用户名: 密码: 验证码:
基于损伤断裂理论的混凝土破坏行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土是由粗骨料、细骨料和水泥浆组成的非均质混合物,但其表现出来的力学性能并不是这几种材料性能的简单叠加,而是与其内部的组成结构紧密相关。混凝土具有微观、细观、宏观等不同的层次结构,在成型过程中又不可避免的存在着气泡、夹杂、微裂缝等初始缺陷,这些因素使得混凝土的力学性能极为复杂。以往对于混凝土的研究大多基于宏观层次,将混凝土看作是单一匀质的材料,这种均匀化的处理方法对于研究混凝土结构的宏观力学性能无疑是行之有效的,但是要想深入研究混凝土的工作机理还应从混凝土的细观组成结构入手,抓住材料非均质性的特点,揭示混凝土结构宏观表现的内在机制。本文首先在细观层次建立了混凝土的数值模型,分析了混凝土损伤破坏机理,以此为基础在宏观层次提出了混凝土损伤断裂理论分析模型,通过宏、细观两个层次的相互联系与补充对混凝的破坏行为进行研究。
     在细观层次将混凝土看作是由粗骨料、硬化水泥砂浆和界面组成的三相复合材料,建立了混凝土三维细观数值模型。该模型以球体表示粗骨料的形状,采用蒙特卡洛法结合占位剔除算法实现骨料的随机投放。采用概率分布与随机赋值的方法对各细观相单元材料力学参数进行赋值,实现了对混凝土材料非均匀性的模拟。根据细观相材料损伤演化特点,模型采用带残余强度的各向同性弹性损伤本构方程和最大拉应变破坏准则。建立了6组混凝土立方体试件数值模型,对影响细观数值模型的参数进行分析。结果表明,骨料的不同随机分布形式对局部区域损伤破坏路径和分布有影响,对试件承载力和整体损伤程度的影响可以忽略。界面的弹性模量对混凝土的承载力影响要比砂浆的影响显著。当考虑细观相材料的非均匀性时,混凝土的承载力低于不考虑非均匀性时的承载力。界面和砂浆损伤本构模型中的残余应变系数对试件混凝土损伤发展速度和承载力都有较为明显的影响,当细观相材料的残余应变系数增加时,该相单元损伤速度减慢,混凝土承载力有所提高。依据混凝土细观模型建立方法和影响参数的分析结果,对混凝土梁和棱柱体轴心受拉试件采用位移加载方式,进行了加载至破坏全过程的数值模拟,捕捉了受拉区裂缝的产生、演化及汇聚过程,显示了混凝土准脆性破坏的特点。
     在混凝土细观数值模型的基础上,通过引入钢筋和钢筋—砂浆界面单元,建立了钢筋混凝土细观数值模型。分别对月牙肋钢筋和螺纹钢筋单端拉拔试件进行了细观数值模拟,分析了钢筋肋外形对混凝土损伤的影响。月牙肋和螺纹肋钢筋试件总体破坏形态较为相似,在钢筋拉拔过程中,加载端受到拉拔力的挤压作用较大,且钢筋周围混凝土应力较高,远离钢筋处混凝土应力较低,混凝土损伤呈现了从钢筋外周向试件四边逐渐衰减的趋势。损伤和破坏首先发生在加载端的钢筋—砂浆界面上,并沿界面逐渐向自由端发展。随着拉拔力的增加,破坏的钢筋—砂浆界面单元和砂浆单元逐渐贯通,宏观上表现为钢筋肋间混凝土咬合齿依次发生破坏,形成纵向滑移裂缝。月牙肋钢筋拉拔试件的损伤单元呈现锥形分布,钢筋周围混凝土的应力集中较为缓和,螺纹钢筋拉拔试件的损伤单元则呈现梭形分布,应力集中明显,混凝土损伤程度较重。
     在宏观层次,根据混凝土裂缝前端断裂过程区的特点,假设混凝土断裂过程区由微裂缝生成区和微裂缝扩展区两部分组成。将损伤力学和断裂力学理论相结合,提出了混凝土D-K损伤断裂模型,该模型以起裂损伤阈值DIG作为混凝土的起裂判据,以失稳断裂韧度KIC作为裂缝失稳扩展判据,实现了从初始损伤到宏观裂缝形成直至裂缝失稳扩展破坏整个过程的分析。由于采用损伤起裂判据,从而克服了现有混凝土断裂模型无法分析没有初始宏观裂缝的混凝土起裂的局限性,且模型判据具有明确的物理意义。根据Ⅰ型裂纹尖端弹性应力场分布,推导了不同屈服准则下微裂缝生成区形态的表达式,对比了微裂缝生成区的轮廓,对混凝土拉压强度比a、泊松比v和中间主应力等参数的影响进行了分析。基于细观数值模拟和相关文献试验得到的轴心受拉试件的软化曲线提出了分段幂函数损伤模型,并据此确定了等效裂缝上闭合力的分布规律,推导了混凝土起裂损伤阈值DIG的表达式及断裂过程区的最大长度。采用数值方法分别对有、无初始裂缝的混凝土三点弯曲梁的裂缝开展进行了数值模拟,验证了D-K模型数值求解的可行性和有效性,分析了初始缝高比对失稳断裂韧度KIC的影响。
     从混凝土的细观多相结构到宏观单一材料是均匀化的过程,通过均匀化能够反映混凝土细观组成与宏观性质之间的定量关系。基于复合材料细观夹杂理论,建立了计算混凝土弹性模量的混合夹杂模型,利用广义自洽方法和Mori-Tanaka方法推导了模型的解析解,并对骨料体积百分比、界面厚度及其弹性模量,孔洞和微裂缝的含量等主要影响因素进行了分析。
Concrete is a heterogeneous mixture of coarse aggregate, fine aggregate and cement slurry, its mechanical properties is closely related to its internal composition structure rather than simple superposition of composing materials'mechanical properties. Concrete has different structure forms at micro-level, meso-level and macro-level. Meanwhile, initial imperfections such as bubbles, inclusions and micro-cracks inevitably produced during molding process. All the factors above make the mechanical properties of concrete become extremely complex. The previous researches on concrete are mostly based on macro-level, and take concrete as a single homogeneous material. Without a doubt, the homogenization approach is effective in the research of concrete's macroscopic mechanical properties. However, in order to reveal the internal mechanism of concrete's macroeconomic performance, and study its working mechanism deeply, researchers should start with the microscopic composition of concrete, and seize the heterogeneity characteristics of concrete material. In this paper, numerical model of the concrete at meso-level was established at first, the damage and failure mechanism was then analyzed. Based on these, analysis model of damage and fracture theory was proposed at macro-level. The fracture behavior of concrete was researched between meso-level and macro-level with the relationship and complement of them.
