用户名: 密码: 验证码:
Harpin蛋白HpaG功能片段鉴定及应用与HrpN_(Ea)诱导植物抗虫性的一种转录调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
革兰氏阴性植物病原细菌产生的harpin蛋白质在植物上可以引起多种效应,包括抗病、抗虫、抗旱,促进植物生长等。作为一种多功能激发子,它非常有利于研究植物在生长发育、抗病防卫、抗虫和抗逆等过程中的相关信号传导机制。于是,harpin如何被植物识别,如何引发各种效应,并且这些反应中有哪些信号通路参与,以及harpin如何实现这些功能等多个问题成为了研究的重点。本研究着重剖析harpin促进植物生长、诱导抗病和抗虫的信号传导机制以及转录调控机制。
     一、水稻细菌性条斑病菌harpin蛋白HpaGXooc诱导植物抗病和促进植物生长的功能片段鉴定
     Harpin是由植物病原细菌产生的一类蛋白质激发子,可以激发非寄主植物产生过敏性细胞死亡(hypersensitive cell death, HCD),诱导植物产生防卫反应,促进植物生长。其中,后两种效应对植物有益,并且可能是通过蛋白质不同的功能域实现的。本研究分离鉴定和检测了来自于水稻条斑病细菌(Xanthomonas oryzae pv. oryzicola)的一个137个氨基酸的harpin蛋白HpaGXooc的九个功能片段,产生的蛋白质分别施用于烟草(Nicotiana tabaccum)和水稻(Oryza sativa)能产生不同的效应。相比较HpaGXooc全长蛋白,HpaG10-42诱导水稻对白叶枯病菌(Xanthomonas oryzae pv. oryzae)和稻瘟病菌(Magnaporthe grisea)产生抗性能力最强;HpaG1-94促进水稻生长能力最强;而HpaG62-137诱导过敏性细胞死亡(hypersensitive cell death,HCD)能力最强。同时,HpaG62-137诱导HCD标志基因效果强于HpaGXooc全长蛋白质,HpaG10-42对水稻防卫反应基因和生长相关基因的诱导活性明显强于HpaGXooc。由此可以解释我们所观察到的蛋白质有益效应。
     二、HpaGXooc小分子功能片段HpaG10-42诱导水稻抗病性和提高稻米产量
     在第一章的研究中,产生的功能片段HpaG10-42,相比较HpaGXooc全长蛋白,在烟草上不诱导明显的细胞死亡,能促进水稻更快的生长,同时能诱导水稻对白叶枯病菌(X. oryzae pv. oryzae)和稻瘟病菌(Magnaporthe grisea)产生较理想的抗性。本研究将HpaG10-42应用在水稻田间,研究HpaG10-42对水稻稻瘟病和水稻白叶枯病的控制效果以及对产量的影响。结果显示:在水稻苗期、返青期、分蘖后期、始穗期连续使用四次,同对照处理相比,6,6,6,6μg/ml的HpaG10-42使水稻白叶枯病(X.oryzae pv. oryzae)和穗颈瘟(Magnaporthe grisea)的病情指数均显著降低,并使产量明显提高,而且效果好于高浓度的HpaGXooc;在水稻四个生长时期仅用6μg/ml HpaG10-42处理一次,也可诱导水稻该生长时期的抗病性,但不如连续多次使用效果好;经过比较,HpaG10-42与化学农药的使用效果相当;在9个测试水稻品种上均能诱导抗病性和增加产量,但在不同水稻品种之间存在差异;在田间大面积示范实验中HpaG10-42效果稳定。
     三、HrpNEa诱导蚜虫趋避和抑制取食需要EIN2介导的韧皮部防卫反应
     HrpNEa是由梨火疫病菌(Erwinia amylovora)产生的harpin激发子。本实验室发现HrpNEa诱导拟南芥抑制蚜虫的繁殖需要乙烯信号通路重要因子EIN2,但是没有研究蚜虫趋避情况,同时也没有明确蚜虫取食与蚜虫趋避的关系。本研究结果表明,HrpNEa诱导蚜虫趋避。用罗丹明B标记、EPG(Electrical Penetration Graph)技术监测蚜虫的取食情况,结果表明HrpNEa抑制蚜虫的取食活动,同趋避效应有关。HrpNEa处理后,植物乙烯含量升高,并且乙烯生物合成抑制剂部分抑制HrpNEa的作用。在乙烯信号通路突变体ein5-1中,HrpNEa能够象在Col-0中一样诱导趋避效应,但在ein2-1中不能。表明HrpNEa诱导趋避效应需要EIN2。原位杂交结果表明,HrpNEa处理后可以诱导韧皮部相关蛋白基因AtPP2在韧皮部的表达,与韧皮部防卫反应(plant phloem-related defense, PRD)的作用模式一致,而PRD在防卫刺吸式昆虫取食中起作用。RT-PCR结果显示,HrpNEa可以诱导AtPP2在野生型拟南芥Col-O中的表达,但是在ein2-1突变体中不能。韧皮部相关蛋白在韧皮部的表达通常伴随有胼胝质的沉积,化学发光实验结果证明,HrpNEa同样可以诱导胼胝质在Col-0中的沉积,但是在ein2-1突变体中不能。因此,本研究结果表明HrpNEa诱导抗虫趋避效应、激发PRD反应,且ET信号传导因子EIN2参与了该过程。
     四、参与HrpNEa诱导拟南芥抗虫作用转录因子的筛选
     通过RT-PCR方法对拟南芥Col-O中受HrpNEa诱导的转录因子进行筛选。在研究的37个转录因子中,初步筛选到21个受HrpNEa诱导上调的转录因子,随机选取13个基因用Northern方法验证,其中有12个基因被诱导表达上调。Realtime RT-PCR进一步筛选的结果显示,AtMYB51,AtMYB38,AtMYB108, AtMYB30, AtMYB44, AtERF11, RAP2.12, F15H21.12和AtHB-7被不同程度的诱导表达,AtMYB44被诱导的效果最为明显。同时对37个突变体中蚜虫趋避以及蚜虫繁殖情况进行了研究。结果表明,在atmyb44突变体中,HrpNEa诱导后趋避率最小,对蚜虫繁殖情况没有明显影响。因此,HrpNEa诱导抗虫的效果在atmyb44突变体中被严重阻断。通过转录因子基因被HrpNEa诱导的情况,结合处理后突变体中HrpNEa诱导抗虫效果两方面的实验结果,筛选到一个感兴趣的转录因子AtMYB44,参与调控HrpNEa诱导的拟南芥抗虫性。
     五、AtMYB44通过作用于乙烯信号传导因子EIN2调控拟南芥对桃蚜的诱导抗性
