用户名: 密码: 验证码:
锌指蛋白HZF1基因功能和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体内血细胞的生产是由骨髓中的造血干细胞(Hematopoietic Stem Cells,HSCs)负责的。造血干细胞相继定向到不同链系祖细胞,再进一步成为更为限制的链系前体细胞并进而继续分化发育成不同类型血细胞(红细胞、白细胞、巨核细胞和淋巴细胞等)。这些过程受到转录因子和造血生长因子的调控。这些转录因子有一部分是锌指蛋白。它们在造血发育的各个过程中扮演着重要角色,构成了造血过程中细胞分化的内在基因表达程序的重要部分。
     2000年,本实验室从人骨髓cDNA文库中筛选到一个新的编码锌指蛋白的cDNA序列(GenBank注册号:AF244088),命名为HZF1。HZF1编码670个氨基酸残基,其中包含连续的15个C2H2型和2个C2R2型锌指模体。HZF1 mRNA在人各个器官中均有表达,在各种造血细胞系中也都有表达。反义RNA和RNA干扰实验结果都表明,HZF1内源表达被阻遏时,hemin诱导的K562红系分化被抑制,PMA诱导的巨核系分化明显减弱。这表明锌指蛋白HZF1在K562细胞红系分化和巨核系分化过程中具有重要作用。本论文在实验室已有的研究基础上,利用酵母双杂交系统、信号转导激酶检测和基因芯片技术对HZF1基因的功能和机制做了进一步研究。
     为了寻找在HZF1行使功能过程中与其相互作用的蛋白质,我们利用酵母双杂交系统,以HZF1基因的片段(H2)为诱饵蛋白,从人骨髓cDNA文库中筛选与HZF1相互作用的蛋白。从1478个克隆中初步鉴定出了288个阳性克隆,进行表型检测排除了59个假阳性;对剩下的229个阳性克隆进行分类后,进行序列测定,再利用NCBI网站上的在线软件BLAST对这些cDNA序列进行分析,排除非编码序列,排除编码框不正确的序列,对重复的序列进行归类,最后找到了30个编码正确的cDNA序列,这些序列编码的蛋白可能与HZF1发生相互作用。这些蛋白包括细胞周期相关蛋白、真核转录延伸因子、核糖体蛋白、细胞分化相关蛋白、免疫相关蛋白和肌肉分化相关蛋白等,还包括两个假想蛋白。随后,我们进行二次转化实验,排除了2个自激活的假阳性克隆。经过进一步的分析和比较,我们选择8-23、15-83和11-20这三个阳性克隆作为深入研究的对象。8-23是INCA1(inhibitor of CDK interacting with cyclin A1)基因一个剪接体的编码区的一部分,15-83是FHL1(four and a half LIM domains 1)基因编码区的一部分,11-20是ZNF7(zinc finger protein 7)基因编码区的一部分。我们利用PCR方法克隆得到了FHL1的全长cDNA序列。
     随后,用免疫共沉淀的方法进一步确认相互作用的存在。首先构建HZF1基因片段H2与FLAG标签的融合表达质粒以及FHL1、INCA1片段和ZNF7片段与myc标签的融合表达质粒,进而将H2-FLAG融合表达质粒分别与FHL1-myc、INCA1-myc和ZNF7-myc融合表达质粒共转染HEK293T细胞,48小时后收集细胞,用小鼠源anti-FLAG单克隆抗体进行免疫共沉淀实验,最后利用小鼠源单克隆抗体anti-FLAG和anti-myc进行Western Blot检测。Western Blot实验结果表明,HZF1可分别与FHL1和INCA1发生相互作用,但是不能和ZNF7发生相互作用。
     用Real-time PCR检测了INCA1在hemin诱导K562细胞向红系分化过程中的表达变化情况。用hemin诱导K562细胞向红系分化,在0、12、24和48h收集细胞,提取RNA,反转录后,进行Real-time PCR检测。结果表明,INCA1在K562红系诱导分化过程中表达水平上升,24小时达到最高,与HZF1的变化趋势一致。这表明HZF1和INCA1可能在红系分化过程中协同发挥作用。
     为了分析K562细胞诱导分化过程中HZF1表达阻遏前后ERK信号通路的变化,我们检测了细胞中ERK和MEK磷酸化水平的变化。用HZF1内源表达被RNAi抑制的稳定转染株K562/pAVu6HZFli和对照细胞K562/pAVu6进行实验,我们发现在未使用诱导剂诱导的情况下K562/pAVu6HZFli细胞中ERK和MEK的磷酸化水平要高于对照细胞K562/pAVu6。在诱导过程中,K562/pAVu6HZFli细胞中ERK和MEK的磷酸化水平也比对照细胞K562/pAVu6要高,但变化趋势与对照细胞基本一致。这说明HZF1可能通过调节ERK信号通路参与红系和巨核系分化的调节。
     为了获得HZF1功能机制的更多线索,我们利用基因芯片检测了RNA干扰抑制HZF1表达前后K562细胞的基因表达差异。使用Affymetrix的在线分析中心(TheNetAffy~(TM) Analysis Center,www,affymetrix.com)对结果进行了分析,并对表达升高或降低的基因根据功能进行了分类,发现与信号转导、发育、分化、转录调节和细胞周期相关的基因占了很大比例。
     我们的实验结果确认了HZF1与INCA1(cyclinA1-CDK复合物的一个抑制因子)的相互作用。同时,我们也发现HZF1被抑制后,K562细胞分化受到抑制,ERK和MEK的磷酸化水平升高。结合利用基因芯片分析HZF1表达阻遏后基因表达变化的结果,我们推测HZF1可能通过影响ERK信号途径和细胞周期调节促进K562细胞分化。
Human mature blood cells derive from Hematopoietic Stem Cells(HSCs). Commitment of stem cells to specific hematopoietic lineages and further differentiation and development mature of the committed cells are controlled at least partially through the combinatorial action of lineage-restricted and more widely expressed transcription factors. Some transcription factors containing C2H2 zinc finger motif have been found to play an important part in differentiation and development of blood cells.
