用户名: 密码: 验证码:
混浊介质偏振入射光180°后向散射特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在天体物理、大气光学、海洋光学中人们早就开始了对混浊介质中光的散射现象的研究,并因此而产生了研究混浊介质中光的散射现象的各种理论。这里的混浊介质是指那些光学不均匀性十分显著的、能产生强烈散射现象的介质。例如悬浮有烟尘等颗粒的大气、悬浮有各种微生物及杂质的海水都属于混浊介质的范畴。如今,人们又发现,对于600-1300nm波段的光,大部分生物组织都是高散射低吸收的,类似与混浊介质,并且该波段的光对生物组织没有电离和辐射等危害作用,非常适合用于人体组织的无损检测和治疗。因此,混浊介质中光的散射现象的研究又成了生物光学的研究热点。
     在初始阶段,人们对混浊介质中的前向散射进行了较多的研究,这是由于水下成像和激光医学中病变组织成像的需要,并且现有的理论都表明,由于混浊介质的不均匀性,光的性质特别是偏振性质会完全遭到破坏,散射光的退偏是随机的、没有章法的。但现在越来越多的实验证明,在180°后向散射方向上,散射光表现出特殊的保偏能力,从而携带了大量的混浊介质内部的信息。并且,180°后向散射方向也具有实用方面的优点,因为该散射方向上的光,是最容易探测到的。国外已进行了不少这方面的研究,但国内还没有开始,并且国外的同类研究课题使用的实验系统中有PEM等昂贵仪器,不便推广和实用化。我们拟利用本所在偏振光学测试技术方面积累的经验,结合微弱信号检测技术,设计并搭建自己的研究混浊介质180°后向散射特性的系统,并利用该系统,对我们模拟的混浊介质180°后向散射特性的参数进行测定,分析影响散射特性的因素。
     本文的第一章是绪论部分,介绍了混浊介质中光的散射特别是后向散射研究的意义及进展情况。在以前,混浊介质中光的散射现象在大气光学、海洋光学都是委很重要的研究课题,近年来,随着生物光学的发展,人们发现了生物组织的透射窗口,因此该课题的研究对无损检测和治疗有着巨大的潜在价值。
    
     摘要 二
     本文的第二章介绍了混浊介质、散射和后向鞭特性等几个基腑
    念c在一般的研究中都认为龈特性可以由龈系数和散射相函数表
    征。但这样做是以忽略模型中的偏振因素为代价的。本文根据唯象的
     “黑箱化”理论,把反映混浊介质对入射光的旋光作用的旋光度a、对.
    悯光的保偏作用的保偏度p和对入射光的反射作用的反射比工作为
    18 0’后向铡特性。
     第三章介绍了自行设计的实验系统和系统的工作原理。
     第四章详细阐述了利用该系统测定混浊介质侣0’后向散射特性参
    数的原理。首先是进行了混浊介质和分束器米勒矩阵的推导,然后利
    用矩阵光学和微弱信号检测知识,得到了含有三个未知数的被探测到
    的光的斯托克斯矢量S;的表达式以及由锁相放大器得到的被探测到的
    光的斯托克斯矢量巳的值。调节检偏器N得到了以S。为等量含有三个
    特性参数的方程组。求解方程组,可得三个持性参数的值。
     第五章对用牛奶与去离子水的混合溶液模拟的混浊介质进行了具
    体的测定。在第五章的基础上,第六章对不同牛奶浓度的模拟混浊介
    质进行了测定,得到了不同浓度下的三个特性参数的值。可以得到如.
    下结论:()混浊介质的浓度对三个散射特性参数有不同程度的影响。
    旋光度a随其浓度的增加而增加,保偏度p随其浓度的增加而减小,反
    射比了随其浓度的增加而增加。门)三个散射特性飨中,保偏度p
    受混浊介质的浓度影响最大,当浓度较小时,其值稍加大则保偏度p迅
    速减小。浓度大于 30%之后,保偏度p变化减弱,浓度大于 0.8后,保
    偏度p基本不再变化。门)当浓度为1时,保偏度p刃.118,也就是说,
    该浓度下,混浊贿偏振。射光180’后向散射先中,仍有几8%的为偏
    振光。可见,即使很浓的混浊介质,其偏振入射光的 18 0’后向铡光
    奶具有相当程度的保偏能力。*)随着混浊倾的浓度由0逐渐增大,
    三个特性参数由变化幅度较大变为变化幅度不大,在接近1的区fq,
    几乎没有变化。”
     鉴于手性物质对于生命现象的重要。甩在第七章,进行了手性物质
    萄萄糖对子混浊介质18旷后向散射特性的影响的研究。研究方法采用
    