     AtMYB44是拟南芥的一种转录因子,可以对乙烯发生感应,从而介入植物防卫反应。植物防卫反应经常受乙烯信号传导支配,而乙烯信号需要EIN2作为中心调控因子才能完成传导。我们以前研究表明EIN2在HrpNEa诱导拟南芥对蚜虫产生防卫反应的过程中起关键作用,但AtMYB44调控的靶标及EIN2的转录调控机理都还不清楚。在HrpNEa处理Col-0后,植物乙烯含量升高,蚜虫趋避且蚜虫繁殖受到抑制。但是在atmyb44突变体中,HrpNEa虽然能够诱导乙烯含量升高,但是不能诱导蚜虫趋避效应和抑制蚜虫繁殖。外源乙烯作用与HrpNEa作用效果相同。遗传学及药理学实验研究表明,乙烯和AtMYB44对于HrpNEa诱导拟南芥抗虫互为必需。在Col-0中,EIN2能够被诱导表达,但是在atmyb44突变体中不能,在回补实验材料中EIN2的表达情况与在Col-0中类似。因此,EIN2诱导表达需要AtMYB44。将AtMYB44原核表达并部分纯化用于GMSA实验,结果表明AtMYB44能与EIN2的启动子序列体外特异性结合。用atmyb44得到遗传互补的转基因植物Mgh/m提取核蛋白用于GMSA实验,结果表明AtMYB44与EIN2启动子发生特异结合。用HrpNEa处理Col-0和Mgh/m植株,既促进了AtMYB44蛋白的产生,也提高了AtMYB44与EIN2互作的能力,还增强了EIN2的表达水平。Col-0和Mgh/m植株不受HrpNEa诱导的条件下,人工定殖的蚜虫可以诱导这两类植物表达AtMYB44和EIN2基因,同时诱导这两类植物对第二次定殖的蚜虫产生抗蚜性反应,而基因表达与抗虫反应在atmyb44体内均不能被蚜虫所诱导。这些试验结果表明,AtMYB44通过启动EIN2的表达来控制拟南芥对蚜虫的抗性。这一调控过程无论对诱导抗性还是免疫反应均显示功能,代表了植物抵抗植食性昆虫的一种重要防卫机制。
     六、创新点
     1.实验阐述了水稻细条斑病菌产生的harpin蛋白HpaGXooc不同结构域与功能的关系。挑选出来的三个片段HpaG1-94、HpaG10-42、HpaG62-137分别在促进植物生长、诱导抗病和诱导过敏性细胞死亡方面表现最为突出。其中,HpaG10-42促进植物生长、诱导植物抗病性,但是不诱导肉眼可见的过敏性细胞死亡,为高效重组表达HpaGXooc蛋白提供理论基础。将HpaG10-42应用在水稻田间,效果好于全长片段HpaGXooc,且与化学农药效果相当,能够诱导抗病性,并最终使稻米产量增加。
     2.研究明确EIN2介导植物韧皮部防卫反应,并在HrpNEa诱导拟南芥对桃蚜的抗性发生过程中起重要作用。
     3.对HrpNEa诱导的转录因子进行筛选鉴定,结果证明AtMYB44在HrpNEa诱导拟南芥抵抗桃蚜的过程中起重要作用,进一步实验表明,AtMYB44通过启动EIN2的表达来控制拟南芥对蚜虫的抗性。
Harpin proteins that produced by Gram-negative plant pathogenic bacteria can induce multiple benificial responses such as disease resistance, insect resistance, enhanced plant growth and enhanced tolerance to environment adversity like drought. As a multiple eilicitor, harpin is perspective in studying signalling of plant development and plant defense.Hence, how harpin is recognized by plant? How to induce different effects, which signalling pathway takes part in the effects of harpin? And how these effects come true? These questions are important to be answered. Our study aimed at the signalling of harpin in enhanced plant growth、disease resistance and insect resistance as well as its transcription regulation.
     1. Identification of specific fragments of HpaGXooc, a harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in rice
     Harpin proteins from plant pathogenic bacteria can stimulate hypersensitive cell death (HCD) and pathogen defence, and they can enhance growth in plants. Two of these diverse activities clearly are beneficial and may depend on particular functional regions of the proteins. HpaGXooc, produced by Xanthomonas oryzae pv. oryzicola, the pathogen that causes bacterial streak of rice, is a 137-amino acid harpin as a member of Harpin group of proteins. Here we report the identification and testing of nine functional fragments of HpaGXooc using PCR-based mutagenesis. These specific proteins caused different responses following their application to Nicotiana tabaccum (tobacco) and Oryza sativa (rice). Noticeably, HpaG10-42 was over 90% less active than other proteins in inducing HCD, but its effet in inducing the resistance to Xanthomonas oryzae pv. oryzae and Magnaporthe grisea was greatest. HpaG1-94 was most active in growth enhancement. Cell death level was 2-fold greater when induced by HpaG62-137 compared to HpaGXooc. Fragments HpaG62-137 and HpaG10-42 induced more intense HCD and did not cause evident cell death in tobacco, respectively, but both stimulated stronger defence responses and enhanced more growth in rice than the parent protein, HpaGxooc.