     In 2000, we cloned a novel zinc finger cDNA HZF1 (GenBank accession No. AF244088) by screening a human bone marrow cDNA library. The HZF1 encodes 670 amino acid residues including 15 typical C2H2 and 2 C2RH zinc finger motifs. The HZF1 mRNA was expressed extensively and highly in brain, heart, skeletal muscle and fetal liver. The HZF1 mRNA was detected in various hematopoietic cell lines. The repression of intrinsic expression of HZF1 was also revealed in K562/pAVu6HZF1i transfectant cells and the hemin-induced erythroid differentiation of K562 cells was significantly blocked and the PMA-induced megakaryocytic differentiation was obviously reduced. All these results proved that the zinc finger protein HZF1 play an important role in the erythroid and megakaryocytic differentiation of K562 cells. Based on these results, my study focused on the research of the functions of HZF1 by yeast two hybrid, monitoring the ERK signaling pathway and the analysis of gene chip.
     To finding the proteins interacting with HZF1, yeast two hybrid was used by screening a human bone marrow cDNA library and using the fragment of HZF1 as the bait protein. 288 candidated positive clones which was identified from 1478 clones was retested phenotypes, then 59 false positive clones was excluded. 229 candidated positive clones was sorted and sequenced, then blasted on the NCBI website. The non-coding cDNA sequence and the cDNA sequence which could not the correct protein was excluded, finally 30 cDNA sequences which ORF were correct were found. These protein was involved in eukaryotic translation elongation, differatiation, cell cycle and immune etc. Two false positive clones that could autonomously the report gene was excluded by the bait and prey plasmid cotransform experiment. Three positive clones 8-23、15-83 and 11-20 was choosed to proceed the next study. 8-23 is the part of the ORF of inhibitor of CDK interacting with cyclin A1 (INCA1). 15-83 is the part of the ORF of four and a half LIM domains 1 (FHL1). 11-20 is the part of the ORF of zinc finger protein 7 (ZNF7). The full coding sequence of FHL1 was cloned from the cDNA. The interaction of HZF1 and INCA1, as well as the interaction of HZF1 and FHL1, were confirmed by CoIP and Western Blot experiments, but the interaction of HZF1 and ZNF7 wasn't found.
     The expression of INCA1 during the the hemin-induced erythroid differentiation of K562 cells was detected by real-time PCR. The result showed INCA1 mRNA expression increased following erythroid differentiation of K562 cells induced by hemin and reached its crest at 24h, which was consistent with the case of HZF1.
     To study the change of ERK signaling pathway during the hemin-induced erythroid differentiation or the PMA-induced megakaryocytic differentiation of K562 cell line when the intrinsic expression of HZF1 was repressed, phosphorylation of ERK and MEK in K562/pAVu6HZF1i (intrinsic expression of HZF1 repressed by RNAi) and the control K562/pAVu6 were detected by Western Blot experiment. Whether the induce agents were exist or not, the phosphorylation of ERK and MEK were higher than the control cells K562/pAVu6. During the hemin- or PMA-induced differentiation of K562/pAVu6HZF1i, the change of phosphorylation of ERK and MEK as time was going were the same as the K562/pAVu6 cells. These results suggested that the repression of HZF1 probably effected the expression of some genes upstream MEK gene, resulting in the increase of phosphorylation of ERK and MEK.
     In order to find more clues to study the function of HZF1, the differention of gene expression between K562/pAVu6HZF1i and K562/pAVu6 was detected by using gene chip. Then, the results were analysized using the The NetAffy~(TM) Analysis Center(www.affymetrix.com). The genes that their expression increased or decreased were found and sortsed according to their functions. A number of genes involved signal transduction, cell cycle, differentiation, development and transcript regulation etc.
     INCA1, the interaction partner of HZF1, was found and confirmed in our study. INCA1( inhibitor of CDK interacting with cyclin A1) is a inhibitor of cyclin A1-CDK complex. The results also showed when the differentiation was repressed, the phosphorylation of ERK and MEK increased. Combination with the results of gene chip analysis, these results suggested HZF1 probably promotes the differentiation of K562 cell line by effecting ERK signaling pathway and regulating cell cycle.