     Concrete was considered as a three-phase composite material composing of aggregates, mortar and bonding material at meso-level. A3-D mesoscopic numerical model with random aggregate and mechanical parameter was proposed. This model can simulate the random distribution of aggregates. Furthermore, according to a random distribution, the mechanical parameters of the meso-phase elements in this model can be assigned. Thus the nonhomogeneiry simulation of concrete has realized. Six groups of concrete cube numerical model were established, the parameters which influence mesoscopic numerical model have been analyzed. The results show that the random distributing of aggregate location has influence on the generating location and expanding paths of crack, while its influence on the carrying capacity of specimens can be neglected. The elastic modulus of interface has greater influence on carrying capacity of concrete than that of mortar. The carrying capacity of concrete descends when taking the non-uniformity of the meso-phase materials into account. The residual strain coefficient in damage constitutive model of interface and mortar has a significant effect on the development speed of damage and the carrying capacity of the specimens. If the residual strain coefficient of a certain meso-phase material increases, the damage speed of elements with this phase will reduces, and the carrying capacity of concrete will increases slightly. According to the above model and analysis results, utilizing the method of displacement loading, the loads were imposed on the concrete beam and the prism axis tensile specimen gradually untill they became damaged, and the status of the beam and specimen all through the process were simulated numerically. The process of crack appearance and growth were obtained and the quasi-brittle failure characteristic of concrete was also revealed.
     Based on the mesoscopic model for concrete, steel bars and bar-mortar interface were used to establish a reinforced concrete numerical model. Pullout test of crescent-ribbed bar specimens and screw thread bar specimens were simulated respectively, the influence of rib outline on concrete damage was analyzed. Results show that the overall failure patterns of these two specimens are similar to each other. During the pullout process, stronger squeezing action appears at the load-end, moreover, the stress of concrete around steel bar is stronger than that away from it. The damage of concrete presents a gradually decay trend from the circumambience of steel bar to specimen outsides. Damage and failure occurs first in the steel bar-mortar interface of the load-end and extends gradually to the free end. With the increase of the pulling force, the failure elements of steel bar-mortar interface and mortar gradually impenetrate, the occlusion gears of concrete among steel bar ribs destruct in turn, and the longitudinal sliding cracks come into being. The damage elements of crescent-ribbed bar specimen distribute a taper pattern, the stress concentration in concrete around steel bar is low. As a contrast, the damage elements of screw thread bar specimen distribute a shuttle pattern, the stress of concrete is obviously concentrated, and the damage of concrete is more severe.
