用户名: 密码: 验证码:
热轧卷取机卷筒扇形板失效机理及寿命研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热轧板带作为高技术含量的钢铁产品,其产量和性能反映了一个国家的钢铁工业水平。在生产过程中,提高轧制线设备的稳定性是保证板带产品质量的重要条件。但是,由于各种因素的影响,热轧生产设备在工作时经常发生失效破坏,进而对产品的质量和生产效率造成影响,因此对于易损部件进行失效机理分析并提出相应优化措施成为当前板带钢生产研究的热点之一。
     扇形板是热轧卷取机卷筒的关键部件,在使用过程中经常会发生磨损失效和裂纹失效。本文以扇形板的失效机理为研究对象,通过分析其工作过程中的磨损机制和裂纹机制,建立起磨损计算模型和寿命预测模型,提出裂纹失稳扩展的判定条件,并得到外部载荷、结构形状等对扇形板破坏形式及破坏程度的影响规律,在此基础上给出减轻磨损程度及控制裂纹扩展的优化措施,为最终延长扇形板的使用寿命、提高卷取机的工作稳定性提供了理论依据和实际参考。
     本文建立了扇形板的动力学有限元模型,模拟工作过程中的径向压力,与现有多种计算模型进行对比,确定了周国盈公式在热轧卷取条件下的适用性,为进行深入的受力分析奠定基础。
     建立扇形板热力耦合模型,模拟卷取中各阶段的温度场、应力场及变形分布规律,得到温度分布不均、变形不均及应力集中的具体形式,为其强度校核及失效分析划定了研究范围并提供了计算依据。
     建立起扇形板磨损计算模型和寿命预测模型,并采用实验的方法模拟失效部位特定工作条件下的摩擦磨损行为,通过磨损后试件的观察及测量,判断出卷取过程中的磨损机制和外载条件对磨损机制转化所产生的影响。另外,改变模拟过程中的参数设定,对材料的耐磨性进行研究,得到其磨损性能受法向压力、环境温度、滑动速度等因素的影响规律,为合理设定卷取工艺及冷却工艺提供了理论指导。
     研究扇形板裂纹的萌生与扩展机理,通过断口分析判断出失效裂纹的性质及断裂机制,考虑材料性能、结构形状、使用环境等因素的影响,计算出材料的断裂韧性和裂纹尖端应力场强度,提出扇形板裂纹失稳扩展的判定条件,得到引起裂纹失效的主要原因,其结论可作为卷取工艺改进及结构优化的设计依据。
     在失效机理分析的基础上进行延寿优化研究,以控制扇形板易损部位的变形不均及应力集中为目标提出改进措施,主要分结构和冷却两方面,其中,结构改进涉及到变形余量及部件自由度的调整,而冷却工艺则主要针对应力场分布的均匀化程度实施最优时间的比例分配,模拟及工业验证结果显示,优化措施在降低磨损程度、抑制局部裂纹的产生和扩张方面可以取得良好的效果,最终达到延长扇形板使用寿命的目的。
     总体而言,本文进行的热轧卷取机扇形板失效机理分析及延寿优化,考虑了卷取工艺制度、材料性能、制造工艺及结构形状等多方面因素的影响,对有效延长扇形板的使用寿命,提高热轧厂钢卷产品质量及生产效率等具有一定的理论价值和实际参考意义。
As a high-tech steel products, the output and property of hot rolled strip reflect thelevel of iron and steel industry of a country. In the process of production, improve thestabilization of device of rolling line is an important condition of safeguard on productquality. But due to various factors, devices of hot rolling line often occurs failure damage,come to have an affect on product quality and production efficiency. Therefore, carry outfailure mechanics analysis on part which tends to be destroyed and put forwardcorresponding optimization measures is one of the hot research on production of strip atpresent.
     Segment is one of key components of hot rolling coiler, wear failures and crackfailures usually happen in working process. This paper takes the failure mechanics ofsegment as research object, analyze the wear mechanism and crack mechanism of parts,put forward the judging criterion of wear failure and crack extend out of control, establishwear loss model and life prediction model, intensive research influencing regularities ofexternal conditions and internal structure on strength character of materials. On that basis,put forward optimization measures of relief wear and fracture-arrest, in the end providetheoretical foundation and practical reference for extend the working life of segment andimprove the working stabilization of hot rolling coiler.
