep excavation of theharbor city of Beijing". In the process of the optimization design, keeping the parame ofprestressed anchor unchanged, the design variables of bracing location, pile diameter,pile spacing, embedded depth and concrete strength grade are optimized.It proves thatthe software has good performance in the optimization design.
引文
[1]钱七虎.迎接我国城市地下空间开发高潮[J].岩土工程学报,1998,20(1):112-113.
    [2]顾宝,周红.基坑工程若干基本问题的讨论—基坑开挖与支护研讨会综述[J].工程勘察,1997,3:12-17.
    [3]徐至钧.深基坑支护事故分析处理对策[J].特种结构,1998,15(4):42-45.
    [4]杨旭东,杨国忠,岳建伟.深基坑开挖支护现状分析及其对策[J].河南大学学报,1999,29(3):24-27.
    [5]冯玉宝,李罗刚,秦四清.深基坑支护工程问题与进展[J].中国地质灾害与防治学报,1998,9(4):38-41
    [6]唐业清,李启民,崔江余.基坑工程事故分析与处理[M].北京:中国建筑工业出版社,1999.
    [7]龚晓南主编.深基坑工程设计施工手册[M].北京:中国建筑工业出版社,1998.
    [8]牛富俊.深基坑变形失稳机理及周边建筑响应研究[D].西安工程学院博士学位论文,1998.
    [9]陈文华,许爱国,马丽丽,王璋群.最优化法在深基坑降水工程中的应用[J].岩土工程学报,1993,15(3):37-45.
    [10]袁勇,刘亚芹.单排灌注桩基坑围护结构设计优化[J].建筑结构,1996,4:13-19.
    [11]曹双寅,方东,蒋永生.整体式支护结构设计的优化分析[J].工业建筑,1997,27(10):13-19.
    [12]徐扬青.深基坑支护结构的优化设计计算[J].岩土力学,1997,18(2):57-61.
    [13]张冬梅,王箭明.正交试验法在水泥土搅拌桩挡墙优化设计中的应用[J].建筑结构,2000,30(11):34-36.
    [14]莫海鸿,周汉香,赖爱平.深基坑支护结构的优化设计计算[J].岩土工程学报,2001,23(2):144-148.
    [15]张尚根,陈灿寿,夏炎.深基坑支护方案的模糊优选模型及其应用[J].岩土工程学报,2004,23(12):2046-2048.
    [16]朱彦鹏,董建华.模糊综合决策在深基坑支护方案优选中的应用[J].路基工程,2007,1:5-7.
    [17]冯庆高,周传波,傅志峰,章广成.深基坑支护方案的模糊优选模型及其应用[J].岩土力学,2010,31(7):2225-2231.
    [18]肖武权,冷伍明.深基坑支护结构设计的优化方法[J].岩土力学,2007,28(6):1201-1204.
    [19]仇一颗.模糊层次评价在逆作法施工方案优选中的应用[J].湖南农业大学学报(自然科学版),2005,31(1):91-94.
    [20]廖瑛,夏海力.层次分析、模糊综合评判法在基坑支护方案优选中的应用[J].工业建筑,2004,34(9):26-29.
    [21]王广月.深基坑支护决策的信息嫡模糊层次分析模型[J].岩土力学,2004,25(5):737-739.
    [22]何满潮,乾增珍,汪仁和. BP神经网络在深基坑工程支护方案优选的应用[J].矿业研究与开发,2004,24(2):22-24.
    [23]阮永芬,叶燎原.用灰色系统理论与方法确定深基坑支护方案[J].岩石力学与工程学报,2003,22(7):1203-1206.
    [24]冯玉国,王渭明.深基坑支护方案灰色物元分析优化模型及其应用[J].岩土力学,2009,30(8):2467-2470.
    [25]肖专文,龚晓南,谭昌明.基坑土钉支护优化设计的遗传算法[J].土木工程学报,1999,32(3):73-80.
    [26]陈昌富.深基坑土钉墙内部稳定性计算新方法——最危险滑裂面复合遗传进化搜索策略[J].湖南大学学报(自然科学版),2000,27(3):81-85.
    [27]陈雄辉,刘新喜.深基坑土钉墙支护的优化设计及工程应用[J].岩土力学,2002,23:186-188.
    [28]贺可强,王胜利,阳吉宝.运用遗传算法求解土钉支护结构的整体稳定性系数[J].岩土力学,2003,24(3):355-358.