引文
1. Grover C, Bagby Jr. Hematopoiesis. In: Stamatoyannopoulos G, Nienhuis AW, Majerus PW, Varmus H (eds) The molecular basis of blood diseases, 2nd ed. 1994, Saunders, Philadelphia, pp 107-155
    2. Bellantuono I. Haemopoietic stem cells. Int J Biochem Cell Biol, 2004, 36(4): 607-620
    3. Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol, 2002, 2(3): 162-174
    4. Stoffel R, Ziegler S, Ghilardi N, Ledermann B, de Sauvage F J, Skoda R C. Permissive role of thrombopoietin and granulocyte colony-stimulating factor receptors in hematopoietic cell fate decisions in vivo. Proc Natl Acad Sci U S A, 1999, 96(2):698-702
    5. Socolovsky M, Lodish H F, Daley G Q. Control of hematopoietic differentiation: lack of specificity in signaling by cytokine receptors. Proc Natl Acad Sci U S A, 1998, 95(12):6573-6575
    6. Orkin S H. GATA-binding transcription factors in hematopoietic cells. Blood, 1992, 80(3):575-581
    7. Cantor A B, Orkin S H. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene, 2002, 21 (21):3368-3376
    8. Yamamoto M, Takahashi S, Onodera K, Muraosa Y, Engel J D. Upstream and downstream of erythroid transcription factor GATA-1.Genes Cells, 1997 2(2): 107-115
    9. Takahashi S, Komeno T, Suwabe N, Yoh K, Nakajima O, Nishimura S, Kuroha T, Nagasawa T, Yamamoto M. Role of GATA-1 in proliferation and differentiation of definitive erythroid and megakaryocytic cells in vivo. Blood, 1998, 92(2):434-442.
    10. Ferreira R, Ohneda K, Yamamoto M, Philipsen S. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol, 2005, 25(4): 1215-1227.
    11. Sposi N M, Zon L I, Care A, Valtieri M, Testa U, Gabbianelli M, Mariani G, Bottero L, Mather C, Orkin S H, et al. Cell cycle-dependent initiation and lineage-dependent abrogation of GATA-1 expression in pure differentiating hematopoietic progenitors. Proc Natl Acad Sci U S A, 1992, 89(14):6353-6357
    12. Martin D I, Zon L I, Mutter G, Orkin S H. Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature, 1990, 344(6265):444-447
    13. Ito E, Toki T, Arai K, Kawauchi K, Tsuda H, Yokoyama M. Expression of a lineage specific transcriptional factor GATA-1 in leukaemic blasts from patients with infantile leukaemia. Br J Haematol, 1992, 80(4):561-563
    14. Labbaye C, Valtieri M, Barberi T, Meccia E, Masella B, Pelosi E, Condorelli GL, Testa U, Peschle C. Differential expression and functional role of GATA-2, NF-E2, and GATA-1 in normal adult hematopoiesis. J. Clin. Invest, 1995, 95(5):2346-2358
    15. Leonard M, Brice M, Engel J D, Papayannopoulou T. Dynamics of GATA transcription factor expression during erythroid differentiation. Blood, 1993, 82(4): 1071-1079
    16. Mouthon M A, Bernard 0, Mitjavila M T, Romeo P H, Vainchenker W, Mathieu-Mahul D. Expression of tal-1 and GATA-binding proteins during human hematopoiesis. Blood, 1993, 81(3):647-655
    17. Yamamoto M, Ko L J, Leonard M W, Beug H, Orkin S H, Engel J D. Activity and tissue-specific expression of the transcription factor NF-E1 multigene family. Genes Dev, 1990, 4(10):1650-1662
    18. Zon L I, Yamaguchi Y, Yee K, Albee E A, Kimura A, Bennett J C, Orkin S H, Ackerman SJ. Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: potential role in gene transcription. Blood, 1993, 81(12):3234-3241
    19. Orkin S H. Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet, 2000, l(1):57-64
    20. Perry C, Soreq H. Transcriptional regulation of erythropoiesis. Fine tuning of combinatorial multi-domain elements. Eur J Biochem, 2002, 269(15):3607-3618
    21. Koipally J, Heller E J, Seavitt J R, Georgopoulos K. Unconventional potentiation of gene expression by Ikaros. J Biol Chem, 2002, 277(15):13007-13015
    22. Rebollo A, Schmitt C. Ikaros, Aiolos and Helios: transcription regulators and lymphoid malignancies. Immunol Cell Biol, 2003, 81(3): 171-175
    23. Osawa M, Yamaguchi T, Nakamura Y, Kaneko S, Onodera M, Sawada K, Jegalian A, Wu H, Nakauchi H, Iwama A. Erythroid expansion mediated by the Gfi-IB zinc finger protein: role in normal hematopoiesis. Blood, 2002,100(8):2769-2777
    24. Miller I J, Bieker J J. A novel erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol, 1993, 13(5):2776-2786
    25. Turner J, Crossley M. Basic Kruppel-like factor functions within a network of interacting haematopoietic transcription factors. Int J Biochem Cell Biol, 1999, 31(10):1169-1174
    26. Kirberg J, Gschwendner C, Dangy J P, Ruckerl F, Frommer F, Bachl J. Proviral integration of an Abelson-murine leukemia virus deregulates BKLF-expression in the hypermutating pre-B cell line 18-81. Mol Immunol, 2005, 42(10):1235-1242.
    27. Turner J, Crossley M. Cloning and characterization of mCtBP2, a co-repressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators. EMBO J, 1998, 17(17):5129-5140
    28. Osawa M, Yamaguchi T, Nakamura Y, Kaneko S, Onodera M, Sawada K, Jegalian A, Wu H, Nakauchi H, Iwama A. Erythroid expansion mediated by the Gfi-IB zinc finger protein: role in normal hematopoiesis. Blood, 2002,100(8):2769-2777
    29. Fields S, Song 0. A novel genetic system to detect protein-protein interactions. Nature, 1989, 340(6230):245-246
    30. Woessmann W, Mivechi N F. Role of ERK activation in growth and erythroid differentiation of K562 cells. Exp Cell Res, 2001, 264(2): 193-200
    31. Ray L B, Sturgill T W. Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc Natl Acad Sci U S A, 1987, 84(6): 1502-1506.