     2. Studies on effects of HpaG10-42, a specific fragment of HpaGxooc from Xanthomonas oryzae pv. oryzicola, in inducing disease resistance and enhancing growth in rice
     In the previous study, we selected a fragment of HpaGXooc called HpaG10-42, which did not cause evident cell death in tobacco but both stimulated stronger defence responses and enhanced more growth in rice than the parent protein, HpaGXooc.Now we studying the effects of HpaG10-42 in the field, in controlling rice blast, sheath blight and leaf blight, as compared to HpaGXooc.The results showed that plants were sprayed once in nursery and three times in the field at vegetative growth V6 and V11 stages (collar formation on leaves 6 and 11 on main stem, respectively) and the reproductive stage R2 (collar formation on flag leaf) with 6,6,6,6μg/ml HpaG10-42, can deduce the severrity index of leaf blight and blast, as a result, the production was also enhanced obviously, as compaired to HpaGxooc·In the case of single ues of 6μg/ml HpaG10-42 in the four stages, its effect is better than using 12μg/ml HpaGxooc, but is worse than the 4-times appliction; HpaG10-42 was compared to chemicals in control of plant diseases; the effects of HpaG10-42 on nine different rice varieties was observed but were different; and HpaG10-42 effects was confirmed by large-scale experimentation.
     3. HrpNEa induces repellency and the inhibition of aphids feeding requiring EIN2-mediated plant phloem-related defense (PRD) in Arabidopsis
     HrpNEa is a multiple functional elicitor produced by Erwinia amylovora. In the previous study, we found that HrpNEa induces insect resistance though EIN2, but the repellency and the inhibition of feeding were not studied.In this study, we found HrpNEa can induce repellency. We used Rodanmin B as a marker and EPG to study the aphids feeding activities in Arabidopsis, and we found it identical to repellency. HrpNEa can promote the level of ethylene, and the inhibitor of the ethylene biosythesis can inhibit the effect of HrpNEa. HrpNEa can induce repellency in ein5-1 as in Col-0 rather than in ein2-1, so the effect of HrpNEa to induce repellency required EIN2. The in situ hybridization result showed the the plant phloem-related protein AtPP2 genes can be induced to express in the phloem, and its modle was the same as that of PRD, while PRD functions against attacks by sap-sucking insects. HrpNEa can induce the expression of AtPP2 in Col-0 but not in ein2-1. The expression of AtPP2 is always companied by callose deposition. Our results show that callose deposition is also induced by HrpNEa in Col-0 rather than in ein2-1. In all, our studyt shows that HrpNEa can induce repellency and PRD, and EIN2 mediated this progress.
     4. Screening of hrpNEa-responsive transcription factors in Arabidopsis defenses against the green peach aphid
     We screen transcription factor genes that are HrpNEa-responsive by RT-PCR. Selected 37 TF genes were investigated for expression in WT Arabidopsis following treatment with HrpNEa, which was used in contrast to EVP. Twenty-one genes increased in plants 12 h post treatment (hpt) with HrpNEa, compared with EVP. As confirmed by Northern blot analysis,12 of 13 selected genes accumulated great amounts of transcripts in 12 hpt with HrpNEa-To determine transcript levels, the 9 genes were subjected to real time RT-PCR protocols. In 12 hpt, transcripts of AtMYB44 in HrpNEa-treated plants were greater than those in EVP-treated plants. To correlate the expression of TF genes with Arabidopsis resistance to the green peach aphid, the plant mutants disrupted at the 37 TF genes were tested for variations in supporting the insect to colonize plant leaves and multiply on leaves. In the atmyb44 mutant, the repellency was least, and aphids multiplication were not repressed in atmyb44 responding to HrpNEa, indicating that the effect of HrpNEa was abolished, indicating AtMYB44 was a possible regulator of insect repellency. Finally, we get a selected transcription factor AtMYB44, which may paticipate the induced insect resistance in Arabidopsis.
     5. AtMYB44 Targets EIN2 to Regulate Arabidopsis Resistance against the Green Peach Aphid
     AtMYB44 is a transcription factor responsive to ethylene and implicated in Arabidopsis defense response. Plant defense is often subject to ethylene signaling that recruits EIN2 as a central regulator. Previously we have shown that EIN2 plays a critical role during the development of insect defense in Arabidopsis treated with HrpNEa, a harpin protein produced by bacterial plant pathogen. Regulatory targets of AtMYB44 and regulation of EIN2 activation have not been characterized. HrpNEa can promote the ethylene content in Col-0, and induce repellency and repress production. In atmyb44, can also promote the ethylene content, but the effect of inducing repellency and repressing production were lost. Through genetic, molecular, and pharmacological studies, we show that HrpNEa induce Arabidopsis resistance against the green peach aphid required AtMYB44. This effect is arrested in atmyb44. EIN2 can be induced by HrpNEa in Col-0 but not in AtMYB44 indicating the expression of EIN2 required AtMYB44. In wild-type and atmyb44-complemented plants, extrinsic ethylene duplicates the function of intrinsic ethylene to induce resistance and the expression of AtMYB44 and EIN2. In atmyb44-complemented plants, moreover, AtMYB44 binds EIN2 promoter. HrpNEa treatment promotes AtMYB44 production and the binding activity as well as EIN2 expression. When atmyb44-complemented and wild-type plants are subjected to aphid infestation, AtMYB44 and EIN2 expression is induced and plants become resistant to secondary infestation. Therefore, AtMYB44 controls Arabidopsis resistance to the insect by activating the expression of EIN2. This regulatory pathway functions as an important mechanism that protects plants from insect herbivores.
     6. Concluding remarks
     1. We identify and test nine functional fragments of HpaGxooc, and these proteins have different effects on Nicotiana tabaccum (tobacco) and Oryza sativa (rice). Among them, HpaG62-137 induced more intense HCD, HpaG10-42 did not cause evident cell death in tobacco, but both stimulated stronger defence responses and enhanced more growth in rice than the parent protein, HpaGXooc.We used a selected fragment of HpaG10-42 in the field, studying the effects of HpaG10-42 in controlling rice blast、sheath blight and leaf blight, as compared to HpaGxooc.The results show that HpaG10-42 can induce disease resistance and finally increase the production as chemicals.
