用户名: 密码: 验证码:
水性锌铝粉防腐涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪以来,金属防护工业受到出于环保和节能等方面的日益严峻的压力,涂料工业向环保型发展已成定局。此外,对涂料性能和使用寿命的要求导致基于硅化学,碳、硅杂化化学等耐久性新一代聚合物日渐取代基于碳化学的聚合物,硅化学在几乎所有的涂料方面的渗透是显而易见的。
     锌铬涂层(即达克罗DACROMET)属于水性金属粉涂层的范畴,是当今国际上金属表面处理富有代表性的技术。是一种同时具有物理屏蔽、阴极保护等优良防护功能的涂层,然而由于六价铬的毒性,目前世界各国尤其是发达国家已开始采取越来越严格的措施限制铬的使用。无铬锌铝涂层正是为满足世界各国的VOC法规和汽车行业规定的环保要求而开发出的表面处理新概念。目前美国、德国、日本、韩国已经有成型的无铬锌铝涂层面世。
     本论文介绍了国内外传统锌铬涂层(即达克罗)的技术特点,总结概述了无铬锌铝涂层的发展及现状。在此基础上,尝试以无毒粘接剂及锌铝粉颜填料为主体,研制开发出环保型水性锌铝粉涂层,并且研究涂层的防护机理,尝试对涂层的性能进行改进。
     论文从粘结剂的筛选入手,通过对涂层物理性能分析(附着力、涂层硬度等指标);以及涂层浸泡失效实验,选定硅烷作为锌铝粉涂层的粘结剂,制备了性能较好的水性锌铝粉涂层。硅烷用于金属粉涂层不仅可以起到粘结剂的作用,而且硅烷降低了锌粉的反应活性,抑制锌粉在涂层中的消耗。
     运用扫描电镜(SEM),能谱分析(EDS)对制备的涂层表观形貌分析,得出涂层的组成结构为由层叠状结构的片状锌铝粉和硅烷粘结剂所组成,金属粉表面均匀的覆盖了一层硅烷膜,涂层表面存在微孔和缝隙。通过涂层/碳钢体系浸泡在3.5%NaCl中的EIS,以及极化曲线分析,分析了涂层的防腐机制,评价了涂层的防护性能。结果表明在整个浸泡过程中硅烷锌铝涂层主要出现了三个防护期,初期为表层锌铝粉的活化阶段,中期为锌铝粉的电化学保护阶段,后期为阻挡层保护阶段。中间阶段的持续时间最长,证明涂层的主要防护机制是金属粉的电化学保护。极化曲线出现了明显的类钝化现象,根据单独锌粉涂层,以及锌铝粉涂层的对比发现,这种类钝化现象的产生与铝粉没有直接的关系;结合锌铝粉涂层在浸泡失效过程中的极化曲线分析,得出这种类钝化现象的产生主要是因为锌粉的腐蚀产物造成的。
     通过在涂液中添加无毒缓蚀剂来提高涂层的防护性能,并且通过电化学阻抗谱、极化曲线分析,得出缓蚀剂的作用机制,通过三种不同缓蚀剂的对比,筛选最佳的缓蚀剂。结果表明在涂液中添加缓蚀剂,明显增加了涂层的腐蚀电阻,降低了腐蚀电流,从而降低了锌铝粉的消耗速率,使得涂层的阴极防护期延长。在三种环保型缓蚀剂中,涂液中添加磷钼酸钠(Na_3PO_4·12MoO_4)使得涂层腐蚀电阻最大,腐蚀电流最小,涂层的防护性能提高的最大。
     因为本论文是在相关文献很少的基础上自行研制水性金属粉涂层,并从事性能分析、性能改进等方面的研究。整个研究需要深入涉及的内容较多,因此要使该技术应用于实际工业生产,还有许多内容需要进一步地深入和完善。
Since 21~(th) century, anticorrosive industry is confront with the pressure from both environment-protection and energy-conservation. Silane-base treatments can replace the traditional treatments with remarkable advantages in relation to environmental, safety and costs issues.