     Establish dynamics finite element model, simulate the radial pressure of segment inworking process, corresponding with many existing calculation model, in the enddetermined the applicability of ZHOU Guo-ying formula on radial pressure calculation ofhot rolling coiler, lay a foundation intensive force analysis.
     Establish thermal–mechanical coupling model, simulate the regulation oftemperature field, stress field and deformation distribution in each phase, gets theconcrete form of temperature uneven distribution, deformation uneven distribution andstress concentration, demarcate research range and provide computation basis for strengthcheck and failure analysis.
     Put forward wear failure judging criterion, establish wear calculation model and life prediction model, simulates fiction and wear behavior under special working condition byexperimental, through observe and measure to worn specimen, judge out the wearmechanism in coiling process and the influence of external loading conditions to wearmechanism transformation. Furthermore, change the parameters setting in experimental,research the wear resistance of materials, gets the influence regularity of normal load,ambient temperature and sliding speed to wear performance, provide theoretical guidancefor setting coiling process and cooling process reasonable.
     Research the generation and extending mechanism of crack, judge out the propertyof failure crack and fracture mechanism through fracture analysis. Consider the influenceof material properties, structural shape and application environment, calculate the fracturetoughness and stress field intensity of crack tip, put forward the judging criterion of crackextending out of control, get the reason of crack failure, the conclusion can used as designbasis of process improvement and structure optimization.
     Perform optimization on extending working life on the basis of failure mechanics,provide optimization measures take controlling the deformation uneven distribution andstress concentration as the goal. Divided into two groups of structure and cooling process,which structure optimization include adjustment of distortion allowance and degree offreedom, and the cooling process optimization mainly distribute time to homogenizing thestress distribution. The results of simulation and industrial verification show that theoptimizations can get favorable effects on relief the level of wear loss, inhibit thegeneration and extending of crack, in the end attain the expected purpose of extendingworking life.