     At the macro level, the concrete fracture process zone was assumed to be consist of micro-crack generating zone and developing zone according to its characteristics. Combining the damage theory and fracture mechanics, a damage-fracture model named D-K model for concrete was put forward. This model takes the initial fracture damage threshold, DIG as the incipient cracking criterion and unstable fracture toughness, KIc as the crack unstable growth criterion. Based on this method, the whole damage and fracture process from initial damage, macro-crack forming to crack unstably propagating can be analyzed. It is known that the shortcoming of existing fracture models is they cannot analyze specimens without original cracks. However, in this model, the damage incipient cracking criterion is innovative used, which not only has the definite physical meaning but also can overcome the shortcoming above. Furthermore, according to the elastic stress field distribution of type I crack tip, several micro-crack generating zone outline expression has been derived under different yield criteria. The influence of concrete tension and compression strength ratio, Poisson's ratio and the intermediate principal stress on outline was analyzed. Based on the softening curve of pullout specimens from mesoscopic numerical simulation and physical tests, the author tried to propose a segmental power function damage model and determine the distribution rule of cohesive stress of equivalent crack according to the model. The expressions of concrete initial fracture damage threshold, as well as the ultimate length of the fracture process zone were derived. The crack growth process of three-point bending concrete beams with and without original cracks was simulated using numerical methods. And then the feasibility and validity of numerical solving method with D-K model were verified. Finally, the influence of initial ao/D on unstable fracture toughness, KIc was discussed.
     It is a homogenization process for concrete from meso multiphase structure to macroscopic uniform material, the quantitative relationship between the meso composition and macroscopic properties can be reflected by homogenization. Based on inclusion theory of composite materials, a mixture inclusion model for concrete was put forward, the analytical solution for the model was derived with generalized self-consistent and Mori-Tanaka method. The elastic modulus of concrete was predicted using this model, the main influencing factor such as aggregate volume percentage, interface thickness, elastic modulus, content of void and micro cracks were analyzed.
引文
[1]张研,张子明.材料细观力学[M].北京:科学出版社,2008.
    [2]李庆芬.断裂力学及其工程应用[M].哈尔滨:哈尔滨工业大学出版社,2008.
    [3]沈新普,黄志强,鲍文博等.混凝土断裂的理论与试验研究[M].北京:中国水利水电出版社,2008.
    [4]Kaplan M. F. Crack propagation and the fracture of concrete[J]. Journal of the American Concrete Institute,1961,58(5):591-610.
    [5]Moavenzadeh F., Kuguel R. Fracture of concrete[J]. Journal of Materials, 1969,4(3):497-519.
    [6]Shah S. P., McGarry F. J. Griffith fracture criterion and concrete[J]. Journal of the Engineering Mechanics Devision, ASCE,1971,97(EM6):1663-1676.
    [7]Hilberborg A., Modeer M., Petersson P. E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement Concrete Research, 1976,6(06):773-782.
    [8]Hillerborg A. Examples of practical results achieved by means of fictitious cracks model: Prager Symposium on Mechanics of Geo-materials:Rocks, Concrete, Soils, Evanston: Northwestern University,1983[C].
    [9]Bazant Z. P., Oh B-H. Crack band theory for fracture of concrete[J]. Materials and Structions,1983,16(93):155-177.
    [10]徐世娘.混凝土断裂力学[M].北京:科学出版社,2011.
    [11]Jenq Y. S., Shah S. P. Two parameter fracture model for concrete[J]. Journal of Engineering Mechanics,1985,111(10):1227-1241.
    [12]Bazant Z. P. Size effect in blunt fracture:Concrete,rock,metal[J]. Journal of Engineering Mechanics,1983,110(4):518-535.
    [13]Nallathambi P., Karihaloo B. L. Determination of specimen-size independent fracture toughness of plain concrete[J]. Magazine of Concrete Research,1986,38:67-76.
    [14]Karihaloo B. L., Nallathambi P. Fracture toughness of plain concrete from three-point bend specimens[J]. Materials and Structures,1989,22:185-193.
    [15]Refai T. M. E., Swartz S. E. Fracture behavior of concrete beams in three-point bending considering the influence of size effects[R].1987.