     2. EIN2 mediated HrpNEa-induced plant phloem-related defense which functions against attacks by sap-sucking insects.
     3. We selected transcription factors that are responsive to HrpNEa, and AtMYB44 is a candidate, which may also take part in the effect of HrpNEa in regulating insect resistance in Arabidopsis. Our results showed that AtMYB44 controls Arabidopsis resistance to the insect by activating the expression of EIN2, providing a mechanism of EIN2 transcription regulation.
引文
1. Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE (1998) Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 95:10306-10311
    2. Aelat M, Gijsegem FV, Huet JC, Pernollet JC, Boucher CA (1994) PopAl a protein which induced a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J 13:543-553
    3. Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636-45
    4. Alfano JR, Collmer A (1996) Bacterial pathogens in plants:life up against the wall. Plant Cell 8: 1683-1698
    5. Alfano JR, Collmer A (2004) Type Ⅲ secretion system effector proteins:double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385-414
    6. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148-2152
    7. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2005) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460-3479
    8. Andi S, Taguchi F, Toyoda K, Shiraishi T, Ichinose Y (2001) Effect of methyl jasmonate on harpin-induced hypersensitive cell death, generation of hydrogen peroxide and expression of PAL mRNA in tobacco suspension cultured BY-2 cells. Plant Cell Physiol 42:446-449
    9. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel F M, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977-83
    10. Bauer DW, Wei ZM, Beer SV, Collmer A (1995) Erwinia chrysanthemi harpinEch:an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol Plant-Microbe Interact 8: 484-491
    11. Berberich T, Sugawara K, Harada M, Kusano T (1995) Molecular cloning, characterization and expression of an elongation factor la gene in maize. Plant Mol Biol 29:611-615
    12. Bleecker AB (1997) The ethylene binding site of the ETR1 protein. In:Kanellis AK, eds Biology and Biotechnology of the plant hormone ethylene.63-70
    13. Bleecker AB, Kende, H (2000) Ethylene:a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol.16:1-18
    14. Brito B, Aldon D, Barberis P, Boucher C, Genin S (2002) A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solancearum hrp genes. Mol Plant-Microbe Interact 15:109-119
    15. Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Holub E, Staskawicz BJ (1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278:1963-1965
    16. Chang C, Shocker JA (1999) The ethylene-response pathway:signal perception to gene regulation. Curr Opi in Plant Biol 2:352-358
    17. Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE 3 and related proteins. Cell 89:1133-1144
    18. Charkowski AO, Alfano JR., Preston G, Yuan J, He SY, and Collmer A (1998) The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol 180:5211-5217
    19. Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA (2005) Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Natl Acad Sci USA 102: 19237-19242
    20. Chen L, Qian J, Qu SP, Long JY, Yin Q, Zhang CL, Wu XJ, Sun F, Wu TQ, Hayes M, Beer SV, Dong HS (2008) Identification of specific fragments of HpaGXooc, a harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in plants. Phytopathology 98:781-791
    21. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE:A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes and Development 14: 1043-1054
    22. Clarke JD, Aarts N, Feys BJ, Dong X, Parker JE (2000) Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12:2175-2190
    23. Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C (2008) Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J 53:53-64
    24. Counce PA, Keisling TC, Mitchell AJ (2000) A uniform objective, and adaptive system for expressing rice development. Crop Sci 40:436-443
    25. Dai L, Wu L, Wang L, Yang Q, Tang C, Yu T (2004) Analysis on the current status of wild rice resource distributed in Yunnan Province based on the investigation. Chinese J Rice Sci 18:104-108
    26. Dangle JL, Dietrich RA, Richberg MH (1996) Death don't have no mercy:cell death programs in plant-microbe interactions. Plant Cell 8:1793-1807
    27. Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induced activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126: 1579-1587
    28. Ding Z, Li S, An X, Liu X, Qin H, Wang D (2009) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics 36:17-29
    29. Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843-847
    30. Dong H, Delaney TP, Bauer DW, Beer SV (1999) Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J 20:207-215
    31. Dong HP, Peng J, Bao Z, Meng X, Bonasera JM, Chen G, Beer SV, Dong H (2004) Downstream divergence of ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol 136:3628-3638
    32. Dong HP, Yu H, Bao Z, Guo X, Peng J, Yao Z, Chen G, Qu S, Dong H (2005) The ABI2-dependent abscissic acid signaling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221: 313-327
    33. Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21-37
    34. Dong X (2001) Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol 4:309-314
    35. Douglas E (2006) Phloem-sap feeding by animals:problems and solutions. J Exp Bot 57:747-754
    36. Du H, Zhang L, Liu L, Tang XF, Yang WJ, Wu YM, Huang YB, Tang YX (2009) Biochemical and Molecular Characterization of Plant MYB Transcription Factor Family. Biochemistry 74:1-11
    37. Elliott CR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155-168
    38. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199-206
    39. Fan W, Dong X (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14:1377-1389
    40. Feng JX, Liu D, Pan Y, Gong W, Ma LG, Luo JC, Deng XW, Zhu YX (2005) An annotation update
    via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. Plant Mol Biol 59:853-68
    41. Fontanilla JM, Montes M, De Prado R (2005) Induction of resistance to the pathogenic agent Botrytis cinerea in the cultivation of the tomato by means of the application of the protein "Harpin" (Messenger). Commun Agric Appl Biol Sci 70:35-40
    42. Gagne J, Smalle J, Gingerich D, Walker J, Yoo S, Yanagisawa S, Vierstra R (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA,101:6803-6808.