     On the whole, the research on failure mechanics and extending working lifeoptimization of segment of hot rolling coiler, consider the influence of many factors suchas coiling process institution, material properties, manufacturing process and structuralshape, having a certain theoretical value and practical reference significance on extendingworking life of segment, improve the product quality and production efficiency in hotrolling mill.
引文
1刘相华,王国栋.轧钢带钢新技术的发展.钢铁研究, 2000, (5): 1-24
    2魏大路.热轧带钢卷取机的卷取过程研究及发展.钢铁研究, 1993, (3): 20-25
    3 Juschka. Reinhardt, Staubermann. Horst. Hot-strip Coiler Process Technology. Metallurgical Plantand Technology, 1985, 8(2): 42, 44-47
    4 FENG Xian-zhang. Effect of Tension Coiler on Temperature Field Among Layer for Hot Strip.Third International Symposium on Intelligent Information Technology Application, 2009: 140-143
    5戎司旦. 2050热轧主作业线卷取机卷筒研制.宝钢技术, 1997, (6): 22-27
    6高金林.大张力卷取机卷筒的维护.冶金设备, 2003, (2): 58-59
    7周国盈.带钢卷取设备.北京:冶金工业出版社, 1982: 37-67
    8邹家祥.轧钢机械.北京:冶金工业出版社, 2000: 401-425
    9郑丽,付爱君.改进卷筒轴与扇形板加工工艺的研究.一重技术, 1996, (3): 104-107
    10田宏霞,王峰.卷取机中扇形板加工工艺的改进.维修与改造, 2008, 25(11): 74-75
    11吴杰生,王定华.大型扇形板的铸造.现代铸铁, 2001, (1): 57-58
    12 An. B.J, Park. S.H, Kim. B.Y, Yum. T.D, Kang. D.H, Lee. M.H. Tension Control System for HotStrip Mills. IEEE International Symposium on Industrial Electronic, 2001:1452-1457
    13郭艳辉,王昭东,孙大庆等.铁素体区热轧高温卷取条件下IF钢的织构特征.钢铁研究学报,2007, 19(8): 37-41
    14王淑娟.宝钢1580卷取机卷筒扇形板修复.江苏冶金, 2000, (3): 56-57
    15冯彦海,李士州.卷取机扇形板的火焰矫形.焊接, 1998, (9): 23-24
    16董海红,王庆新.宝钢1580热轧平整线卷筒的国产化研究.宝钢技术, 2006, (5): 54-58
    17董海红,蒋振华.卷筒扇形板表面HVOF喷涂技术与应用.世界钢铁, 2010, (3): 55-59
    18唐田秋,陈利平,王先云.基于有限元分析的卷筒扇形板结构优化设计.机械, 2004, 31(11):14-15
    19孙一康.带钢热连轧的模型与控制.北京:冶金工业出版社, 2002: 115-123
    20史小路.自动缩颈卷筒径向压力计算.北京科技大学学报, 1991, 13(1): 83-88
    21 Jung. Y.J, Lee. G.T, Kang. C.G. Coupled Thermal Deformation Analysis Considering Strip Tensionand With/Without Strip Crown in Coiling Process of Cold Rolled Strip. Journal of MaterialsProcessing Technology, 2002, 130: 195-201
    22吴立新.冷轧带钢卷取机卷筒结构形式及力参数的研究. [燕山大学工学硕士论文]. 2000:11-17
    23连家创.卷取机卷筒单位压力的计算.机械工程学报, 1980, 16: 78-91
    24白振华,连家创.卷取过程中钢卷内部应力的计算.上海金属, 2002, 24(2): 6-9
    25连家创,李俊洪,孙蓟泉.逐层迭代法计算卷取机卷筒单位压力.重型机械, 2001, (6): 6-9
    26白振华,连家创.差分法计算卷取机卷筒单位压力.重型机械, 2002, 1:22-24
    27周国盈.带钢精整设备.北京:机械工业出版社, 1982: 32-58
    28张志强.卷取机有限元分析与数字化研究. [燕山大学工学硕士论文]. 2008: 38-40
    29曾攀.有限元分析及应用.北京:清华大学出版社, 2004: 1-12
    30江见鲸,何放龙,何益斌,陆新征.有限元法及应用.北京:机械工业出版社, 2006: 1-15
    31荣先成.有限元法.成都:西南交大出版社, 2007: 27-55
    32赵维涛,陈孝珍.有限元法基础.北京:科学出版社, 2009: 12-36
    33张文志,韩清凯,刘亚忠,戚向东.机械结构有限元分析.哈尔滨:哈尔滨工业大学出版社,2006: 1-9
    34宋志安,于涛,李红艳.机械结构有限元分析.北京:国防工业出版社, 2010: 1-22
    35邓凡平. ANSYS10.0有限元分析自学手册.北京:人民邮电出版社, 2007: 1-10
    36张应迁,张洪才. ANSYS有限元分析从入门到精通.北京:人民邮电出版社, 2010: 1-15
    37余伟炜,高炳军. ANSYS在机械与化工装备中的应用.北京:水利水电出版社, 2007: 1-27