     The Dacromet coating with high corrosion resistance technology was a popular metal anticorrosion technology for many metals. Its applications in some fields such as automobile industry were getting increasingly common because of the advantages of less pollution, excellent anticorrosion property and non-hydrogen embrittlement. Since the conventional Dacromet treatment agent contains hexavalent chromium ions, which are hazardous, adverse effects on the human body, and environmental contamination, due to the elution of chromium from protective films have been a serious concern. Furthermore, legal restrictions have been imposed in various countries on the use of hexavalent chromium even in rust inhibitors for metallic surfaces. In response to society’s need for new, environmentally compatible products, many research has endeavored to develop new coating systems that are environmentally friendly. In the countries such as Germany、America、Japan and Korea ,many kinds of non-chromate zinc/Aluminium coating have developed.
     The objective of this thesis is to develop an environmentally benign coating,which does not utilize harmful chromium compounds and can be used for corrosion inhibition of a metal surface, comprising a slurry mixture in which coated zinc and aluminum fine powder treated with a hydrophilic coupling agent is suspended in an silane bonding solution. The optimal conditions were screened out..Since the coating hasn’t any chromium ,and free of any other toxic compounds, it has friendly environmental performance. And because it composed of a large number of metal flakes, the coating is conductive. As the pre–processing of the coating doesn’t have acid washing, the coating is hydrogen embrittlement free.
     The appearance of coating was observed and studied through microscope, SEM, and EDS. The result showed that: the coating combined with metal substrates tightly, and the thickness of coating was uniform. Corrosion potential and electrochemical impedance spectroscopy ( EIS) measurement s were used to study the corrosion electrochemical behavior of the modified coatings immersed in 3.5% NaCl solution. The results indicated that the process of action of the coating during immersion presented three stages. At the initial stage, the flaked zinc powder on the surface layer of the coating started to activate due to the attack of the electrolyte. In the middle stage, the coating exhibited electrochemical protection for the substrate. For the third stage, the barrier protection of the coating predominated. The middle stage lasted a longer period than the third stage, suggesting a strong cathodic protection and a weak barrier mechanism of corrosion prevention of the silane zinc–aluminum coating.
     Further more, in this thesis, we also study the corrosion properties of the coating with three different inhibiting blended in definite proportion. The results indicated that the addition of inhibitors can improve the protection performance of the coating, mitigating the consumption of the zinc and aluminium powder in the coating. Among the three inhibitors phosphomolybdate is the best, while the effect of cerium chloride is better than that of sodium molybdate.
     In order to put this process into industrial use, there are still many problems waiting for further research and amelioration.
引文
[1] 魏宝明 金属腐蚀理论与应用[M]. 化学工业出版社2002: 3