    32. Herrera R, Hubbell S, Decker S, Petruzzelli L. A role for the MEK/MAPK pathway in PMA-induced cell cycle arrest: modulation of megakaryocytic differentiation of K562 cells. Exp Cell Res, 1998, 238(2):407-414
    33. Wodicka L, Dong H, Mittmann M, Ho M H, Lockhart D J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol, 1997,15(13):1359-1367
    34. Lockhart D J, Dong H, Byrne M C, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol, 1996, 14(13): 1675-1680
    35. DeRisi J, Penland L, Brown P O, et al. Use of a cDNA microarray to analysis gene expression patterns in human cancer. Nat Genet, 1996,14 (4) :457-460
    36. Brown P O, Botstein D. Exploring the new world of genome with DNA microarrays. Nat Genet, 1999,21(1 Suppl):33-37
    37. Jelinsky S, Samson L. Global response of Saccharomyces cerevisiae to a alkylating agent, Proc Natl Acad Sci U S A.1999, 96(4): 1486-1491
    38. Golub T, Slonim D, Tamayo P, et al, Molecular Classification of cancer: Class Discovery and Prediction by Gene Expression Monitoring. Science, 1999, 286(5439): 531-537
    39. von Mering C, Krause R, Sne B, et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 2002,417(6887):399-403
    40. Diederichs S, Baumer N, Ji P, Metzelder S K, et al. Identification of interaction partners and substrates of the cyclin A1-CDK2 complex. J Biol Chem, 2004, 279(32):33727-41
    41. Diederichs S, Baumer N, Schultz N, Hamra F K, Schrader MG, Sandstede ML, Berdel WE, Serve H, Müller-Tidow C. Expression patterns of mitotic and meiotic cell cycle regulators in testicular cancer and development. Int J Cancer, 2005, 116(2):207-l 7
    42. Lee S M, Tsui S K, Chan K K, Garcia-Barcelo M, Waye M M, Fung K P, Liew C C, Lee C Y. Chromosomal mapping, tissue distribution and cDNA sequence of four-and-a-half LIM domain protein 1 (FHL1). Gene, 1998: 216(1):163-170
    43. Yang Z, Browning C F, Hallaq H, Yermalitskaya L, Esker J, Hall MR, Link AJ, Ham AJ, McGrath MJ, Mitchell CA, Murray KT. Four and a half LIM protein 1: a partner for KCNA5 in human atrium. Cardiovasc Res. 2008 Mar 13[Epub ahead of print]
    44. McGrath M J, Cottle D L, Nguyen M A, Dyson J M, Coghill I D, Robinson PA, Holdsworth M, Cowling BS, Hardeman EC, Mitchell CA, Brown S. Four and a half LIM protein 1 binds myosin-binding protein C and regulates myosin filament formation and sarcomere assembly. J Biol Chem, 2006, 281(11):7666-7683
    45. Schessl J, Zou Y, McGrath M J, Cowling B S, Maiti B, et al. Proteomic identification of FHL1 as the protein mutated in human reducing body myopathy. J Clin Invest. 2008, 118(3):904-92
    46. Quinzii C M, Vu T H, Min K C, Tanji K, Barral S, et al. X-linked dominant scapuloperoneal myopathy is due to a mutation in the gene encoding four-and-a-half-LIM protein 1. Am J Hum Genet, 2008, 82(1):208-13
    47. Teran-Garcia M, Rankinen T, Rice T, Leon A S, Rao D C, Skinner J S, Bouchard C. Variations in the four and a half LIM domains 1 gene (FHL1) are associated with fasting insulin and insulin sensitivity responses to regular exercise.Diabetologia, 2007, 50(9): 1858-1866
    48. Lozzio C B, Lozzio B B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood, 1975,45(3):321-334
    49. Baliga B S, Mankad M, Shah A K, Mankad V N. Mechanism of differentiation of human erythroleukaemic cell line K562 by hemin. Cell Prolif, 1993, 26(6):519-529
    50. Tabilio A, Pelicci P G, Vinci G, Mannoni P, Civin C I, Vainchenker W, Testa U, Lipinski M, Rochant H, Breton-Gorius J. Myeloid and megakaryocytic properties of K-562 cell lines. Cancer Res, 1983, 43(10):4569-4574
    51. Colamonici O R, Trepel J B, Neckers L M. Phorbol ester enhances deoxynucleoside incorporation while inhibiting proliferation of K-562 cells. Cytometry, 1985, 6(6):591-596
    52. Sanchez-Prieto R, Rojas J M, Taya Y, Gutkind J S. A role for the p38 mitogen-activated protein kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents. Cancer Res, 2000, 60(9):2464-2472
    53. Miranda M B, McGuire T F, Johnson D E. Importance of MEK1/2 signaling in monocytic and granulocytic differentiation of myeloid cell lines. Leukemia, 2002, 16(4): 683-92.