    43. Galan JE and Collmer A (1999) Type Ⅲ secretion machines:bacterial devices for protein delivery into host cells. Science 284:1322-1328
    44. Gamble RL, Qu X, Schaller GE (2002) Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol 128:1428-1438
    45. Gao MJ, Allard G, Byass L, Flanagan AM, Singh J (2002) Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol 49:459-471
    46. Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117-1126
    47. Gopalan S, Wei W, He SY (1996) hrp gene-dependent induction of hinl:a plant gene activated rapidly by both harpins and the avrPto gene-mediated signal. Plant J 10:591-600
    48. Greenberg JT, Silverman FP, Liang H (2000) Uncoupling salicylic acid-dependent cell death and defense-related responses from disease resistance in the Arabidopsis mutant acd5. Genetics 156: 341-350
    49. Grefen C, Stadele K, Ruzicka K, Obrdlik P, Harter K, Horak J (2007) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1: 308-320
    50. Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB (2002) Tomato transcription factors Pti4, Pti5 and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817-831
    51. Guo H, Ecker J (2003) Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115:667-677
    52. Guo H, Ecker JR (2004) The ethylene signaling pathway:new insights. Curr Opin Plant Biol 7: 40-49
    53. Hall AE, Chen QG, Findell JL, Schaller GE, Bleecker AB (1999) The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor. Plant Physiol 121:291-299
    54. Hall B, Shakeel S, Schaller GE (2007) Ethylene receptors:ethylene perception and signal transduction. J Plant Growth Regul 26:118-130
    55. Hammond-Kosack K, Jones JDG (1996) Resistance genes-dependent plant defense response. Plant Cell 8:1773-1791
    56. Hao D, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive elementbinding factor (ERF domain) in plant. J Biol Chem 273:26857-26861
    57. He SY (1998) Type Ⅲ protein secretion systems in plant and animal pathogenic bacteria. Annu Rev Phytopathol 36:363-392
    58. He SY, Huang HC, Collmer A (1993) Pseudomonas syringae pv. syringae harpinpss:A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73:1255-1266
    59. Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson diseaserelated copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97:383-393
    60. Hoffman T, Schmidt JS, Zheng X, Bent AF (1999) Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol 119:935-950
    61. Hoyos AE, Stanley CM, He SY, Pike S, Pu XA, Novacky A (1996) The interaction of harpinpss with plant cell walls. Mol Plant-Microbe Interact 9:608-616
    62. Hu P, Zhai H, Wan J (2002) New characteristics of rice production and quality improvement in China. Rev China Agric Sci Technol 4:33-39
    63. Hua J, Meyerowitz E (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261-271
    64. Huang, D, Jaradat, MR, Wu, W, Ambrose, SJ, Ross, AR, Abrams, SR, and Cutler, AJ (2007). Structural analogs of ABA reveal novel features of ABA perception and signaling in Arabidopsis. Plant J 50:414-428
    65. Ingram J, Bartel D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physic Plant Mol Biol 47:377-403
    66. Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5'upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet 244:563-71
    67. Izawa T, Foster R, Chua NH (1993) Plant bZIP protein DNA binding specificity. J Mol Biol 230: 1131-1144
    68. Jaglo-ottosen KR, Gilmour SJ, Zarka DG, Schabenberger 0, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104-106
    69. Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106-111
    70. Jang YS, Sohn SI, Wang MH (2006) The hrpN gene of Erwinia amylovora stimulates tobacco growth and enhances resistance to Botrytis cinerea. Planta 223:449-456
    71. Jeon CO, Lee DS, Park JM (2001) Enhanced biological phosphorus removal in an anaerobic-aerobic sequencing batch reactor:characteristics of carbon metabolism. Water Environ Res 73:295-300
    72. Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91-105
    73. Jin H, Martin C (1999) Multifunctionality and diversity within the plant Myb-gene family.Plant Mol Biol 41:577-585
    74. Jofuku DK, Boer DWGB, Montagu VM, Okamuro KJ (1994) Control of Arabidopsis flower seed development by the homeotic gene APETALA2. Plant Cell 6:1211-1225
    75. Johnson PR, Ecker JR (1998) The ethylene gas signal transduction pathway:a molecular perspective. Annu Rev Genet 32:227-254
    76. Jung C, Lyou SH, Yeu S, Kim MA, Rhee S, Kim M, Lee JS, Choi YD, Cheong JJ (2007) Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Rep 26:1053-1063
    77. Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623-635
    78. Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343-357
    79. Karban R, Baldwin IT (1997) Induced Responses to Herbivory:Chicago Univ. Press, Chicago.
    80. Kehr J (2006) Phloem sap proteins:their identities and potential roles in the interaction between
    plants and phloem-feeding insects. J Exp Bot 57:767-774
    81. Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in response to aphids. Plant Physiol 143:849-865
    82. Kendrick MD, Chang C (2008) Ethylene signaling:New levels of complexity and regulation. Curr Opin Plant Biol 11:479-485
    83. Kennedy D (2002) The importance of rice. Science 296:13
    84. Kim JF, Beer SV (1998) HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J Bacteriol 180:5203-5210
    85. Kim JF, Beer SV (2000) hrp Genes and Harpins of Erwinia amylovora:A Decade of Discovery. Pages 141-161 in:Vanneste JL ed. Fire Blight. CAB International Oxon, UK
    86. Kim JF, Jeon E, Oh J, Moon JS, Hwang I (2004) Mutational analysis of Xanthomonas harpin HpaG identifies a key functional region that elicits the hypersensitive response in nonhost plants. J Bacteriol 186:6239-6247
    87. Kim JG, Park BK, Yoo CH, Jeon E, Oh J, Hwang I (2003) Characterization of the Xanthomonas axonopodis pv. glycines HpaG pathogenicity island. J Bacteriol:85 3155-3166
    88. Kirik V, Kolle K, Misera S, Baumlein H (1998) Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants. Plant Mol Biol 37:819-827