    [16]杨延毅.混凝土损伤断裂过程研究[J]。浙江大学学报,1993,27(5):654-662.
    [17]Xu S. L., Reinhardt H. W. Determination of double-K criterion for crack propagation in quasibrittle fracture Part Ⅰ:Experimental investigation of crack propagation[J]. Experimental investigation of crack propagation. International Journal of Fracture, 1999(98):111-149.
    [18]Xu S. L., Reinhardt H. W. Determination of double-K criterion for crack propagation in quasibrittle fracture Part Ⅱ:Analyticcal evaluating and practical measuring methods for three-point bending notched beams[J]. International Journal of Fracture,1999(98):151-177.
    [19]Xu S. L., Reinhardt H. W. Determination of double-K criterion for crack propagation in quasibrittle fracture Part Ⅲ:Compact tension specimens and wedge splitting specimens[J]. International Journal of Fracture,1999(98):179-193.
    [20]Xu S. L., Reinhardt H. W. A simplified method for determining double-K fracture parameters for three-point bending tests[J]. International Journal of Fracture, 2000(104):181-208.
    [21]XU S. L., Zhang X. F. Determination of fracture parameters for crack propagation in concrete using an energy apprpach[J]. Engineering Fracture Mechanics, 2008(75):4292-4308.
    [22]赵艳华,徐世娘,吴智敏.混凝土结构裂缝扩展的双G准则[J].土木工程学报,2004,37(10):13-18.
    [23]Rashid Y. R. Analysis of prestressed concrete pressure vessels[J]. Nuclear Engineering And Design,1968,7(4):334-344.
    [24]巫昌海,汪基伟,夏颂佑.混凝土三维非正交弥散裂缝模型[J].河海大学学报,1999,27(5):17-20.
    [25]姜庆远,叶燕春,刘宗仁.弥散裂缝模型的应用探讨[J].土木工程学报,2008,41(2):81-85.
    [26]韩涛,安雪晖.钢筋混凝土三维多向固定裂缝本构模型[J].清华大学学报,2008,48(6):947-950.
    [27]周元德,张楚汉,金峰.混凝土断裂的三维旋转裂缝模型研究[J].工程力学,2004,21(5):1-4.
    [28]许汉铮,杨菊生.混凝土结构三维弹塑性开裂分析[J].工程力学,1996,(增刊):400-407.
    [29]Ngo D., Scordelis A. C. Finite element analysis of reinforced concrete beams[J]. ACI Journal Proceedings,1967,64(3):152-163.
    [30]黄松梅,王冬玲,李哲,等.拱坝的开裂计算[J].西安理工大学学报,1998,14(1):18-23.
    [31]侯艳丽,张楚汉.用三维离散元实现混凝土Ⅰ型断裂模拟[J].工程力学,2007,24(1):37-43.
    [32]Louis P., Seveno E. The advancing-front mesh generation method revisited[J]. International Journal For Numerical Methods in Engineering,1994,37(21):3605-3619.
    [33]姜峰,徐勇,王朝波.基于网格自适应的钢筋混凝土随机有限元分析[J].建筑科学与工程学报,2007,24(1):69-73.
    [34]陆新征,江见鲸.利用无网格方法分析斜拉破坏钢筋混凝土梁[J].计算力学学报,2004,21(6):701-705.
    [35]Dougil J. W. On stable progressively fracturing solid[J]. Journal of Applied Mathematics and Physics,1976,27(4):23-437.
    [36]李灏.损伤力学基础[M].济南:山东科学技术出版社,1992.
    [37]黄克智,余寿文,程莉.大变形与损伤力学[J].力学与实践,1989,(2):1-7.
    [38]Loand K. E. Continuous damage models for load-response estimation of concrete[J]. Cement and Concrete Research,1980,10:392-492.
    [39]Mazars J. Application de la mecanique de l' endommagement au comportement non lineaire et a la rupture du beton de structure[D]. Univ. Paris Ⅵ,1984.
    [40]Supartoko F., Sidoroff F. Anisotropic damage modeling for brittle elastic materials[M]. Symp.of Franco-Poland,1984.
    [41]Krajcinovic D. Consfitutive equation for damaging platerials[J]. J. Appl.Mech, 1983,50:355-360.
    [42]Krajcinovic D., Fonseka G. U. Continuous damage theory of brittle materials (Part 1 and Part2)[J]. J.AppL.Mech,1981,48:809-824.