    54. Witt O, Sand K, Pekrun A. Butyrate-induced erythroid differentiation of humin K562 leukemia cells involves inhibition of ERK and P38 MAP Kinase pathways Blood, 2000, 95(7): 2391-2396
    55. Woessmann W, Mivechi N F. Role of ERK activation in growth and erythroid differentiation of K562 cells. Exp Cell Res, 2001, 264(2): 193-200
    56. Hietakangas V, Elo I, Rosenstrom H et al. Activation of the MKK4-JNK pathway during erythroid differentiation of K562 cells is inhibited by the heat shock factor 2-beta isoform. FEBS Lett, 2001, 505(1): 168-172
    57. Woessmann W, Zwanzger D, Borkhardt A. ERK signaling pathway is differentially involved in erythroid differentiation of K562 cells depending on time and the inducing agent. Cell Biol Int, 2004, 28(5):403-410
    58. Whalen A M, Galasinski S C, Shapiro P S, Nahreini TS, Ahn N G. Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase. Mol Cell Biol, 1997, 17(4): 1947-1958
    59. Racke F K, Lewandowska K, Goueli S, Goldfarb A N. Sustained activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway is required for megakaryocytic differentiation of K562 cells. J Biol Chem, 1997, 272(37):23366-23370
    60. Herrera R, Hubbell S, Decker S, Petruzzelli L. A role for the MEK/MAPK pathway in PMA-induced cell cycle arrest: modulation of megakaryocytic differentiation of K562 cells. Exp Cell Res, 1998, 238(2):407-414
    61. Lee C H, Yun H J, Kang H S, Kim H D. ERK/MAPK pathway is required for changes of cyclin D1 and B1 during phorbol 12-myristate 13-acetate-induced differentiation of K562 cells. IUBMB Life, 1999,48(6):585-591
    62. Clyde-Smith J, Silins G, Gartside M, Grimmond S, Etheridge M, Apolloni A, Hayward N, Hancock J F. Characterization of RasGRP2, a plasma membrane-targeted, dual specificity Ras/Rap exchange factor. J Biol Chem, 2000, 275(41):32260-32267
    63. Guo FF, Kumahara E, Saffen D. A CalDAG-GEFI/Rapl/B-Raf cassette couples M(1) muscarinic acetylcholine receptors to the activation of ERK1/2. J Biol Chem, 2001 276(27):25568-25581
    64. Demiroglu A, Steer EJ, Heath C, Taylor K, Bentley M, Allen SL, et al. The t(8;22) in chronic myeloid leukemia fuses BCR to FGFR1: transforming activity and specific inhibition of FGFR1 fusion proteins. Blood, 2001, 98(13):3778-3783
    65. Tassi E, Al-Artar A, Aigner A, Swift M R, McDonnell K, Karavanov A, Wellstein A. Enhancement of fibroblast growth factor (FGF) activity by an FGF-binding protein. J Biol Chem, 2001, 276(43):40247-53
    66. Ariyaratana S, Loeb D M. The role of the Wilms tumour gene (WT1) in normal and malignant haematopoiesis. Expert Rev Mol Med, 2007, 9(14):1-17
    67. Roberts SG. The modulation of WTI transcription function by cofactors. Biochem Soc Symp. 2006, 73:191-201
    68. Saglio G, Carturan S, Grillo S, Capella S, Amiga F, et al. WTI overexpression: a clinically useful marker in acute and chronic myeloid leukemias. Hematology, 2005:10 Suppl 1:76-78
    69. Ishikawa H, Tsuyama N, Abroun S, Liu S, Li F J, Otsuyama K, Zheng X, Kawano M M. Interleukin-6, CD45 and the src-kinases in myeloma cell proliferation. Leuk Lymphoma, 2003,44(9): 1477-1481
    70. Collette M, Descamps G, Pellat-Deceunynck C, Bataille R, Amiot M. Crucial role of phosphatase CD45 in determining signaling and proliferation of human myeloma cells. Eur Cytokine Netw, 2007,18(3):120-126
    71. Ewings K E, Hadfield-Moorhouse K, Wiggins C M, Wickenden J A, Balmanno K, Gilley R, Degenhardt K, White E, Cook SJ. ERK1/2-dependent phosphorylation of BimEL promotes its rapid dissociation from Mcl-1 and Bcl-xL. EMBO J, 2007, 26(12):2856-2867
    72. Anderton E, Yee J, Smith P, Crook T, White R E, Allday M J. Two Epstein-Barr virus (EBV) oncoproteins cooperate to repress expression of the proapoptotic tumour-suppressor Bim: clues to the pathogenesis of Burkitt's lymphoma. Oncogene, 2008, 27(4):421-433
    73. Deng J, Shimamura T, Perera S, Carlson N E, Cai D, Shapiro G I, Wong K K, Letai A. Proapoptotic BH3-only BCL-2 family protein BIM connects death signaling from epidermal growth factor receptor inhibition to the mitochondrion. Cancer Res, 2007 67(24): 11867-11875
    74. Earnshaw W C, Martins L M, Kaufmann S H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem, 1999, 68: 383-424.
    75. Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol, 2004, 165(3):347-356
    76. Baker S J, Reddy E P. Cloning of murine G1RP, a novel gene related to Drosophila melanogaster gl. Gene, 2000, 248(1-2):33-40
    77. Guais A, Siegrist S, Solhonne B, Jouault H, Guellaen G, Bulle F. h-Goliath, paralog of GRAIL, is a new E3 ligase protein, expressed in human leukocytes. Gene, 2006, 374:112-120
    78. de Souza P M, Lindsay M A. Mammalian Sterile20-like kinase 1 and the regulation of apoptosis. Biochem Soc Trans, 2004, 32(Pt3):485-488
    79. De Souza P M, Kankaanranta H, Michael A, Barnes P J, Giembycz M A, Lindsay M A. Caspase-catalyzed cleavage and activation of Mstl correlates with eosinophil but not neutrophil apoptosis. Blood. 2002 99(9):3432-8.