    [2] 柯伟.中国腐蚀调查报告[M].化学工业出版社,2003: 248
    [3] 冯辉霞,崔锦峰, 俞树荣,王 毅;重防腐涂料及其应用[J],全面腐蚀控制,2005,19(5):1-3-13
    [4] Wynn P.Trans Metal Fin Ins[J], 2003, 81: 16
    [5] Ljiljana Ra?kovi?, Dragan Djordjevi?, Suzana Caki?;Untoxic Anti-corrosion Pigments for Ground Coat in Organic Coatings[J]; Working and Living Environmental Protection,1997,1(2):1- 8
    [6] 刘志霞.锌 - 铝长效防腐复合涂层的应用[J],水利水电快报,2000,21(13): 26-28
    [7] 主崇恩,高性能水性金属防腐蚀涂料的研制[M] 华南理工大学硕士学位论文, 2003.5.1
    [8] 郭清泉.重防腐涂料的发展展望[J].化工进展,2003, 22(9):947
    [9] 郭小峰.防腐蚀涂料的前景[J].中国涂料,1991, 02: 3-5
    [10] 管从胜,王威强.氟树脂涂料及应用化学工业出版社[M],2004:11
    [11] 谢德明,胡吉明,童少平,王建明,张鉴清.富锌漆研究进展[J].中国腐蚀与防护学报, 2004, 24 (5):314-320
    [12] 邢峻,无溶剂 Al-Mg-Zn 牺牲型强屏蔽重防腐涂料的研究[D];北京化工大学硕士学位论文 2004:4
    [13] 江洪申,宁超峰,陈安仁.水性防腐蚀涂料的研究与发展概况[J];腐蚀与防护;2006,27(9):433-437
    [14] 林海潮,李谋成.涂层下金属的腐蚀过程[J],腐蚀科学与防护技术,2002,14(3):24-29
    [15] 孙 凡 , 王 塘,几项涂料应用规则中的电偶腐蚀及其防护问题[J],腐蚀与防护,2005,26:268-270
    [16] H. Marchebois, S. Touzain, S. Joiret, J. Bernard, C. Saval,Zinc-rich powder coatings corrosion in sea water:influence of conductive pigments[J];Progress in Organic Coatings, 2002, 45 : 415–421
    [17] 周文涛;水性无机富锌涂料的进展[J];上海涂料,2006,44:23-25
    [18] 李国莱,张慰盛,管从胜.重防腐涂料[M].第一版化学工业出版社,1999: 6
    [19] 韩风俊,周钰明,汪小舟.鳞片状锌粉防腐蚀涂料的研制[J];腐蚀与防护,2006,27:109-112
    [20] 何建波,鲁道荣,李学良,何百林,达克罗涂层的腐蚀动力学行为研究[J],化学研究与应用,2002(14): 81-83
    [21] Fourez M, Gheno F, White P E. Trans Metal Fin Ins[J], 1993,71: 21
    [22] Lonca M. Finishing[J],.1990, 14: 35
    [23] 曲志敏,黄金玲;达克罗处理技术的应用概况[J],中国涂料,2005,20:47-48
    [24] Hartmut Ochs. Effect of temperature cycles on impedance spectra of barrier coatings under immersion conditions[J], Electrochimica Acta 2004, 49 :2973–29
    [25] 陈玲,李宁,烧结式富锌涂层固化影响因素的研究[J].电镀与精饰,2003,25:1-4
    [26] 张志远,钢结构表面防腐新技术——热喷涂锌、铝涂层技术[J],工业建筑,2000,30:78-79
    [27] 宋云芳.铝基水系金属微粉涂层工艺研究[D],硕士学位论文.昆明理工大学,2003:17
    [28] 李光玉,连建设,江中浩,牛丽媛,刘先黎.锌铝涂层的研究开发与应用[J],金属热处理,2003 28:8-12
    [29] 胡会利,李宁,韩家军,程瑾宁.达克罗的研究现状[J].电镀与涂饰,2005,24:31-33
    [30] Ikegami; Makoto ; Homi; Makoto , Zinc powder dispersible in water and zinc powder-containing water base paint[P];United States Patent:6,770,124,2004
    [31] Endo; Yasuhiko; Sakai; Tomio; Shimada; Saburo; Surface coated aluminum fine powder and aqueous chromium-free corrosion inhibiting coating composition including the same[P], United States Patent:6,740,424,2004
    [32] T.Prosek and D.Thierry ,Mobility and Mode of Inhibition of Chromate at Defected Area of Organic Coatings Under Atmospheric Conditions[J]; CORROSION Vol.60,No.12
    [33] 魏计文,金属防腐新工艺———达克罗,武钢技术[J],2002:40:58-60
    [34] 张俊敏, 张宏, 文自伟, 王永琪.达克罗技术的现状与发展方向[J], 表面技术,2004, 33:11-12
    [35] Endo; Yasuhiko; Sakai; Tomio; Takase; Kengo , Chromium-free water reducible rust inhibitive paint for metals[P],United States Patent:6,960,247,2005
    [36] Naoto Yoshimi, Keiji Yoshida, Akira Matsuzaki, Kenichi Sasaki, Teruo Horisawa,Keiichi Kotani Chromium-free Prepainted Steel Sheet GEO-FRONTIER EXCEL COAT” for Electrical Appliances[J],NKK Technical Review 2002,87:1-6
    [37] 沈清,杨长安.差热分析结果的影响因素研究[J],陕西科技大学学报.2005:23(5) :59-61
    [38] 色漆和清漆 漆膜的划格试验,中华人民共和国国家标准.GB:9286-88
    [39] 张金涛, 胡吉明, 张鉴清. 有机涂层的现代研究方法[J]. 材料科学与工程学报, 2003, 21(5):763~767
    [40] 曹楚南,张鉴清;电化学阻抗谱导论[M]:科学出版社. 2002:169
    [41] 张金涛,有机涂层中水传输与涂层金属实效机制的电化学研究[D].浙江大学博士学位论文:29
    [42] Nagae; Yoshio ; Utsumi; Takashi, Aluminum treatment with alkaline solution and tannin[P];United States Patent:4,163,679,1979