    [43]刘华,蔡正敏,杨菊生,等.混凝土结构三维损伤开裂破坏全过程非线性有限元分析[J].工程力学,1999,16(2):45-51.
    [44]徐道远,王向东,朱为玄,等.混凝土坝的损伤及损伤仿真计算[J].河海大学学报,2002,30(4):14-17.
    [45]唐雪松,张建仁,李传习,等.基于损伤理论的钢筋混凝土拱结构破坏过程的数值模拟[J].工程力学,2006,23(2):115-125.
    [46]杜荣强,林皋.混凝土弹塑性多轴损伤模型及其应用[J].大连理工大学学报,2007,47(4):567-572.
    [47]尹双增.断裂-损伤理论及应用[M].北京:清华大学出版社,1992.
    [48]Geersa M. G. D., Borstc R. De, Peerlings R. H. J. Damage and crack modeling in single-edge and double-edge notched concrete beams[J]. Engineering Fracture Mechanics, 2000(65):247-261.
    [49]陈重喜,汪树玉,杨延毅.混凝土的断裂损伤模型[J].水利学报,1996,(9):73-78.
    [50]邓宗才.混凝土Ⅰ型裂缝的损伤断裂判据[J].岩石力学与工程学报,2003,22(3):420-424.
    [51]孙雅珍,余天庆.混凝土破坏的断裂与损伤耦合分析[J].沈阳建筑大学学报,2006,22(1):53-56.
    [52]Schlangen E. E., Van Mier J. G. M. Lattice model for numerical simulation of concrete fracture:InternationalConference Oil Dam Fracture, Denver, Colorado, USA,1991[C].
    [53]Schlangen E., Garbocai E. J. Fracture simulations of concrete using lattice models: computational aspects[J]. Engineering Fracture Mechcnics,1997,57(2-3):319-322.
    [54]Van Mier J. G. M. Fracture processes of concrete-assessment of material parameters for fracture models[M]. CRC Press,1997.
    [55]Cundall P. E., Hart R. G. Numerical modeling of discontinual[J]. Engineering Computations,1992,9(2):101-113.
    [56]Bazant Z. P., Tabbara M. R., Kazeml M. T. Random particle model for fracture of aggregate or fiber composites[J]. Journal ofEngineering Mechanics, 1990,16(8):1686-1705.
    [57]Mohamed Ashraf Ragab, Hansen Will. Micromechanical modeling of concrete response under static loading-PartI:Model development and validation[J]. ACI Materials Journal, 1999,96(2):196-203.
    [58]Mohamed Ashraf Ragab, Hansen Will. Micromechanical modeling of concrete response under static loading-PartⅡ:Model predictions for shear and comoressive loading[J]. ACI Materials Journal,1999,96(3):354-358.
    [59]刘光延,王宗敏.用随机骨料模型模拟混凝土材料的断裂[J].清华大学学报,1996,1:84-89.
    [60]王宗敏,邱志章.混凝土细观随机骨料结构与有限元网格剖分[J].计算力学学报,2005,22(6):728-732.
    [61]马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟[J].水利学报,2004,35(10):27-35.
    [62]唐春安,朱万成.混凝土损伤与断裂—数值试验[M].北京:科学出版社,2003.
    [63]朱万成.混凝土断裂过程的细观数值模拟及其应用[D].沈阳:东北大学,2000.
    [64]邢纪波,俞良群.颗粒复合材料破坏行为的梁—颗粒模型研究[J].应用基础与工程科学学报,1997,5(2):193-198.
    [65]邢纪波,俞良群,王泳嘉.三维梁—颗粒模型与岩石材料细观力学行为模拟[J].岩石力学与工程学报,1999,18(6):627-630.
    [66]Chang C. S., Wang T. K., Sluys L. J., et al. Fracture modeling using a microstructural mechanics approach-Ⅱ. Finite element analysis [J]. Engineering Fracture Mechanics, 2002(69):1959-1976.
    [67]王宝庭,宋玉普,张燕坤.基于刚体—弹簧模型的混凝土微裂纹行为模拟[J].工程力学,1999,16(2):140-144.
    [68]Mohamed Ashraf Ragab, Hansen Will. Micromechanical modeling of crack-aggregate interaction in concrete Materials[J]. Cement & Concrete Composites,1999(21):349-359.
    [69]宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002.
    [70]夏晓舟,章青,汤书军.混凝土细观损伤破坏过程的数值模拟[J].河海大学学报,2007,35(3):319-325.