    80. Zhang L, Gjoerup 0, Roberts T M. The serine/threonine kinase cyclin G-associated kinase regulates epidermal growth factor receptor signaling. Proc Natl Acad Sci U S A, 2004, 101(28):10296-301
    81. Kanaoka Y, Kimura S H, Okazaki I, Ikeda M, Nojima H. GAK: a cyclin G associated kinase contains a tensin/auxilin-like domain. FEBS Lett, 1997, 402(1):73-80
    82. Kimura S H, Tsuruga H, Yabuta N, Endo Y, Nojima H. Structure, expression, and chromosomal localization of human GAK. Genomics, 1997,44(2): 179-187
    83. Lohr K, Moritz C, Contente A, Dobbelstein M. p21/CDKN1A mediates negative regulation of transcription by p53. J Biol Chem, 2003, 278(35):32507-32516
    84. Broude E V, Demidenko Z N, Vivo C, Swift M E, Davis B M, Blagosklonny M V, Roninson I B. p21 (CDKN1A) is a negative regulator of p53 stability. Cell Cycle, 2007, 6(12):1468-71
    85. Chen J, Huang X, Halicka D, Brodsky S, Avram A, Eskander J, Bloomgarden N A, Darzynkiewicz Z, Goligorsky M S. Contribution of pl6INK4a and p21CIPl pathways to induction of premature senescence of human endothelial cells: permissive role of p53. Am J Physiol Heart Circ Physiol, 2006, 290(4):H1575-1586
    86. Frouin I, Maga G, Denegri M, Riva F, Savio M, Spadari S, Prosperi E, Scovassi A I. Human proliferating cell nuclear antigen, poly(ADP-ribose) polymerase-1, and p21wafl/cipl. A dynamic exchange of partners. J Biol Chem, 2003, 278(41):39265-39268
    87. Kuo P C, Liu H F, Chao J I. Survivin and p53 modulate quercetin-induced cell growth inhibition and apoptosis in human lung carcinoma cells. J Biol Chem, 2004, 79(53):55875-55885
    88. Machuy N, Campa F, Thieck O, Rudel T. c-Abl-binding protein interacts with p21-activated kinase 2 (PAK-2) to regulate PDGF-induced membrane ruffles. J Mol Biol, 2007, 370(4):620-632
    89. Orton K C, Ling J, Waskiewicz A J, Cooper J A, Merrick W C,et al. Phosphorylation of Mnkl by caspase-activated Pak2/gamma-PAK inhibits phosphorylation and interaction of eIF4G with Mnk. J Biol Chem, 2004 , 279(37):38649-38657
    90. Jakobi R, McCarthy C C, Koeppel M A, Stringer D K. Caspase-activated PAK-2 is regulated by subcellular targeting and proteasomal degradation. J Biol Chem, 2003, 278(40):38675-38685
    91. Seizinger B R. Genes associated with tumor suppression and growth control in the human nervous system. Cancer Metastasis Rev, 1991, 10(4):281-287
    92. Brakensiek K, Langer F, Kreipe H, Lehmann U. Absence of p21(CIPl), p27(KIPl) and p57(KIP 2) methylation in MDS and AML. Leuk Res, 2005, 29(11):1357-13560
    93. Kobatake T, Yano M, Toyooka S, Tsukuda K, Aberrant methylation of p57KIP2 gene in lung and breast cancers and malignant mesotheliomas. Oncol Rep, 2004, 12(5): 1087-1092
    1. Giot L, Bader J S, Brouwer C, Chaudhuri A, Kuang B, et al. A protein interaction map of Drosophila melanogaster. Science, 2003, 302(5651): 1727-1736.
    2. Li S, Armstrong C M, Bertin N, Ge H, Milstein S, et al. A map of the interactome network of the metazoan C. elegans. Science, 2004, 303(5657):540-543.
    3. Krogan N J, Cagney G, Yu H, Zhong G, Guo X, et al.Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 2006,440(7084): 637-643.
    4. Gavin A C, Aloy P, Grandi P, Krause R, Boesche M, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature, 2006, 440(7084):631-636
    5. Schwikowski B, Uetr P, Fields S. A network of protein-protein interactions in yeast. Nat Biotehnol, 2000, 18(12):1257-1261
    6. Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature, 1989, 340(6230):245-246
    7. Coates P J, Hall P A. The yeast two-hybrid system for identifying protein-protein interactions. J Pathol, 2003,199(1):4-7
    8. Gao Y K, Jiang M, Yang T, Chen J Y. Analysis of the interaction between hPFTAIRE1 and PLZF in a yeast two-hybrid system. Acta Biochim Biophys Sin, 2006, 38(3): 164-170
    9. Turbpaiboon C, Limjindaporn T, Wongwiwat W, et al. Impaired interaction of alpha-haemoglobin-stabilising protein with alpha-globin termination mutant in a yeast two-hybrid system. Br J Haematol, 2006, 132(3):370-3
    10. Stokes P H, Thompson L S, Marianayagam N J, Matthews J M, Dimerization of CtIP may stabilize in vivo interactions with the Retinoblastoma-pocket domain. Biochem Biophys Res Commun, 354(1):197-202
    11. Nagao T, Higashitsuji H, Nonoguchi K, et al. MAGE-A4 interacts with the liver oncoprotein gankyrin and suppresses its tumorigenic activity. J Biol Chem, 2003, 278(12):10668-10674
    12. Chen Q, Chen J, Sun T, Shen J, et al.A yeast two-hybrid technology-based system for the discovery of PPAR gamma agonist and antagonist. Anal Bioehem, 2004, 335(2):253-259
    13. Suzuki H, Fukunishi Y, Kagawa I, et al. Protein-protein interaction panel using mouse full-length cDNAs. Genome Res, 2001, 11(10): 1758-1765