    89. Klee HJ (2004) Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol 135: 660-667
    90. Klempnauer KH, Gonda TJ, Bishop JM (1982) Nucleotide sequence of the retro viral leukemia gene v-Myb and its cellular progenitor c-Myb:the architecture of a transduced oncogene. Cell 31: 453-463
    91. Kranz H, Scholz K, Weisshaar B (2000) c-Myb oncogene-like genes encoding three Myb repeats occur in all major plant lineages. Plant J 21:231-235
    92. Laby RJ, Wei ZM, Beer SV (2006) Hypersensitive response elicitor fragments eliciting a hypersensitive response and uses thereof. United States Patent 6583107
    93. Li B, Shi Q, Fang J, Pan X (2004) Techniques of diseases, insect pests and weeds control and their efficacy in bio-rational rice production (in Chinese with English abstract). J Appl Ecol 15:111-115
    94. Li H, Wong WS, Zhu L, Guo HW, Ecker J, Li N (2009) Phosphoproteomic analysis of ethylene-regulated protein phosphorylation in etiolated seedlings of Arabidopsis mutant ein2 using two-dimensional separations coupled with a hybrid quadrupole time-of-flight mass spectrometer. Proteomics 9:1646-61
    95. Li J, Brader G, Kariola T, Palva ET (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477-491
    96. Li P, Lu X, Shao M, Long J, Wang J (2004b) Genetic diversity of harpins from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance in tobacco. Sci China C Life Sci 47:461-469
    97. Lin XH, Zhang DP, Xie YF, Gao HP, Zhang Q (1996) Identifying and mapping a new gene for bacterial blight resistance in rice based on RFLP markers. Phytopathology 86:1156-1159
    98. Lindgren PB, Peet RC, Panpoulos NJH (1986) Gene cluster of Pseudomonas syringae pv. phaseolicola contains pathogenicity on bean plants and hypersensitivity on nonhost plants. J Bacteriol 168:512-522
    99. Lippold F, Sanchez DH, Musialak M, Schlereth AS, cheible WR, Hincha DK, Udvardi, MK (2009) AtMyb41 Regulates Transcriptional and Metabolic Responses to Osmotic Stress in Arabidopsis. Plant Physiol 149:1761-1772
    100. Lipsick JS (1996) One billion years of Myb. Oncogene 13:223-235
    101. Liu F, Liu H, Jia Q, Wu X, Guo X, Zhang S, Song F, Dong H (2006) The internal glycine-rich motif and cysteine suppress several effects of HpaGXooc in plants. Phytopathol 96:1052-1059
    102. Lund ST, Stall RE, Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10:371-381
    103. Ma YH, Zhou CY, Sheng CS (1979) Methods in Field Experiments and Statistical Analyses (in Chinese). Agriculture Press, Beijing, China 186-189
    104. Magnani E, Sjolander K, Hake S (2004) From endonucleases to transcription factors:evolution of the AP2 DNA binding domain in plants. Plant Cell 16,2265-2277
    105. Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptiome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26: 403-410
    106. Masaki Ito (2005) Conservation and diversification of three-repeat Myb transcription factors in plants. J Plant Res 118:61-69
    107. McConn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 94:5473-5477
    108. McDowell JM, Cuzick A, Can C, Beynon J, Dangl JL, Holub EB (2000) Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. Plant J 22:523-9
    109. McNairn RB, Currier HB (1968) Translocation blockage by sieve plate callose. Planta 82:369-380
    110. Meissner RC, Jin H, Cominelli E, Denekamp M, Fuertes A, Greco R, Kranz HD, Penfield S, Petroni K, Urzainqui A, Martin C, Paz-Ares J, Smeekens S, Tonelli C, Weisshaar B, Baumann E, Klimyuk V, Marillonnet S, Patel K, Speulman E, Tissier AF, Bouchez D, Jones JJD, Pereira A, Wisman E, Bevan M (1999) Function search in a large transcription factor gene family in Arabidopsis:assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell 11:1827-1840
    111. Menkens AE, Schindler U, Cashmore AR (1995) The G-box:a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem Sci 20:506-510
    112. Mor H, Manulis A, Zuck M, Nizan R, Coplin D L, Barash I (2001) Genetic organization of the hrp gene cluster and dspAE/BF operon in Erwinia herbicola pv. gypsophilae. Mol Plant-Microbe Interact 14:431-436
    113. Moran PJ, Thompson GA (2001) Molecular response to aphid feeding in Arabidopsis in relation to plant defense pathway. Plant Physiol 125:1074-1085
    114. Muramatsu K, Fuji S, Furuya H, Naito H (2003) Population structure of rice blast fungus prevalent in Akita Prefecture in 2000 and 2002. Ann Rep Plant Prot North Jpn 54:18-22
    115.Musharaf A, Doris R, Majerczak, Sharon P, Mary EH, Anton N, David LC (2001) Biological Activity of Harpin Produced by Pantoea stewartii subsp. MPMI10:1223-1234
    116. Niki T, Misuhara I, Seo S, Ohtsubo N, Ohashi Y (1998) Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol 39:500-507
    117. Noel L, Thieme F, Nennstiel D, Bonas U (2002) Two novel type Ⅲ-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the HpaG pathogenicity island. J Bacteriol 184:1340-1348
    118. Nomura N, Takahashi M, Matsui M, Ishii S, Date T, Sasamoto S, Ishizaki R (1988) Isolation of human cDNA clones of Myb-related genes, A-Myb and B-Myb. Nucleic Acids Res 16: 11075-11089
    119. O'Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowle DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914-1917
    120. Oh CS, Beer SV (2007) AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effector of HrpN in Arabidopsis. Plant Phyiol 145:426-436
    121. Ohme-Takagi M, Shishi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene responsive element. The Plant Cell:7:173-182
    122. Ohtsubo N, Mitsubara I, Koga M, Seo S, Ohashi Y (1999) Ethylene promotes the necrotic lesion formation and basic PR gene expression in TMV-infected tobacco. Plant Cell Physiol 40:808-817
    123. Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell,13:1035-1046
    124. Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ (1996) Characterization of edsl, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8:2033-2046
    125. Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory cl locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553-3558
    126. Peart JR, Cook G, Feys BJ, Parker JE, Baulcombe DC (2002) An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J 29:569-579