    [71]周尚志.混凝土动静力破坏过程的数值模拟及细观力学分析[D].西安:西安理工大学,2007.
    [72]唐欣薇,张楚汉.随机骨料投放的分层摆放法及有限元坐标的生成[J].清华大学学报,2008,48(12):2048-2052.
    [73]张德海,朱浮声,邢纪波.混凝土拉伸断裂的细观数值分析[J].计算力学学报,2006,23(1):65-70.
    [74]高政国,刘光廷.三维凸型混凝土骨料随机投放算法[J].清华大学学报,2003,43(8):1120-1123.
    [75]李运成,马怀发,陈厚群.混凝土随机凸多面体骨料模型生成及细观有限元剖分[J].水利学报,2006,37(5):588-592.
    [76]李友云,崔俊芝.具有大量椭圆颗粒/孔洞随机分布区域的计算机模拟及其改进三角形自动网格生成算法[J].计算力学学报,2004,21(5):540-545.
    [77]琚宏昌,陈国荣,夏晓舟.骨料形状对混凝土拉伸强度的影响[J].河海大学学报,2008,36(4):554-558.
    [78]Caballero A., Lopez C. M., Carol I.3D meso-structural analysis of concrete specimens under uniaxial tension[J]. Computer methods in applied mechanics and engineering, 2006(195):7182-7195.
    [79]Morgan I. L., Ellinger H., KlinksiekLINKSIEK R. Examination of concrete by computerized tomography[J]. ACI Journal,1980,77(1):23-27.
    [80]柏巍,彭刚,戚永乐,等.基于CT图像的混凝土细观结构的有限元重建[J].混凝土,2008,(2):63-69.
    [81]于庆磊,唐春安,朱万成,等.基于数字图像技术的混凝土破坏过程的数值模拟[J].工程力学,2008,25(9):72-78.
    [82]杜成斌,尚岩.三级配混凝土静、动载下力学细观破坏机制研究[J].工程力学,2006,23(3):125-141.
    [83]张娟霞,杨菊英,梁正召.钢筋混凝土构件拉伸破坏过程的三维模拟研究[J].辽宁工程 技术大学学报,2007,26(5):700-702.
    [84]徐有邻.变形钢筋—混凝土粘结锚固性能的试验研究[D].北京:清华大学土木工程系,1990.
    [85]Gambarova P. G., Rosati G. Bond and splitting in reinforced concrete:test results on bar pull-out[J]. Materials and Structures,1996,29(5):267-276.
    [86]Ruiz Gonzalo. Propagation of a cohesive crack crossing a reinforcement layer[J]. International Journal of Fracture,2001,111(3):265-282.
    [87]Maria Teresa Gomes Barbosa, Emil De Souza Sanchez Filho, Thais Mayra De Oliveira, et al. Analysis of the relative rib area of reinforcing bars pull out tests[J]. Materials Research Bulletin,2008,11(4):453-457.
    [88]Pleskachevskii Y. M., Shimanovskii A. O., Kuzemkina. Finite-element modeling of the interaction of reinforcement with concrete matrix [J]. Mechanics of Composite Materials, 2008,44(3):209-214.
    [89]Finck F., Grosse C. U., Reinhardt H. W. Integrated interpretation and visualization of a pull-out test using finite element modelling and quantitative acoustic emission analysis[J]. Journal of Nondestructive Testing,2002,7(9):1-10.
    [90]王福智,王依群.钢筋与混凝土间的黏结滑移在ANSYS中的模拟[J].天津大学学报,2006,39(2):209-213.
    [91]杜培荣,卓家寿,孟闻远.钢筋混凝土界面问题分析模型[J].河海大学学报,2007,35(3):312-314.
    [92]商峰.钢筋—混凝土界面张开滑移模型及锈蚀RC结构疲劳分析[D].清华大学水利水电工程系,2010.
    [93]刘玉擎.有限弹簧法在钢筋混凝土细观断裂分析中的应用[J].计算力学学报,2003,20(5):621-626.
    [94]高向玲,李杰.钢筋与混凝土粘结本构关系的数值模拟[J].计算力学学报,2005,22(1):73-77.
    [95]乔生儒.复合材料细观力学性能[M].西安:西北工业大学出版社,1997.
    [96]秦庆华,杨庆生.非均匀材料多场耦合行为的宏细观理论[M].北京:高等教育出版社,2006.
    [97]Hashin Z. The elastic moduli of heterogeneous materials[J]. Transaction of the ASME,Journal of Applied Mechanics,1962,29(1):143-150.