    14. Uetz P, Giot L, Cagney G, Mansfield T A, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000,403(6770): 623-627
    15. Uetz P. Two-hybrid arrays. Curr Opin Chem Biol, 2002, 6(1):57-62.
    16. Uetz P, Hughes R E. Systematic and large-scale two-hybrid screens. Curr Opin Microbiol, 2000, 3(3):303-308
    17. Rain J C, Selig L, De Reuse H, et al.The protein-protein interaction map of Helicobacter pyri.Nature,2001,409 (6817):211-215
    18. Giot L, Bader J S, Brouwer C, etal.A protein interaction map of Drosophila melanogaster.Science,2003,302(5651 ):1727-1736
    19. Li S M, Armstrong C M, Bertin N, et al. A map of the interactome network of the metazoan C elegans. Science, 2004. 303(5657):540-543
    20. Stelzl U, Worm U, Lalowski M, et al. A human protein-protein interaction network:a resource for annotating the proteome. Cell, 2005, 122(6):957-968
    21. Rual J F, Venkatesan K, Hao T, et al.Towards a proteome-scale map of the human protein-protein interaction network. Nature, 2005, 437(7062): 1173-1178
    22. von Mering C, Krause R, Sne B, et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 2002,417(6887):399-403
    23. Aronheim A, Zandi E, Hennemann H, Elledge S J, Karin M: Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol Cell Biol, 1997, 17(6):3094-3102
    24. Broder YC, Katz S, Aronheim A: The Ras recruitment system, a novel approach to the study of protein-protein interactions. Curr Biol, 1998, 8(20):1121-1124
    25. Ehrhard KN, Jacoby JJ, Fu XY, Jahn R, Dohlman HG: Use of G-protein fusions to monitor integral membrane protein-protein interactions in yeast. Nat Biotechnol, 2000, 18(10):1075-1079
    26. Stagljar I, Korostensky C, Johnsson N, te Heesen S: A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci USA, 1998, 95(9):5187-5192.
    27. Li J J, Herskowitz I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science, 1993, 262(5141): 1870-1873
    28. Liu J D, Wilson T E, Milbrandt J, Johnston M. Identifying DNA binding sites and analyzing DNA-binding domains using a yeast selection system. Methods, 1993, 5: 125-137
    29. Sengupta D J, Zhang B, Kraemer B, et al. A three-hybrid system to detect RNA-pro-tein interactions in vivo. Proc Natl Acad Sci, 1996, 93(16): 8496-8501
    30. Hu J C, Kornacker M G, Hochschild A. Escherichia coli one-and two-hybrid systems for the analysis and identification of protein-protein interactions. Methods, 2000, 20(1): 80-94
    31. Leeds J A, Beckwith J. Lambda repressor N-terminal DNA-binding domain as an assay for protein transmembrane segment interactions in vivo. J Mol Biol, 1998, 280(5): 799-810
    32. Zhang Z, Murphy A, Hu J C, Kodadek T. Genetic selection of short peptides that support protein oligomerization in vivo. Curr Biol, 1999, 9(8):417-420.
    33. Di Lallo G, Castagnoli L, Ghelardini P, Paolozzi L. A two-hybrid system based on chimeric operator recognition for studying protein homo/heterodimerization in Escherichia coli. Microbiology, 2001, 147(Pt 6):1651-1656
    34. Di Lallo G, Fagioli M, Barionovi D, Ghelardini P, Paolozzi L.Use of a two-hybrid assay to study the assembly of a complex multicomponent protein machinery: bacterial septosome differentiation. Microbiology. 2003,149(Pt 12):3353-3359
    35. Oertel-Buchheit P, Schmidt-Dorr T, Granger-Schnarr M, Schnarr M. Spacing requirements between LexA operator half-sites can be relaxed by fusing the LexA DNA binding domain with some alternative dimerization domains. J Mol Biol, 1993, 229(1): 1-7
    36. Dmitrova M, Younes-Cauet G, Oertel-Buchheit P, Porte D, Schnarr M, Granger-Schnarr M. A new LexA-based genetic system for monitoring and analyzing protein heterodimerization in Escherichia coli. Mol Gen Genet,1998,257(2):205-212
    37. Mahren S, Enz S, Braun V. Functional interaction of region 4 of the extracytoplasmic function sigma factor FecI with the cytoplasmic portion of the FecR transmembrane protein of the Escherichia coli ferric citrate transport system. J Bacteriol, 2002, 184 (13):3704-3711
    38. Karimova G, Pidoux J, Ullmann A, Ladant D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci USA, 1998, 95(10): 5752-5756.
    39. Ladant D, Karimova G. Genetic systems for analyzing protein-protein interactions in bacteria. Res Microbiol, 2000, 151(9):711-720
    40.Rohrer S, Berger-Bachi B. Application of a bacterial two-hybrid system for the analysis of protein-protein interactions between FemABX family proteins. Microbiology, 2003,149(Pt 10):2733-2738
    41. Remy I, Michnick S W. Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Proc Natl Acad Sci U S A, 1999, 96(10):5394-5399
    42. Wehrman T, Kleaveland B, Her J H, Balint R F, Blau H M. Protein-protein interactions monitored in mammalian cells via complementation of beta-lactamase enzyme fragments. Proc Natl Acad Sci U S A, 2002, 99(6):3469-3474.