    38李红云,赵社戌,孙雁. ANSYS10.0基础及工程应用.北京:机械工业出版社, 2008: 1-26
    39李黎明.有限元分析实用教程.北京:清华大学出版社, 2005: 1-13
    40张朝晖. ANSYS热分析教程与实例解析.北京:中国铁道出版社, 2007: 1-105
    41王泽鹏. ANSYS12.0热力学有限元分析从入门到精通.北京:机械工业出版社, 2010: 35-70
    42王建江,胡仁喜,刘英林. ANSYS11.0结构与热力学有限元分析实例指导教程.北京:机械工业出版社, 2008: 15-35
    43李裕春,时党勇,赵远. ANSYS11.0LS-DYNA基础理论与工程实践.北京:水利水电出版社,2008: 1-9
    44尚晓红,苏建宇,王化锋. ANSYSLS-DYNA动力分析方法与工程实例.北京:水利水电出版社, 2008: 1-24
    45何涛,杨竞,金鑫. ANSYS 10.0/LS-DYNA非线性有限元分析实例指导教程.北京:机械工业出版社, 2007: 1-71
    46温诗铸,黄平.摩擦学原理.北京:清华大学出版社, 2008: 1-44; 211-353
    47 Bair S, Winer W O. A Rheological Model for Elastohydrodynamic Contacts Based on PrimaryLaboratory Data. Trans. ASME, Series F., 1979, 101(3): 258-265
    48 Dowson D. Boundary Lubrication-An Appraisal of World Literature. New York: ASME Press,1969: 1-32
    49黄平.摩擦学教程.北京:高等教育出版社, 2008: 1-19
    50周仲荣.摩擦学发展前沿/学科发展战略报告.北京:科学出版社, 2006: 1-45
    51刘佐民.摩擦学理论与设计.武汉:武汉理工大学出版社. 2009: 1-15
    52张永振.材料的干摩擦学.北京:科学出版社, 2007: 1-11
    53刘正林.摩擦学原理.北京:高等教育出版社, 2009: 1-7
    54盛选禹,雒建斌,温诗铸.基于分形接触的静摩擦系数预测.中国机械工程, 1998, 9(7): 16-18
    55 Halling J. Principles of Tribology. London: McMillan Press Ltd., 1975: 71-77
    56 Greenwood J A, Williamson J B. Contact of Nominally Flat Surface. Proc. Roy. Soc. A, 1966(295):300-319
    57克拉盖尔基斯NB,等.摩擦磨损原理.汪一麟,译.北京:机械工业出版社, 1982: 65-94
    58摩尔.摩擦学原理及应用.黄文治,译.北京:机械工业出版社, 1982: 45-66
    59 Suh N P. The Delamination Theory of Wear. Wear, 1973, 25(1): 111-124
    60 Ludema K C. Mechanism-Based Modeling of Friction and Wear. Wear, 1996(200): 1-7
    61葛中民,侯虞铿,温诗铸.耐磨损设计.北京:机械工业出版社, 1991: 1-26
    62 Wang Ying-long, Jin Yuan-sheng, Wen Shi-zhu. The Analysis of the Friction and WearMechanisms of Plasma-Sprayed Ceramic Coating at 450℃. Wear, 1988, 128: 265-276
    63戴达煌,刘敏,余志明等.薄膜与涂层现代表面技术.长沙:中南大学出版社, 2008: 1-39
    64陈学定,韩文政.表面涂层技术.北京:机械工业出版, 1994: 1-28
    65庄茁,蒋持平.工程断裂与损伤.北京:机械工业出版, 2004: 1-17
    66张安哥,朱成九,陈梦成.疲劳,断裂与损伤.成都:西南交大出版社, 2006: 1-34
    67徐芝纶.弹性力学.北京:高等教育出版社, 2006: 1-9
    68吴家龙.弹性力学.北京:高等教育出版社, 2001: 1-17
    69程靳,赵树山.断裂力学.北京:科学出版社, 2006: 1-9
    70王自强,陈少华.高等断裂力学.北京:科学出版社, 2009: 1-21
    71赵建生.断裂力学及断裂物理.武汉:华中科技大学出版社. 2006: 1-8
    72钟群鹏,赵子华.断口学.北京:高等教育出版社, 2006: 1-53
    73 Hirth J P, Lothe J. Theory of Dislocation, 2nded. New York: John Wiley and Sons Inc., 1982: 1-34
    74褚武扬,乔利杰,陈奇志.断裂与环境断裂.北京:科学出版社, 2000: 1-19
    75 Soundani S M. Theoretical Basis for the Quantitative Analysis of Fracture Surface. Metallography,1974, 7: 271-311
    76钟群鹏,田永江.失效分析基础知识.北京:机械工业出版, 2000: 1-15
    77 Coster M, Chermant J L. Recent Development in Quantitative Fractography. International MetalsReviews, 1983,28(4): 228-250