     摘要3
     了第六章中研究浓度对踞特性影响的方法,测定了加入葡萄糖前后,
     混浊介质180’后向散射特性参数的值,并进行了比较,得到了如下结
     论:(1)加入葡萄糖后,混浊介质对线偏振入射光的180’后向散射光
    @的旋光能力增强。门)加入葡萄糖后,混浊峋对线偏振入射光的180‘
     后向散射光的保偏能力增强,特别是在牛奶浓度比较小的情况下。
     最后一章,对该课题的下步工作作了几点设想.由于时间等因素
     的关系,该课题的工作,本文只做了很少的一点工作,下步可以从提
     高测定精度、研究混浊介质的颗粒大小对后向散射特性的影响、进行
     活体组织或离体生物组织的后向鞭特性抛测定方法的改进等
In astrophysics, atmospheric optics, marine optics, scattering phenomena of turbid media was studied early, and many kinds of theories about it were produced. Here, turbid media mean those media whose non-homogeneous quality of optics is very obvious and can produce intensive scattering phenomena. For example, the atmosphere suspending smoke and dust, the sea water suspending different microbe and impurity are belongs to "turbid media". Now, it is discovered that for light in 600-1300 nm wave range, the majority of biologic tissues were highly scattering and lowly absorbing media, as turbid media do. Furthermore, the light in this wave range has not hazard effect such as ionizing and radiation and so on. As a result it is very-fit for medicinal use. So, the study about scattering phenomena of turbid media is a hotspot of the photobiology.
    At the beginning of the study, forward scattering was studied widely. It was required by the need of pathologic tissue change imaging. Furthermore, theories in existence show that because of the turbid media's non-homogeneous the qualities of light will be damaged mostly, especially, the polarized quality. But now, more and more experimentation prove that in the direction of 180 degree back scattering, scattering light show a good ability of keeping its polarized quality. So, it carries a lot of information about the turbid media. Furthermore, the direction of 180 degree has the practicability because it can be detected easily. It was studied wildly in other countries, but it hasn't been studied in our country. Because that the experiment system of foreign used PEM-a costly equipment, it is difficult to be generalized. We plan to use our experience accumulated hi the technology of polarization optics measurement, combine the technology of weak signal, design and build our experiment system to study the character of 180 degree back scattering phenomena of turbid media. And, using the system, we plane to measure characteristic parameters, analyze factors that
    
    
    
    will affect scatting character.
    In this thesis, the first part introduces the significance of scattering, especially the back scatting in the turbid media. The scatting phenomenon is an important subject in atmospheric optics and marine optics. Recently, with the development of photobiology, the transmission window-was founded, so, this subject has big potential values to no-wrear detection or treatment.
    The second part introduced some basal concept example turbid media, scattering and back-scattering. Generally, the character of scattering can be expressed by scattering coefficient and scattering phase function. But this means to neglect the polarization factor. According "Black-Box" theory, this thesis takes three parameters that reflected turbid media's action to incidence light: optical rotation a, polarization-preserving p and reflectance r as 180?back-scattering character.
    The third part introduces the experiment system designed by us and its operating-principle. The followed part expresses the principle of measuring the 180?back-scattering characteristic parameters turbid media detailedly. First, the matrix of beam splitter and the matrix of turbid media were deduced. Afterward, using knowledge of matrix optics and measurement of weak signal, we get the expression of Stokes vector So of detected light including three unknown quantities. And, the values of Stokes vector So were got by Lock-in Amplifier. Adjusting polarizer P2,we can get a equations set including three characteristic parameters.Solving the equations set,we can get values of three parameters.
    In the fifth partwe do the specific measurement to the turbid media simulated by milk and the dehydronium.In the bases of the fifth part,the sixth part measures some turbid medias varied in the concentration of milk.and three characteristic parameters in different concentration are got.These conclusion can be got: (l)The concentration of turbid media can
    