    [98]Yang C C., Huang R. A two-phase model for predicting the compressive strength of concrete[J]. Cement and Concrete Research,1996,26(10):1567-1577.
    [99]白卫峰,陈健云,范书立.细观夹杂理论预测湿态混凝土抗压强度[J].工程力学,2008, 25(11):134-140.
    [100]Nilsen A. U., Monteiro P. J. M. Concrete:a three phase material[J]. Cement and Concrete Research,1993,23(11):147-151.
    [101]Neubauer C. M. A three-phase model of the elastic and shrinkage properties of mortar[J]. Advanced Cement Based Materials,1996,4(1):6-20.
    [102]Li G. Q., Zhao Y., Pang S. S. Four-phase sphere modelling of effective bulk modulus of concrete[J]. Cement and Concrete Research,1999,29(6):839-845.
    [103]郑建军,周欣竹,璐姜.混凝土杨氏模量预测的三相复合球模型[J].复合材料学报,2005,22(1):102-107.
    [104]郑建军,吕建平,吴智敏.考虑不均匀界面时混凝土弹性模量预测[J].复合材料学报,2008,25(5):141-146.
    [105]应宗权,杜成斌.考虑界面影响的混凝土弹性模量的数值预测[J].工程力学,2008,25(8):92-96.
    [106]刘明辉,王元丰.混凝土四重球弹性模量随龄期发展预测模型[J].北京交通大学学报,2011,35(1):20-23.
    [107]过镇海.混凝土的强度和本构关系—原理与应用[M].北京:中国建筑工业出版社,2004.
    [108]于骁中.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1991.
    [109]方再限.计算机模拟和蒙特卡洛方法[M].北京:北京工业大学出版社,1988.
    [110]李朝红,王海龙,徐光兴.混凝土损伤断裂的三维细观数值模拟[J].中南大学学报,2011,42(2):463-469.
    [111]张明,李仲奎,霞苏.准脆性材料弹性损伤分析中的概率体元建模[J].岩石力学与工程学报,2005,24(23):4282-4288.
    [112]梁正召,唐春安,张永彬,等.准脆性材料的物理力学参数随机概率模型及破坏力学行为特征[J].岩石力学与工程学报,2008,27(4):718-727.
    [113]刘金庭,朱合华,莫海鸿.非均质混凝土破坏过程的细观数值试验[J].岩石力学与工程学报,2005,24(22):4120-4133.
    [114]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [115]王新敏ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [116]朱浮声.混凝土骨料级配对抗压强度影响的数值模拟[J].混凝土,2007,(2):8-15.
    [117]马怀发,陈厚群,吴建平.大坝混凝土三维细观力学数值模型研究[Z].2008:25,241-247.
    [118]李朝红,王海龙,徐光兴.混凝土梁受弯破坏的三维细观数值试验[J].中国公路学报,2010,23(2):50-55.
    [119]李建波,林皋,陈健云.混凝土损伤演化的随机力学参数细观数值影响分析[J].建筑科学与工程学报,2007,24(3):7-12.
    [120]陈士纯,王文安.混凝土拉伸应力与应变全曲线的试验研究[J].长江科学院院报,2001,18(6):26-28.
    [121]杜修力,田瑞俊,彭一江.均匀化在数值混凝土单轴拉伸试验中的应用[J].沈阳建筑大学学报,2007,23(5):742-746.
    [122]过镇海,张秀琴.混凝土受拉应力-变形全曲线的试验研究[J].建筑结构学报,1988,(4):45-53.
    [123]张子明,赵吉坤,吴昊.混凝土单轴荷载下细观损伤破坏的数值模拟[J].河海大学学报,2005,33(4):422-425.
    [124]王传志,滕智明.钢筋混凝土结构理论[M].北京:中国建筑工业出版社,1983.
    [125]牟晓光,王清湘,司炳君.钢筋与混凝土粘结试验及有限元模拟[J].计算力学学报,2007,24(3):379-384.
    [126]王海龙,李朝红,徐光兴.带肋钢筋与混凝土粘结性能的细观数值模拟[J].西南交通大学学报,2011,46(3):365-372.
    [127]蔡四维,蔡敏.混凝土的损伤断裂[M].北京:人民交通出版社,2000.
    [128]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [129]周维垣,剡公瑞.岩石、混凝土类材料断裂损伤过程区的细观力学研究[J].水电站设计,1997,13(1):1-9.