    78 Mandelbrot B B, Passoja D E, Paullay A J. Fractal Character of Fracture Surface of Metals. Nature,1984, 308: 721-722
    79钟群鹏,傅国如,张峥.机电装备失效研究的内涵及其科学问题探讨.机械工程学报, 2003,39(10): 15
    80哈宽富.断裂物理基础.北京:科学出版社, 2000: 1-51
    81 Bilby B A, Cottrell A H, Swinden K H. The Spred of Plastic Yield From a Notch. Proc. Roy. Soc.London, Ser. A, 1963, 272: 304-314
    82 Jong-Hoon Leea, Wee-Do You, Jin-Woo Kim, et al. Failure Analysis of a Mast Column.Engineering Failure Analysis, 2003, 10: 317-323
    83 Lancha A M, Serrano M, Briceno D G. Failure Analysis of a Condensate Pump Shaft. EngineeringFailure Analysis, 1999, 6: 337-353
    84李俊洪,连家创,孙蓟泉等. 1580热连轧机卷取机卷筒扇形板热变形研究.重型机械, 2001(3):35-37
    85宋耕田,陈崇义,傅文斌.武钢热轧地下卷取机的改造.上海金属, 2000, 22(5): 23-27
    86朱洪波,赵华国. 1580 mm热带钢连轧机全液压移动式卷取机.一重技术, 2008(3): 14-15
    87刘安中,李友荣,朱瑞荪等.降低带钢卷取机主传动系统冲击扭矩的试验研究.轧钢, 2002,19(6): 15-16
    88廖永锋,江光彪.宝钢三热轧卷取机组能力研究.宝钢技术, 2006(4): 69-72
    89黄焕江,李轲.张力卷取机的设计要点浅析.钢铁技术, 2006(3): 25-28,51
    90樊邦人.开卷取机扇形板功能及关键工艺分析.江苏冶金, 2007, 35(6): 35-37
    91徐淑梅,王喜春. 1780 mm热轧卷取机的机构特点.一重技术, 2008(4): 21-22
    92唐崇明,任启.现代热轧板带生产技术(下).沈阳:东北大学出版社, 1993: 1-31
    93曾照强.带材卷取机控制方式讨论.有色金属加工, 2003, 32(1): 58-59,23
    94周国盈,欧光辉.宽带钢热轧的机械化与自动化.北京:冶金工业出版社, 1988: 78-79
    95宋晓东.卷取机卷筒涨缩径直径计算.一重技术, 2007(6): 1-2
    96王春选,蒋文滨.大张力卷取机的参数计算及分析.山西机械, 1999,增刊: 148-149, 152
    97竹内洋一郎.热应力.北京:科学出版社, 1997: 25-97
    98尹志富,崔建江.热轧卷取机系统仿真研究.冶金自动化, 2007,增刊: 140-143
    99王清亮.热连轧卷取机的动力学行为研究及数值仿真.西安建筑科技大学工学硕士论文,2001: 35-75
    100菜方伟,吴璋维,刘姚.基于SYMADYND的宝钢热轧卷取机控制系统.冶金自动化, 2002,26(2): 43-46
    101廖永峰.热轧带钢卷取机的惯性力矩研究.重型机械, 2001(1): 28-30
    102孙茂才.金属力学性能.哈尔滨:哈尔滨工业大学出版社, 2005: 214-235
    103刘林,蔡淑芳,刘黎南,刘艳斌. ZG42CrMo大型铸钢齿轮质量控制与热处理.铸造, 2009,58(7): 733-736
    104陈翔,林四星. ZG42CrMo钢在主动轮齿圈上的应用.兵器材料科学与工程, 1991 (5): 43-45
    105尹立孟. ZG42CrMo轨道梁的修复.焊接技术, 2003 (1): 44-45
    106赵芳欣,张松. ZG42CrMo缩松区疲劳裂纹的偏折和微裂纹的形成.金属学报, 1996, 32(10):1057- 1061
    107吴维青.回火温度对40Cr钢疲劳裂纹萌生寿命的影响.应用力学学报, 2003, 20(3): 141- 144
    108 CUI Xiang-hong, SHAN-Jun, YANG Zi-run, WEI Min-xian, WANG Shu-qi, DONG Chuang.Alloying Design for High Wear-Resistant Cast Hot-Forging Die Steels. Journal of Iron and SteelResearch, International, 2008, 15(4): 67-72
    109 J.J Coronado, A. Sinatora. Load Effect in Abrasive Wear Mechanism of Cast Iron With Graphiteand Cementite. Wear, 2009, 267: 6-11
    110 F.H. Stott, M.P. Jordan. The Effects of Load and Substrate Hardness on The Development andMaintenance of Wear-Protective Layers During Sliding At Elevated Temperatures. Wear, 2001,250: 391-400
    111 M.C.M. Farias, R.M. Souza, A. Sinatora, D.K. Tanaka. The Influence of Applied Load, SlidingVelocity and Martensitic Transformation on The Unlubricated Sliding Wear of Austenitic StainlessSteels. Wear, 2007, 263: 773-781