    [29]祝方才,彭振斌,隆威,刘光辉.土钉支护危险滑动面搜索的混沌优化方法[J].中南工业大学学报(自然科学版),2003,34(6):699-703.
    [30]邹广电,蒋婉莹.土钉支护稳定分析的模拟退火——随机投点耦合算法[J].岩土力学,2004,25(1):37-44.
    [31]尤晓炜,刘大鹏.基于混合粒子群算法的土钉支护结构设计参数优化[J].公路,2005,6:76-79.
    [32]杜修力,王智慧,李立云,姜丽萍,侯世伟.土钉结构稳定验算的经验遗传——单纯形算法[J].岩土工程学报,2007,29(4):598-602.
    [33]刘勇健,夏继君,邓浩.自适应小生境遗传算法在土钉支护结构整体稳定性分析中的应用[J].工业建筑,2007,37:740-744.
    [34]朱剑锋,陈昌富,徐日庆.土钉墙内部稳定性分析自适应禁忌变异遗传算法[J].岩土力学,2010,31(5):1663-1669.
    [35]朱彦鹏,于劲,王秀丽.柱列悬臂式支护桩的优化设计[J].甘肃工业大学学报,2000,26(1):90-95.
    [36]莫海鸿,周汉香,赖爱平.基坑支护桩圈梁优化设计[J].建筑结构学报,2001,22(3):92-96.
    [37]吴恒,周东,李陶深,欧孝夺,王业田.深基坑桩锚支护协同演化优化设计[J].岩土工程学报,2002,24(4):465-470.
    [38]吴江滨,王梦恕.深基坑开挖中桩墙体系支护的结构优化设计[J].岩土力学,2004,25(3):469-472.
    [39]周东,吴恒,王业田.基坑支护优化设计的数学模型研究[J].桂林工学院学报,2004,24(3):295-300.
    [40]陈昌富,吴子儒,曹佳,赵明华.水泥土墙支护结构遗传进化优化设计方法[J].岩土工程学报,2005,27(2):224-229.
    [41]王成华,王卓雄,陈海明.基坑挡土结构的粒子群优化设计方法[J].天津大学学报,2005,38(6):547-551.
    [42]王俊生,夏元友,舒怀珠.自适应混合遗传算法在基坑支护结构优化中的实现[J].岩土力学,2006,27(8):1433-1436.
    [43]赵洪波,茹忠亮.基坑支护设计优化研究[J].岩土工程学报,2006,28:1525-1528.
    [44]周爱其,龚晓南,刘恒新,张宏建.内撑式排桩支护结构的设计优化研究[J].岩土力学,2010,31(1):245-254.
    [45]徐扬青.深基坑工程设计的优化原理与途径[J].岩石力学与工程学报,2001,20(2):248-251.
    [46]赵凤治.约束最优化计算方法[M].北京:科学出版社,1991.
    [47]魏汝龙.总应力法计算土压力的几个问题[J].岩土工程学报,1995,17(6):120-125.
    [48]魏汝龙.再论总应力法及水和土压力[J].岩土工程学报,1999,21(4):509-510.
    [49]周东.基坑支护工程遗传优化设计研究[D].广西大学博士学位论文,2002.
    [50]冯仲仁,王雄江,姚爱民,刘兆丰.基于遗传算法的深层搅拌桩优化设计[J].岩土力学,2003,24(3):420-422.
    [51]封盛,辛业洪.深基坑双排桩支护结构优化设计[J].基建优化,2001,22(6):32-34.
    [52]韩杰.太原桩锚支护基坑工程设计方法研究[D].太原理工大学硕士学位论文,2004.
    [53]孙庆,殷琨,郑毅.桩锚支护设计中单支点位置优化的探讨[J].世界地质,2006,25(3):312-315.
    [54]朱合华,杨金松,陈宝.地下连续墙和支撑刚度对围护结构变形、内力影响的敏感性分析[J].工业建筑,2000,30(3):8-11.
    [55]黄炜.地下连续墙深基坑支护结构优化设计方法[D].中山大学硕士学位论文,2009.
    [56]刘剑平,朱浮声,王宏伟.深基坑土钉支护的参数优化设计[J].东北大学学报,2006,27(11):1271-1274.
    [57]高盟,张远芳.基于有限元分析的土钉支护优化设计的复合形算法[J].岩土工程学报,2006,28(8):1008-1012.
    [58]刘大鹏,周建中,杨俊杰.土钉支护结构优化设计中的混合粒子群优化算法[J].中国公路学报,2005,18(4):32-36.