    127. Penfield S, Meissner RC, Shoue DA, Carpita NC, Bevan MW (2001) MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. Plant Cell 13:2777-2791
    128. Peng JL, Bao ZL, Dong HS, Ren HY, Wang JS (2004a) Expression of harpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathol 94: 1048-1055
    129. Peng JL, Dong H, Bao ZL, Li P, Chen GY, Wang JS (2004b) Harpinxoo and its functional domains activate pathogen-inducible plant promoters in Arabidopsis. Acta Bot Sinica 46:1083-1090
    130. Peng JL, Dong HS, Dong HP, Delaney TP, Bonasera BM, Beer SV (2003) Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiol Mol Plant Pathol 62:317-326
    131. Pontier D, Tronchet M, Rogowsky P, Lam E, Roby D (1998) Activation of hsr203, a plant gene expressed during incompatible plant-pathogen interactions, is correlated with programmed cell death. Mol Plant-Microbe Interact 11:544-554
    132. Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F Box proteins: EBF1 and EBF2. Cell 115:679-689
    133. Powell G, Tosh CR, Hardie J (2006) Host plant selection by aphids:behavioral, evolutionary, and applied perspectives. Annu Rev Entomol 51:309-330
    134. Preston G, Huang HC, He SY, Collmer A (1995) The HrpZ proteins of Pseudomonas syringae pvs. syringae, glycinea, and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not soybean. Mol Plant-Microbe Interact 5:717-732
    135. Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev 23: 512-21
    136. Qiu D, Wei ZM, Bauer DW and Beer SV (1997) Treatment of tomato seed with harpin enhances germination and growth and induces resistance to Ralstonia solanacearum. Phytopathology 87:80
    137. Qu C, Hall BP, Gao Z, Schaller GE (2007) A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1.BMCPlantBiol7:3
    138. Rabinowicz PD, Braun EL, Wolfe AD, Bowen B, Grotewold E (1999) Maize R2R3 Myb gene: Sequence analysis reveals amplification in the higher plants. Genetics 153:427-444
    139. Raghavan C, Ong EK, Dalling MJ, Stevenson TW (2006) Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct Integr Genomics 6:60-70
    140. Rao MV, Lee H, Creelman RA, Mullet JE, Davis KR (2000) Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell 12:1633-1646
    141. Read SM, Northcote DH (1983) Subunit structure and interactions of the phloem proteins of Cucurbita maxima (pumpkin). Euro J of Biochem 134,561-569
    142. Reboutier D, Frankart C, Briand J, Biligui B, Rona JP, Haapalainen M, Barny MA, Bouteau F (2007) Antagonistic action of harpin proteins:HrpWEa from Erwinia amylovora suppresses HrpNEa-induced cell death in Arabidopsis thaliana. J Cell Sci 120:3271-3278
    143. Ren HY, Gu G, Long J, Yin Q, Wu T, Song T, Zhang S, Chen Z, Dong H (2006) Combinative effects of a bacterial type-III effector and a biocontrol bacterium on rice growth and disease resistance. J Biosci 31:617-627
    144. Ren X, Liu F, Bao Z, Zhang C, Wu X, Chen L, Liu R, Dong H (2008) Root growth of Arabidopsis thaliana is regulated by ethylene and abscisic acid signaling interaction in response to HrpNEa, a bacterial protein of harpin group. Plant Mol Biol Rep 26:225-240
    145. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000)
    Arabidopisis transcription factors:genome-wide comparative analysis among eukaryotes. Science, 290:2105-2110
    146. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633-646
    147. Rodriguez F, Esch J, Hall A, Binder B, Schaller GE, Bleecker AB (1999) A copper cofactor for the ETR1 receptor from Arabidopsis. Science 283:996-998
    148. Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana:five novel mutant loci integrated into a stress response pathway. Gentics 139:1393-1409
    149. Rose JKC (2003) The plant cell wall. Oxford:CRC Press, ISBN 9781841273280
    150. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and coldinducible gene expression. Biochem Biophys Res Commun 290: 998-1009
    151. Salmond GPC, Reeves PG (1993) Membrane traffic wardens and protein-secretion in Gram-negative bacteria. Trends Biochem Sci 18:7-12
    152. Sambrook J, Russell DW (2001) Molecular Cloning, A Laboratory Manual.3rd ed. New York:Cold Spring Harbor Laboratory Press, ISBN 0879695773
    153. Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulphate-polyacrylamid gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368-379
    154. Schaller GE and Bleecker AB (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270:1809-1811
    155. Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003). An EREBP/AP2 type protein in Triticum aestivum was a DRE binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923-930
    156. Shigyo M, Ito M (2004) Analysis of gymnosperm two-AP2-domaincontaining genes. Dev Genes Evol214:105-114
    157. Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ, Schachtman DP (2007) The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell 19: 2440-2453
    158. Singh K, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430-436
    159. Sohn SI, Kim YH, Kim BR, Lee SY, Lim CK, Hur JH, Lee JY (2007) Transgenic tobacco expressing the hrpNEP gene from Erwinia pyrifoliae triggers defense responses against botrytis cinerea. Mol Cells:2232-239
    160. Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling:a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE FACTOR1. Genes Dev 12:3703-3714
    161. Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CMJ (2003) NPR1 modulates cross-talking between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760-770
    162. Stocking EJ, Gilmour SJ, Thomashow MT (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acaid Sci USA 94:1035-1040
    163. Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447-456
    164. Strobel RN, Gopalan JS, Kuc JA, He SY (1996) Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZPss protein. Plant J 9:431-439
    165. Stuiver MH, Custers JHHV (2001) Engineering disease resistance in plants. Nature 411:865-868
    166. Subramanian S, Kondaiah P, Adiga PR (2002) Expression, purification, and characterization of minimized chicken riboflavin carrier protein from a synthetic gene in Escherichia coli. Protein Expres Purif 26:284-289