    
    
    affect three parameters in different degree. (2)In three parameters,polarization-preserv
引文
[1]王建岗等,光在散射介质中传输和成像,激光与光电子学进展,2001,1:14
    [2]吕可诚,张春平等,生物光子学进展,光子学报,26卷:1123
    [3]薛玲玲,张春平等,生物组织光学及其进展,激光与光电子学进展,1999,11:36
    [4]F.C. Mackintosh, J.X. Zhu, D.J. Pine, D.A. Weitz, 'Polarization memory of multiply scattered light', Physical Review B,1November 1989:9342
    [5]N.J. McCormick, 'Particle-size-distribution retrieval from backscattered polarized radiation measurements: a proposed method',J. Opt, Soc. Am.A.7,1811-1816(1990).
    [6]R.R. Anderson, Polarized-light examination and photography of the skin, Arch, Dermatol, 127,1000-1005(1991).
    [7]S.L. Jacquse, A. Gutsche, J. Schwartz, 'Video reflectometry to extract optical properties of tissue in-vivo, Medical Optical Tomography:Fuctional Imaging and Monitoring',Vol. ISII of SPIE Institute Series(SPIE, Bellingham, Wash, 1992),pp. 211-226
    [8]M.I,Mishchenko and J.W. Hovenier, "Depolarization of light
    
    backscattered by randomly oriented nonspherical particles" , Opt. Lett. 20,1356-1358 (1995)
    [9] M. P. Silverman, Wayne Stange, J.Badoz, I. A. Vitkin, 'Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid' . Optics Communication, 15 December 1996:410-416.
    [10] S. G. Demos and R. P. Alfano, 'Temporal gating in highly scattering media by the degree of optical polarization', Opt.Lett. 21,161-163(1996)
    [11] M. P. Silverman, Wayne Stange, 'Object delineation within turbid media by backscattering of phase-modulated light' , Optics Communication,1 December 1997:7-11
    [12] Andreas H. Hielscher,Judith R. Mourant, and Irving J. Bigio, 'Infulence of paticle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions', Applied Optics,1 January 1997,Vol 36, No. 1:125-134
    [13] Brent D. Cameron, M. J.Rakovic, 'Measurement and calculation of the two-dinensional backscattering Muller matrix of a turbid medium', Opt Lte,April , 1998/vol. 23. No. 7: 485-487
    
    
    [14]AlexVitkin, Emlle Hoskinson, "Polarization studies in multiply scattering chiral media",Optical Engineering, Vol. 39 No 2, February 2000:353-362
    [15]AlexVitkin, Byan C.N.Studinski,"Methodology for examining polarized light interactions with tissues and tissuelike media in the exact backscattering direction",Jouranl of biomedical Optics, July 2000. Vol.5 No.3:330-337
    [16]Sebastian Bartel,Andreas H. Hielscher, Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media, Appl. Opt.,2001, vol. 39:1580
    [17]李国华,光学,山东教育出版社:1991年6月第一版:460
    [18]李晖,谢树森等,生物组织的可见光及近红外光散射模型,光学学报,1999,No.19:1661
    [19]王少清等,MIE散射系数的新算法,激光杂志,1997,No.3:9
    [20]W.S.Bickel, J.F.Davidson, D.R.Huffman, and R.Kilkson,"Application of a polarization effects in light scattering: a new biophysical tool",Proc. Natl. Acad. Sci. USA 73,486-490(1976).
    [21]W.P.Van De Merwe, D.R. Huffman, and B.V. Bronk, "Reproducibility and sensitivity of polarized-light scattering for identifying bacterial suspensions", Appl. opt. 28,5052-5057(1989)
    
    
    [22]B.V. Bronk, W.P. De Merwe, and, M. Stanley, 'An in vivo measure of average bacterial cell size from polarized light scattering function',Cytometry 13,155-162(1992).
    [23]K S. Bickel and M. E. Stafford, 'polarized light scattering from biological systems: a technique for cell differention' J. Biol. Phys, 9,53-66(1981).
    [24]M. Dogariu and T. Asakura. 'Photon pathlength distribution from polarized backscattering in random media' Opt. Eng. 35:2234-2239
    [25]陈延如,王家旺,圆偏振光和线偏振光散射特性分析与研究,量子电子学报,1997,No.6:151
    [26]新谷隆一,范爱英,康昌鹤,偏振光,原子能出版社:125-130
    [27]李国华,偏振光学与技术实验,2000年2月:49
    [28]周军,光弹调制器与RDS系统的优化设计,曲师大研究生学位论文,1998:21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700