    [59]万林海,于建民,冯翠红.软土复合土钉支护结构参数设计[J].岩石力学与工程学报,2004,23(19):3342-3347.
    [60]侯公羽,弭尚银,杨春峰.进化策略及其改进算法在深基坑支护优化设计中的应用研究[J].岩土力学,2008,29(5):1222-1226.
    [61]彭明祥.土钉支护结构优化设计方法[J].岩土工程学报,2006,28(10):1218-1223.
    [62]中华人民共和国建设部主编.深基坑支护技术规程(JGJ120-1999)[S].中国建筑工业出版社,1999.
    [63]王俊生.改进遗传算法的基坑支护结构优化设计研究[D].武汉理工大学硕士学位论文,2004.
    [64]秦四清.深基坑工程优化设计[M].北京:地震出版社,1998.
    [65]钟登华,梅传书,韩圣章.基于复合形算子的基础支护桩优化设计智能算法研究[J].工程力学,2003,20(1):80-85.
    [66]许小健,钱德玲.基于遗传算法的排桩支护结构优化设计[J].合肥工业大学学报(自然科学版),2007,30(11):1516-1519.
    [67]中华人民共和国建设部主编.建筑地基基础设计规范[M].北京:中国建筑工业出版社,2002.
    [68]王立峰.土钉墙面层土压力的计算分析[J].岩土力学,2010,31(5):1615-1620.
    [69]刘晓红,饶秋华.土钉支护侧土压力合理分布模式探讨[J].中南公路工程,2006,31(2):29-32.
    [70]午廷凯,栾茂田.均布荷载作用下挡土墙后黏性填土的土压力计算[J].岩土力学,2002,23(1):17-22.
    [71]李巨文,王狲,梁水朵,等.挡土墙后黏性填土的主动土压力计算[J].岩土工程学报,2006,28(5):650-652.
    [72]马平,秦四清,孙强.考虑黏聚力及放坡角度的土钉墙侧土压力计算[J].岩土工程学报,2007,29(12):1888-1891.
    [73]陈希哲.土力学地基基础[M].北京:清华大学出版社.1998.
    [74] Chevalier B, Combe G, Villard P. Load transfers and arching effects in granular soillayer[J].18eme Congres Franrais de Mecanique, Grenoble, About,2007,27-31.
    [75] Bosscher P J, Gray D H. Soil arching in sandy slopes [J]. Journal of Geotechnical Engineering,1986,112(6):626-645
    [76] Liang R, Zeng S. Numerical study of soil arching mechanism in drilled hafts for slopestabilization[J]. Soils and Foundations,2002,42(2):83-92.
    [77] Chen C Y, Martin G R. Soil-structure interaction for landslide stabilizing piles [J]. Computerand Geotechnics,2002,29:363-386.
    [78] Kingsley Harop-Williams. Arch in soil arching [J]. Journal of Geotechnical Engineering,1989,115(3):415-419.
    [79] Richard L Handy. The arch in soil archin [J]. Journal of Geotechnical Engineering,1985,111(3):302-318.
    [80] Randolph M F, Houlsby G T. The limiting pressure on a circular pile loaded laterally incohe-sive soil [J]. Geotechnique,1984,34(4):613-623.
    [81] Kooijman, A P, Vermeer P A. Elastoplastic analysis of laterally loaded piles [J]. Proc6th IntConfon Numer Meth Geomech Innsbruck,1988,2:1033-1042.
    [82]吕庆,孙红月,尚岳全.抗滑桩桩后土拱形状及影响因素[J].哈尔滨工业大学学报,2010,42(4):629-633.
    [83]胡敏云.深基坑桩排式支护桩侧土压力及设计方法研究[D].西南交通大学博士学位论文,1998.
    [84]应宏伟,蒋波,谢康和.平行竖墙间的土拱效应与侧土压力计算[J].水利学报,2006,37(11):1303-1308.
    [85]蒋波.挡土结构土拱效应及土压力理论研究[D].浙江大学博士学位论文,2005.
    [86] Paik K H, Salgado R. Estimation of active earth pressure against rigid retaining wallsconsidering arching effect[J]. Geotechnique,2003,53(7):643-653.
    [87]应宏伟,蒋波,谢康和.考虑土拱效应的挡土墙主动土压力分布[J].岩土工程学报,2007,29(5):717-722.
    [88]李永刚,白鸿莉.垂直墙背挡土墙土压力分布研究[J].水利学报,2003,2:102-106.