    [130]Krstulovic O. N. Fracture process zone presence and behavior in mortar specimens[J]. ACI Materials Journal,1993,90(6):618-626.
    [131]Van Mier J. M. G. Mode I fracture of concrete:Discontinuoue crack growth and crack interface grain bridging.[J]. Cement and Concrete Research,1991,21(1):1-15.
    [132]Shum K. M., Hutchinson J. W. On toughening by microcravks[J]. Mechaniics of materials, 1990(9):83-91.
    [133]Lou J., Bhalerao K., Soboyejo A. B. O., et al. An investigation of fracture initiation and resistance curve behavior inconcrete[J]. Cement & Concrete Composites, 2003(25):599-605.
    [134]吴智敏,徐世娘,刘佳毅.光弹贴片法研究混凝土裂缝扩展过程及双K断裂参数的尺寸效应[J].水利学报,2001,(4):34-39.
    [135]赵均海,魏雪英,马淑芳.混凝土结构Ⅰ型裂纹裂尖塑性区研究[J].工程力学,2006,23(9):141-145.
    [136]胡若邻,黄培彦,郑顺潮.混凝土断裂过程区尺寸的理论推导[J].工程力学,2010,27(6):127-132.
    [137]韩菊红,赵国藩,张雷顺.新老混凝土粘结面断裂损伤过程区研究[J].工程力学,2004,21(31-35).
    [138]姚武.混凝土断裂过程区及断裂参数尺寸效应的研究[D].上海:同济大学,1995.
    [139]王学志,宋玉普,张小刚,等.基于尺寸效应的混凝土有效裂缝扩展量研究[J].武汉理工大学学报,2006,28(3):51-54.
    [140]俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998.
    [141]俞茂宏.混凝土强度理论及其应用[M].北京:高等教育出版社,2002.
    [142]混凝土结构设计规范[M].北京:中国建筑工业出版社,2010.
    [143]钱济成,周建方.混凝土的两种损伤模型及其应用[J].河海大学学报,1989,17(3):40-47.
    [144]Galvez J. C, Cervenka J., Cendon D. A., et al. A discrete crack approach to normal/shear cracking of concrete [J]. Cement and Concrete Research,2002,32(10):1567-1585.
    [145]Prasad M. V. K. V., Krishnamoorthy C. S. Computational model for discrete crack growth in plain and reinforced concrete[J]. ComputerMethods in Applied Mechanics and Engineering,2002,191(25-26):2699-2725.
    [146]吴智敏,董伟,刘康,等.混凝土Ⅰ型裂缝扩展准则及裂缝扩展全过程的数值模拟[J].水利学报,2007,38(12):1453-1459.
    [147]王金来.混凝土双K断裂参数的确定[D].大连:大连理工大学,1999.
    [148]Hiroshi Tada, Paris P. C., Irwin G. R. The stress analysis of cracks handbook[M]. New York:ASME Press,2000.
    [149]沈关林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [150]Mori T., Tanaka K. Average stress inmatrix and engergy of materials with misfitting inclusion[J]. Acta Metal,1973(21):571-576.
    [151]Hill R. A self-consistent mechanics of composite materials[J]. J. Mech. Phys. Solids, 1965(13):213-222.
    [152]Christensen R. M., Lo K. H. Solutions for effective shear properties in three phase sphere and cylinder models[J]. J Mech.Phys.Solids,1979,27(4):315-330.
    [153]Benveniste Y. A new approach to the application of Mori-Tanaka's theory in composite materials. Mechanics of Materials[J]. Mechanics of Materials,1987,6(2):147-157.
    [154]黄克智,黄永刚.固体本构关系[M].北京:清华大学出版社,1999.
    [155]Kachanov M. Effective elastic properties of crack solids,critical review of some basic concepts[J]. Appl. Mech. Review,1992,45(7):304-335.
    [156]Walpole L. J. On bounds for the overall elastic module of disordered materials[J]. J. Mech. Phys. Solids,1966(14):151-162.
    [157]Stock A. F., Hannant D. J., Williams R. I. T. The effect of aggregate concentration upon the strength and modulus of elasticity of concrete [J]. Magazine of Concrete Research, 1979,31(109):225-234.
    [158]Lutz M. P., Monteiro P. J. M., Zimmerman R. W. Inhomogeneous interfacial transition zone model for the bulk modulus of mortar [J]. Cement and Concrete Research, 1997,27(7):1117-1122.
    [159]顾章川,陈梦成,许开成.混凝土弹性模量预测试验研究[J].混凝土,2011,(5):30-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700