    [43] Schieferstein; Ludwig; Gorzinski; Manfred; Kuepper; Stefan; Fischer; Herbert ,Polymerizable, chromium-free, organic coatings for metal[P],United States Patent:6,365,234,2002
    [44] Verberg; Johannes J.H. Chromium-free coating preparation for the treatment of metal surfaces and method making use thereof[P] . United States Patent:5,753,779,1998
    [45] Goodreau; Bruce H.,Passivation composition and process for zinciferous and aluminiferous surfaces[P], United States Patent:5,683,816,1997
    [46] Karmaschek; Uwe; Mady; Raschad .Chromium-free process for the no-rinse treatment of aluminum and its alloys and aqueous bath solutions suitable for this process [P],United States Patent:5,868,872.1999
    [47] Oppen; Dieter; Lampatzer; Karl,Chromium-free surface treatment[P],United States Patent:4,264,378,1981
    [48] Mauret; Pierre; Gaches; Louis, Corrosion protection material and method, and use thereof for aluminumalloys[P],United States Patent:5,688,310,1997
    [49] Nakada, Kazuya, Kawaguchi, Motoki, Maeda,Kazuhiro.Water-based liquid treatment for aluminum and its alloys[P],United States Patent:6,200,693,2001
    [50] Bibber, John W. Passivating of zinc surfaces[P], United States Patent:6,740,361,2004
    [51] Wendel, Thomas, Bittner,Klaus,Wietzoreck,Hardy,Muller, Peter.Pretreatment of aluminum surfaces with chrome-free solutions[P],United States Patent:6,562,148;2003
    [52] Liu; Jianping; Scalera; Patrick A.; Dolan; Shawn E.;Non-chromate conversion coating compositions, process for conversion coating metals, and articles so coated ;United States Patent:6,821,633,2004
    [53] Aoyama, Masayuki,Ogino,Takao.Surface treatment agent for zinciferous-plated steel[P] .United States Patent:5,846,342,1998
    [54] Shimizu; Toru; Sato; Takayuki; Oguri; Tatsuya; Maetsuji; Keiji; Nobe; Kazuo,Method of coating aluminum and aluminum alloy substrates and coated articles[P]. United States Patent:6,679,952,2004
    [55] Parkhill; Robert L.; Vreugdenhil; Andrew J.; Balbyshev; Vsevolod N.; Donley; Michael S. Self-assembled nano-phase particle surface treatments for corrosion protection[P] ,United States Patent:6,929,826,2005
    [56] Park,Cheol,Lowther,Sharon E, St. Clair,Terry L.Surface treatment[P],United States Patent:6,521,052;2003
    [57] Jacques Wijenberg, Bert van Haastrecht .Zinc/resin composite plating as chromium free conversion treatment[J]. 9th Continuous Steel Strip Plating Symposium, May 11-13, 1999
    [58] Adriana O. S. Leite, Walney S. Araújo, Isabel C.P. Margarit , Adriana N. Correia,Pedro de Lima-Neto,Evaluation of the Anticorrosive Properties of Environmental Friendly Inorganic Corrosion Inhibitors Pigments[J]. J. Braz. Chem. Soc., Vol. 16, No. 4, 756-762, 2005.
    [59] Hasui,Kenji,Arakawa,Toshiaki,Tsuneta, Kazuyoshi.Method for sealing a spray coating and sealing material[P],United States Patent:5,763,015,1998
    [60] Odashima,Hisao,Takahashi,Tomomi,Shimizu,Toshiyuki.Chromium-free, metal surface- treating composition and surface-treated metal sheet[P],United States Patent:6,040,054.2000
    [61] Kamo,Hiroaki,Hotta,Yasunari,Shimizu,Toshiyuki,Odashima,Hisao.Agent for treating metallic surface, surface-treated metal material and coated metal material[P],United States Patent:6,589,324. 2003
    [62] 矢野宏和等,无铬涂料组合物[P],CN01120106.1(日本专利代号:2000.7.12 JP 210718/2000);2001.