    [89]王元战,李新国,陈楠楠.挡土墙主动土压力分布与侧压力系数[J].岩土力学,2005,26(7):1019-1022.
    [90] Wang Y Z. Distribution of earth pressure on a retaining wall[J]. Geotechnique,2000,50(1):83-88.
    [91]黄强编著.建筑基坑支护技术规程应用手册[M].北京:中国建筑工业出版社,1999.
    [92] Bishop A.W. The use of slip circle in the stability analysis of slopes [J]. Geotechnique,1955,5(1):7-17.
    [93]朱彦鹏,王秀丽,李忠,等.土钉墙的一种可靠性自动优化设计法[J].岩石力学与工程学报,2006,25(1):3123-3130.
    [94] Iwamura K, Liu B. A genetic algorithm for chance constrained programming [J]. Journal ofInformation&Optimization Science,1996,17(2):40-47.
    [95]秦四清,王建党,王清等.土钉支护机理与优化设计[M].北京:地质出版社,1999.
    [96]侯世伟,杜修力,李立云,等.土坡稳定分析中的最危险滑裂面问题[J].地下空间与工程学报,2010,6(3):650-654.
    [97]朱剑锋,陈昌富,徐日庆.基坑土钉支护可靠性分析优化算法[J].岩土力学,2010,31(7):2336-2341.
    [98]刘国彬,王卫东.基坑工程手册[M].北京:中国建筑工业出版社,2009.
    [99]肖宏彬,王永和,王星华.多支撑挡土结构开挖过程的有限元分析方法[J].岩土工程学报,2004,26(1):47-51.
    [100] J·E·鲍尔斯.基础工程结构分析及程序[M].胡人礼等译.北京:中国铁道出版社,1982.
    [101]赵其华,彭社琴.岩土支挡与锚固工程[M].成都:四川大学出版社,2008.
    [102]约瑟夫·E·波勒斯.基础工程分析与设计[M].童小东等译.北京:中国建筑工业出版社,2004.
    [103]肖宏彬,王永和,王星华.多支撑挡土结构开挖过程的有限元分析方法[J].岩土工程学报,2004,26(1):47-51.
    [104]杨光华,陆培炎.深基坑开挖中多撑或多锚式地下连续墙的增量计算法[J].建筑结构,1994,8:28-31.
    [105]杨光华.深基坑支护结构的实用计算方法及其应用[M].北京:地质出版社,2004.
    [106]田毅,何树,杨国栋.弹性抗力“m”法对单排灌注支护桩的设计应用[J].昆明理工大学学报,2000,25(1):68-70
    [107]朱彦鹏,张安疆,王秀丽. m法求解桩身内力与变形的幂级数解[J].甘肃工业大学学报,1997,23(3):77-82.
    [108]胡琦,凌道盛,陈云敏.基于Melan解的水平基床系数分析方法及工程运用[J].岩土力学,2009,30(1):33-39.
    [109] Mindlin. R.D. Force at a point in the interior of a semi-infinite Solid [J]. Physics,1936,7(5):195-202.
    [110] Poulos. H. G, Davis. E. H. Pile Foundation Analysis and Design [M]. New York: John Wileyand Sons, Inc.,1980.
    [111]龚耀清,张正维.半无限大弹性地基等效刚度公式及其应用[J].工程力学,2007,24(5):10-16.
    [112] HU Qi, LING Dao-sheng, CHEN Yun-min. Analytical method and engineering application ofhorizontal coefficients of subgrade reaction based on Melan's solution[J]. Rock and SoilMechanics,2009,30(1):33-39.
    [113]吴明.深基坑工程若干土力学问题研究[D].浙江大学博士学位论文,2009
    [114] Mitsuo Gen, Cheng R著,汪定伟等译.遗传算法与工程设计[M].北京:科学出版社,2000.
    [115]玄光南,程润伟著,汪定伟,唐加福,黄敏译.遗传算法与工程设计[M].北京:科学出版社,2000.
    [116] De Jong K A. An analysis of the behavior of a class of gentic adaptive systems [D]. Ph.DDissertation.University of Michigan, No.76-9381,1975.
    [117]陈国良等编著.遗传算法及其应用[M].人民邮电出版社,1996.
    [118]王小平,曹立明,编著.遗传算法一理论、应用与软件实现[M].西安交通大学出版社,2002.