    167.Thomma BP, Eggermont K, Tierens KF, Broekaert WF (1999) Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121:1093-1102
    168.Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95:15107-15111
    169. Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defense induction by phloem-feeding insects. J Exp Bot 3:1-12
    170. Tjallingii F (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57:739-745
    171.Tjallingii WF, Hogen Esch TH (1993) Fine structure of aphid stylet routes in plant tissues in combination with EPG signals. Physiological Entomology 18:317-328
    172.Urao T, Kazuko YS, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:1529-1539
    173. Van der Ent S, Verhagen BW, Van Doom R, Bakker D, Verlaan MG, Pel MJ, Joosten RG, Proveniers MC, Van Loon LC, Ton J, Pieterse CM (2008) MYB72 Is Required in Early Signaling Steps of Rhizobacteria-Induced Systemic Resistance in Arabidopsis. Plant Physiol 146:1293-1304
    174. van der Fits L, Memelink J (2001) The jasmonate-inducible AP2/ERF-domain transcription factors ORCA3 activates gene expression via interaction with a jasmonate responsive promotor element. Plant J 25:43-53
    175. van der Graaff E, den Dulk-Ras A, Hooykaas PJJ, Keller B (2000) Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development 127: 4971-4980
    176. van Verk MC, Pappaioannou D, Neeleman L, Bol, JF, Linthorst HJ (2008) A Novel WRKY Transcription Factor Is Required for Induction of PR-la Gene Expression by Salicylic Acid and Bacterial Elicitors. Plant Physiol 146:1983-1995
    177. Varma PR, Uribe P, Anderson J, Lichtenzveig J, Gish JC, Nam YW, Engstrom E, Xu K, Sckisel G, Pereira M (2008) The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J 55:580-595
    178. Wang B, Boulter D, Gatehouse JA (1994) Characterization and sequencing of cDNA clone encoding the phloem protein PP2 of Cucurbita pepo. Plant Mol Biol 24:159-170
    179. Wang X, Kong H, Ma H (2009) F-box proteins regulate ethylene signaling and more. Genes Dev 23: 391-396
    180. Wang X, Li M Zhang J, Zhang Y Zhang G, Wang J (2007) Identification of a key functional region in harpins from Xanthomonas that suppresses protein aggregation and mediates harpin expression in E. coli. Mol Biol Rep 34:189-198
    181. Wei ZM, Beer S (1996) Harpin from Erwinia amylovora induces plant resistance. Acta Hortic 411: 223-225
    182. Wei ZM, Fan H, Stephens JJ, Beer SV, Laby RJ (2005) Hypersensitive response elicitor fragments which are active but do not elicit a hypersensitive response. United States Patent 6858707
    183. Wei ZM, Lacy RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85-88
    184. Wei ZM, Qiu D, Kropp MJ, Schading RL (1998) Harpin, an HR elicitor, activates both defense and growth systems in many commercially important crops. Phytopathol 88:S96
    185. Wen W, Wang J (2001) Cloning and expressing a harpin gene from Xanthomonas oryzae pv. oryzae. Phytopathol 31:296-300
    186. Will T, van Bel AJE (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57:729-737
    187. Wu X, Wu T, Long J, Yin Q, Zhang Y, Chen L, Liu R, Gao T, Dong H (2007) Productivity and biochemical properties of green tea in response to a bacterial type-Ⅲ effector protein and its variants. J Biosci 32:000-000
    188. Wuitschick JD, Lindstrom PR, Meyer AE, Karrer KM (2004) Homing endonucleases encoded by germ line-limited genes in Tetrahymena thermophila have APETALA2 DNA binding domains. Eukaryot Cell 3:685-694
    189. Xie DX, Chen Z (2000) Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. Mol Plant-Microbe Interact 13:183-190
    190. Yan FS (1995) The probing movement and expression and track research method in the stylet of aphid. Chin J Zool 30:40-44
    191. Yanhui et al (2006) The MYB transcription factor superfamily of Arabidopsis:expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107-124
    192. Yoo S, Cho Y, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signaling. Nature 451:789-795
    193. Zeng Y, Li Z, Yang Z, Wang X, She S, Zhang S (2001) Ecological and genetic diversity of rice germplasm resources in Yunnan, China. Plant Genet Resour News Lett 125:24-28
    194. Zhang C, Bao Z, Liang Y, Yang X, Wu X, Hong X, Dong H (2007) Abscisic acid mediates Arabidopsis drought tolerance induced by HrpNEa in the absence of ethylene signaling. Plant Mol Biol Rep 25:98-114
    195. Zhang J, Peng Y, Guo Z (2007) Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res 18:508-521
    196. Zhang Y, Cao G, Qu LJ, Gu H (2009) Involvement of an R2R3-MYB transcription factor gene AtMYB118 in embryogenesis in Arabidopsis. Plant Cell Rep 28:337-346
    197. Zhang Y, Wang L (2005) The WRKY transcription factor superfamily:its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1
    198. Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 7:2
    199. Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21: 248-266
    200. Zhu WG, Magbanua MM, White FF (2000) Identification of two novel hpaG-associated genes in the hpaG gene cluster of Xanthomonas oryzae pv. oryzae. J Bacteriol 182:1844-1853
    201. Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew TW, Teng PS, Wang Z, Mundt CC (2000) Genetic diversity and disease control in rice. Nature 406:718-722
    202. Zhu Z, Guo H (2008) Genetic basis of ethylene perception and signal transduction in Arabidopsis. J Integr Plant Biol 50:808-815
    203. Zitter TA, Beer SV (1998) Harpin for insect control. Phytopathol 88:S104-S105
    204. Zou MG, Ren Y, Zhang H, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675-683
    205.刘强,赵南明,Yamaguch-Shinozaki K (2000) DREB转录因子在提高植物抗逆性中的作用.科学通报45:11-16
    206.刘良式(1998)植物分子遗传学.北京:科学出版社
    207.方仲达(1997)植病研究法.中国农业出版社
    208.李平(2002)水稻黄单胞菌无毒基因avr3的克隆与鉴定以及过敏反应激发子Hrf蛋白质遗传多样性和功能域的研究.博士学位论文,南京农业大学
    209.赵立平,梁元存,刘爱新,董汉松(1997)表达Harpin基因的大肠杆菌DH5 a (PCPP430)诱导抗性研究.高技术通讯7:14
    210.闻伟刚(2001)水稻黄单胞菌过敏性反应激发子的研究.博士学位论文,南京农业大学
    211.霍大勇,沈黎明(1998)逆境胁迫诱导基因的结构、功能与表达调控.生物化学与生物物理进展25:216-221
    212.黄骥,王建飞,张红生(2004)植物C2H2型锌指蛋白的结构和功能.遗传26:414-418

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700