    [63] 刘鸿康,贺子凯,王敏,王志英,王家禄,黄鑫.低铬型锌铬涂料[P], CN 1528836 A 2004
    [64] D·J·古德,T·E·多塞特,D·A·奥伯林恩,W·H·古恩,V·V·吉曼诺.可提供防腐保护的水可稀释性涂料组合物[P], CN 1172135 A , 1998
    [65] 陈星.水性防腐蚀涂料及其制造方法[P],CN 1157840A 1997
    [66] Guhde,Donald J,Dorsett, Terry E.,O'Brien,Deborah A,Gunn,Walter H.,Germano,Victor V. Water-reducible coating composition for providing corrosion protection[P],United States Patent:5,868,819,1999
    [67] C·T·博格,M·弗赖德,J·胡伊布雷赫德茨,K·S·基尔申布尔姆,K·B·威舍尔.含有金属片状粉末、具有改善魅力的涂料组合物[P],CN 1324900A(美国专利代号2000.5.18 US 60/205025) 2001
    [68] 远藤康彦,酒井富男,高濑健吾,金属用的无铬水稀释性防锈漆[P],CN 1576336A .2005(其日本专利代号是:优先权:2003.7.22 JP 277284/2003;2003.12.12 JP 414208/2003;2004.2.24 JP 047447/2004)
    [69] 朱晓云,郭忠诚.高耐蚀非水溶性锌基纳米防腐涂料[P],CN 1563229 A 2005
    [70] 程学群,张宏伟.一种耐蚀性能提高了的金属防腐涂料[P], CN 1670089A;2005
    [71] B. Chico. Study of The Behaviour of Silane-base Pretreaments Applied on Aluminium Subtrates[J], 16th International Corrosion Congress,2006
    [72] Marcos Fernandes de Oliveira. The Study of Polymeric Organosilane Based Layers as Pre-treatment on Mild Steel and The Corrosion Resistance Evaluation by Electrochemical Techiniques[J], 16th International Corrosion Congress,2006
    [73] 王生杰,佀庆法,范晓东.功能性有机硅涂层材料[J], 涂料工业,2005.35(6): 48-54
    [74] M.G.S. Ferreira, R.G. Duarte, M.F. Montemor, A.M.P. Sim?es .Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel[J], Electrochimica Acta (2004) 49:2927–2935
    [75] 陈文娟,陈巍.差热分析影响因素及实验技术[J].洛阳工业高等专科学校学报,2003,l3(1):10-11
    [76] 葛岭梅, 代爱萍, 李天良, 曲建林.热分析技术在防火涂料中的应用[J],西安科技学院学报,2002 ,22(1):12-14
    [77] CHEN Ling, LI Ning, ZHOU De-rui;Corrosion behavior of sintered zinc-aluminum coating in NaCl solution[J],Trans. Nonferrous Met. Soc.China 2002;12:1214-1217
    [78] 谢德明,胡吉明,童少平,王建明,张鉴清.Zn 粉含量及表面沾污对环氧富 Zn 漆电化学行为的影响[J],金属学报.2004,40:103
    [79] H. Marchebois, C. Savall, J. Bernard, S. Touzain, Electrochemical behavior of zinc-rich powder coatings in artificial sea water[J]. Electrochimica Acta, 2004, 49:2945–2954
    [80] 谢德明,童少平,冯海,张鉴清,锌粒形态对富Zn涂层在3.5% NaCl溶液中电化学行为的影响[J],金属学报,2005;41(7):769-774
    [81] 刘建国,龚高平,严川伟,3.5% NaCl 中达克罗涂层的耐蚀机理[J],2004年腐蚀电化学及测试方法学术交流会论文集,p.252-257
    [82] T. N. Ostanina, V. M. Rudoi, O. V. Yaroslavtseva, A. S. Solov’ev, O. Yu. Subbotina, S. I. Dokashenko, Protective properties of zinc-rich coatings: an impedance method estimate[J], Russian Journal of Electrochemistry, Vol. 40, No. 10, 2004, pp. 1019–1023.