    43. Eyckerman S, Verhee A, der Heyden JV, Lemmens I, Ostade XV, Vandekerckhove J, Tavernier J. Design and application of a cytokine-receptor-based interaction trap. Nat Cell Biol,2001,3(12):1114-1119
    44. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol,1999, 17(10): 1030-1032
    45. Gavin A C, Bosche M , Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes.Nature,2002,415(6868):141-147
    46. Zhou D, Ren J X, Ryan T M, et al.Rapid tagging of endogenous mouse genes by recombineering and ES cell complementation of tetraploid blastocysts. Nucleic Acids Res, 2004,32(16):el28
    47. Bauch A, Superti-Furga G. Charting protein complexes, signaling pathways, and networks in the immune system. Immunol Rev, 2006, 210:187-207
    48. Honey S, Schneider B L, Schieltz D M. et al. A novel multiple affinity purification tag and its use in identification of proteins associated with a cyclin-CDK complex. Nucleic Acids Res, 2001, 29(4):E24
    49. HoY, Gruhler A, Heilbut A, etal. Systematic identification of protein complexes in Saccharomyces cerevisae by mass spectrometry. Nature, 2002,415(6868): 180-183
    50. Zhong J, Haynes P A, Zhang S, et al. Development of a system for the study of protein-protein interactions in planta: characterization of a TATA-box binding protein complex in Oryza sativa. Proteome Res, 2003, 2(5):514-522
    51. Ong S E, Blagoev B, Kratchmarova I, Kristensen D B, Steen H, Pandey A, Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics, 2002,1 (5):376-386.
    52. Ranish J A, Yi E C, Leslie D M, Purvine S O, Goodlett D R, Eng J, Aebersold R. The study of macromolecular complexes by quantitative proteomics. Nat Genet, 2003,33(3): 349-355
    53. Blagoev B, Ong S E, Kratchmarova I, et al. Temporal analysis of phosphortyrosine -dependent signaling networks by quantitative proteomics. Nat Biotechnol, 2004, 22(9): 1139-1145
    54.崔振玲,黄静.蛋白质芯片技术研究进展,生物学通报,2002,37(7):5-6
    55. Frears E R, Stephens D J, Waiters C E, et al.The role of cholesterol in the biosynthesis of β-amyloid. Neuroreport, 1999,10(8): 1699-1705
    56. Lucking A, Horn M, Eickhof H, et al. Protein microarrays for gene expression and antibody screening. Analy Biochem, 1999,270(1): 103—111
    57. Uetz P, Giot L, Cagney G, Mansfield T A, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 2000, 403(6770): 623-627
    58. Zhu H, Bilgin M, Bangham R, et al.Global analysis of protein activities using proteome chips. Science, 2001, 293(5537):2101-2105
    59. Ptacek J, Devgan G, Michaud G, et al.Global analysis of protein phosphorylation in yeast. Nature, 2005, 438(7068):679-684
    60. Espejo A, Cote J, Bednarek A, et al.A protein-domain microarray identifies novel protein-protein interactions. Biochem, 2002, 367(Pt3):697-702
    61. Hiller R, Lafer S, Harwanegg C, et al.Microarrayed allergen molecules:diagnostic gatekeepers for allergy treatment. FASEB, 2002, 16(3):4144-16
    62. Sreekumar A, Nyati M K, Varambally S, et al. Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res, 2001, 61(20): 7585-7593
    63. Bock J R, Cough DA. Predicting protein-protein interactions from primary structure. Bioinformatics. 2001, 17(5):455-60
    64. Pazos F, Valencia A. Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng. 2000,14(9):609-614
    65. Pazos F, Valencia A. In silico two-hybrid system for the selection of physieally interacting protein pairs. Proteins, 2002:47(2):219-227
    66. Wojcik J, Schaehter V. Protein-protein interaction map inference using interacting domain profile pairs. Bioinformatics, 2001, 17 Suppl 1:S96-305
    67. Lappe M, Park J, Niggemann O, et al.Generating protein interaction maps from incomplete data:application to fold assignment. Bioinformatics, 2001,17 Suppl 1:S149-56
    68. Xenario I, Salwinski L, Duan X J, et al. DIP, the Database of Interacting Proteins: a reaserch tool for studying cellular networks of protein interactions. Nucleic Acids Res. 2002,30(1):303-305
    69. Bader G D, Hogtie C W. BINI~a data specification for storing and describing biomo-lecular interactions, molecular complexes and pathways.Bioinformatics,2000,16(5): 465-477
    70. Mellor J C, Yanai I, Clodfelter K H, et al. Predictome:a database of putative functional links between proteins. Nucleic Acids Res, 2002,30(1):306-309
    71. Costanzo M C, Crawford M, Hirschman J E, et al. YPD, Pombe PD and Worm PD: model organism volumes of the BioKnowledge library, an integrated resource for protein information. Nucleic Acids Res, 2001,29(1):75-79
    72. Schoof H, Zaccaria P, Gundlach H, et al. MIPS Arabidopsis thaliana Database(M tDB):an integrated biological knowledge resource based on the first complete plant genome. Nucleic Acids Res, 2002,30(1):91-93
    73. Rain J C, Sdig L, De Reuse H, et al.The protein-protein interaction map of Hle licobacter pylori. Nature, 2001, 409(6817):211-215
    74. Masters S C. Co-immunoprecipitation from transfected cells. Methods Mol Biol, 2004, 261:337-350
    75. Miyashita T. Confocal microscopy for intracellular co-localization of proteins. Methods Mol Biol, 2004,261:399-410

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700