    [119]余雄庆,丁运亮.遗传算法在含连续/离散变量结构优化中的应用[J].南京航空航天大学学报,1999,31(5):564-568.
    [120]刘星.遗传算法在桩锚支护结构的可靠度分析中的应用[D].兰州理工大学硕士学位论文,2005.
    [121]周瑞忠,潘是伟.基于遗传算法的深基坑支护结构优化设计[J].土木工程学报,2004,37(6):87-91.
    [122]刘敏.改进遗传算法的最优潮流[D].中南大学硕士学位论文,2010.
    [123]翁杰,谭跃虎,金丰年.基于MATLAB的基坑支护优化设计[J].解放军理工大学学报(自然科学版),2004,5(3):63-66.
    [124]周海清,陈正汉,朱元青.遗传算法在深基坑支护结构选型中的应用[J].岩土力学,2004,25(12):2023-2027.
    [125] Grierson D.E, Pak W.H. Optimal sizing geometrieal and topological design using a geneticalgorithm [J]. Struct.Optimization,1993,6:151-159.
    [126]何大阔,王福利,贾明兴.改进的遗传算法在优化设计的应用[J].东北大学学报(自然科学版),2005,26(12):1123-1126.
    [127]李守巨,刘迎曦.改进遗传算法在非线性热传导参数识别中的应用[J].工程力学,2005,22(3):73-75.
    [128]梧松,吴玉山.土钉支护结构优化的改进遗传进化-复合形法[J].岩土力学,2002,23(2):228-230.
    [129]杨云,冯亚.自适应遗传算法在场强传播损耗预测中的应用[J].微电子学与计算机,2010,27(11):121-127.
    [130]田丰,边婷婷.基于自适应遗传算法的交通信号配时优化[J].计算机仿真,2010,27(6):305-308.
    [131]雷英杰,张善文,李续武,周创明. Matlab遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [132] Simpaon A R, Priest S D. The application of genetic algorithms to optimization problems ingeotechnics [J]. Computers and Geotechnics,1993,15(1):1-19.
    [133]朱延广,许永平,周旋,等.引入学习机制的自适应遗传算法设计与实现[J].计算机工程与应用,2010,46(36):34-39.
    [134]朱剑锋,陈昌富,徐日庆.土钉墙内部稳定性分析自适应禁忌变异遗传算法[J].岩土力学,2010,31(5):1663-1669.
    [135]王俊生,夏元友,舒怀珠.自适应混合遗传算法在基坑支护结构优化中的实现[J].岩土力学,2006,27(8):1433-1436.
    [136]林义锋.基于遗传算法的排桩式锚杆挡墙优化设计[D].重庆大学硕士学位论文,2010.
    [137]周海清,陈正汉.面向对象的深度搜索遗传算法及其工程应用(II)算法验证与工程应用[J].岩石力学与工程学报,2005,24(12):2194-2202.
    [138] Starkweather T, Whitley D and Mathias K. Optimization using Distributed Genetic Algorithm[J]. In: Parallel Problem Solving from Nature, Springer-Verlag,1991:176-184.
    [139]曾日波. MATLAB遗传算法工具箱的应用[J].软件技术,2005,24(6):115-116.
    [140]柴乔林,陈承文,朱红.如何使计算机更友好——谈人机界面设计[J].计算机工程与设计,2001,22(6):46-48.
    [141]张超群,李陶深,周东,吴恒.遗传优化深基坑支护系统人机界面设计与实现[J].广西大学学报(自然科学版),2003,28(2):161-164.
    [142]翟军红,王红宣.基于VC与M ATLAB混合编程的研究[J].微计算机信息,2007,23(11):266-268.
    [143]元波.实现VC++6.0与Matlab的混合编程[J].电脑编程技巧与维护2000.12:62-64.
    [144]史济民.软件工程原理、方法与应用[M].北京:高等教育出版社,1994.
    [145]郭庆民,黄业清.Visual C++高级界面特效制作百例[M].北京:中国电力出版社,2001.
    [146]何晓涛,于春田. VC调用Matlab的方法[J].河北科技大学学报,2003,24(1):35-39.
    [147]王安红,孙志毅.一种VC++与Matlab混合编程的实现方法[J].计算机应用与软件,2003,20(6):12-13,77.
    [148]高崇明. VC++6.0与Matlab混合编程技术的原理与实现[J].无线电工程,2000,30(2):53-56.
    [149]肖永韧. VC与Matlab混合编程之DLL实现方法[J].计算机工程与应用,2001,13:174-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700