    [83] 文光男.锌基涂层防护性能的电化学研究[J],东北大学学报(自然科学版),1999, 20(1):65-67
    [84] Jay J.Senkevich,Degradation of an alkyd polymer coating characterized by AC impedance[J],Journal of Materials Science, 2000,35 :1359 – 1364
    [85] 孙秋霞,张鉴清,林昌健,阻抗谱定量分析金属/有机涂层界面粘接力[J],物理化学学报 2004,20(11):1297
    [86] Senkevich J J.,Degradation of an alkyd polymer coating characterized by AC impedance[J],Journal of Materials Science, 20005,3 : 1359 – 1364
    [87] Liu J G, Gong G P, Yan C W, EIS study of corrosion behaviour of organic coating/dacromet composite systems[J], Electrochimica Acta, 2005, 50: 332
    [88] F. Blin , S.G. Leary , K. Wilson , G.B. Deacon , P.C. Junk, M. Forsyth, Corrosion mitigation of mild steel by new rare earth cinnamate compounds[J]. Journal of Applied Electrochemistry, 2004(9) :1-8
    [89] B. Delamo, R. Romagnoli, V.F. Vetere; Performance of zinc molybdenum phosphate in anticorrosive paints by accelerated and electrochemical tests[J]. Journal of Applied Electrochemistry 29: 1401-1407, 1999.
    [90] A.A.O. Magalh?es,I.C.P. Margarit O.R. Mattos.Molybdate conversion coatings on zinc surfaces[J], Journal of Electroanalytical Chemistry. 2004,572 :433–440
    [91] Z.H. Dong, X.P.Guo, J.X.Zheng, L.M.Xu, Investigati on on inhibition of CrO42- and MoO42- ions on carbon steel pitting corrosion by electrochemical noise analysis[J], Journal of Applied Electrochemistry, 2002. 32: 395–400
    [92] G. M. Treacy. Behaviour of molybdate-passivated zinc coated steel exposed to corrosive chloride environments[J], Journal of Applied Electrochemistry,1999,29: 647-654
    [93] Yu. I. Kuznetsov, Corrosion Inhibitors in Conversion Coatings. III . Protection of Metals, Vol. 37, No. 2, 2001, pp. 101–107. Translated from Zashchita Metallov, 2001,37(2):119–125.
    [94] Abdel Salam Hamdy, Anna Maria Beccaria. Effect of surface pretreatment prior to cerium pre-treatment on the corrosion protection performance of aluminum composites[J], Journal of Applied Electrochemical 2005,35:473-478
    [95] 李宇春, 龚洵洁, 彭珂如, 等.钼酸盐系列缓蚀剂在中性介质中对A20碳钢缓蚀的极化曲线研究[J].工业水处理,2001,21:28
    [96] F. Jahan, Characterization of molybdenum black coatings on zinc substrates[J]. Journal of materials science.1997,32: 3869
    [97] Peter T. Tang, Gregers Bech-Nielsen Per Msller. Molybdate-based Alternatives To Chromating As passivation Treatment for Zinc. Plating and surface finishing[J], Plating and Surface Finishing.1994,35:19-23
    [98] 李玉明, 刘静敏, 马志超. 钼酸盐与磷酸盐、硅酸盐复配缓蚀剂的研究[J].腐蚀与防护,2004,25:248
    [99] 陶卫国,陈国和,肖吉敏,刘玉鑫.Dawson 型杂多化合物的结构、性质及其表征[J].四川师范学院学报(自然科学版),2000,21:332
    [100] S. V. Nesterenko, M. H. Efymenko.Corrosion Resistance of Welden Joints of Austenitic Steel Microalloyed with Rare-Earth Metals[J]. Materials Science.2003,39: 634
    [101] Kunitsugu Aramaki,The inhibition effect of cation inhibitors on corrosion of zinc in aerated 0.5M NaCl[J],Corrosion Science,2001, 43:1573-1588
    [102] WilliamG. Fahrenholtz, Matthew J. O’Keefe, Haifeng Zhou ,et al . Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys[J]. Surface and Coatings Technology, 2002,155: 208
    [103] 李宇春,龚洵洁,彭珂如.钼酸盐缓蚀剂在自来水中的电化学行为[J],材料保护,2001,34:10-11
    [104] J.A. Wharton, An EXAFS investigation of molybdate-based conversion coatings[J].Journal of Applied Electrochemistry, 2003,33: 553
    [105] S.Zein EL Abendin. Role of chromate,molybdate and tungstate anions on the inhibition of aluminium in chloride solution[J]. Journal of Applied Electrochemistry, 2001,31:711
    [106] 路长青.钼酸盐的缓蚀机理[J], 材料保护,1996,29 :22-41
    [107] 陈锦虹.镀锌层无铬钝化研究的进展[J],腐蚀科学与防护技术,2003,15:29
    [108] Guillaumin, V.; Landolt, D. Corr.Sci[J], 2002, 44: 179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700