    112 Temel Savaskan, Yasin Alemdag. Effects of Pressure and Sliding Speed on The Friction and WearProperties of Al-40Zn-3Cu-2Si alloy: A Comparative Study With SAE 65 Bronze. MaterialsScience and Engineering A, 2008, 496: 517-523
    113 LIU Yan-qiang, HAN Zhong, CONG Hong-tao. Effects of Sliding Velocity and Normal Load onThe Tribological Behavior of A Nanocrystalline Al Based Composite. Wear, 2010, 268: 976-983
    114 S. Basavarajappa, G. Chandramohan, Arjun Mahadevan, Mukundan Thangavelu. Influence ofSliding Speed on The Dry Sliding Wear Behaviour and The Subsurface Deformation on HybridMetal Matrix Composite. Wear, 2007, 262: 1007-1012
    115崔向红,王树奇,姜启川. 4Cr3Mo2NiV铸造热锻模具钢的高温磨损机理.金属学报, 2005,41(10):1116-1120
    116 C.H. Hager Jr., J. Sanders, S. Sharma, A. Voevodin, Albert Segall. The Effect of Temperature onGross Slip Fretting Wear of Cold-Sprayed Nickel Coatings on Ti6Al4V Interfaces. TribologyInternational, 2009, 42: 491-502
    117 JIANG Zhi-qiang, DU Jian-ming, FENG Xi-lan. Study and Application of Heat Treatment ofMulti-Element Wear-Resistant Low-Alloy Steel. Journal of Iron and Steel Research, International,2006, 13(1): 57-61
    118冯宪章,王毅,刘爱敏.热连轧钢卷卷取过程摩擦力与位移场分布的研究.钢铁, 2008, 43(3):57-60
    119 QUINN T F J. The Role of Wear in the Failure of Common Tribosystems. Wear, 1984, 100(3):399-436
    120 LIU Yong, LIU Su-qin, WANG Shun-xing. Microstructure and Abrasion Wear Behavior ofNi-based Laser Cladding Alloy Layer at High Temperature. J. CENT. SOUTH UNIV. TECHNOL,2005, 12(4):403-405
    121 GENG Hao-ran, CUI Feng, TIAN Xian-fa. Processing Technique and Sliding Friction and WearBehavior of TiB2/ZA27 Composite. J. CENT. SOUTH UNIV. TECHNOL, 2005, 12(2):141-144
    122王振生,郭建亭,周兰章. NiAl-Cr(Mo)-Ho-Hf共晶合金的高温磨损特性.金属学报, 2009,45(3): 297-301
    123 LI Chang-sheng, LIU Xiang-hua, WANG Guo-dong. New Method for Evaluating Thermal Wearof Rolls in Rolling Process. Journal of Iron and Steel Research, International, 2008, 15(6): 52-55
    124 WANG Zhen-sheng, GUO Jian-ting, ZHOU Lan-zhang. High Temperature Wear Behavior ofNiAl-Cr(Mo)-Ho-Hf Eutectic Alloy. Acta Metallurgica Sinica, 2009, 45(3): 297- 301
    125 WANG Shu-qi, CHEN Kang-min, CUI Xiang-hong. Effect of Alloying Elements on ThermalWear of Cast Hot- Forging Die Steels. Journal of Iron and Steel Research, International, 2006,13(5): 53-59
    126 DONG Guang-neng, HUA Meng, LI Jian. Tribological Behaviors of Spot-Textured TiN Coatingson M2 High-Speed Steel Under Boundary Lubricated Conditions. Journal of University of Scienceand Technology, 2007, 14(4): 350-355
    127 M.B.Peterson, W.O.winer. Wear Control Hand Book. Traslation by WANG Yi-lin. MachineryIndustry Press, 1994: 35-67
    128 Bayer, R G. Design For Wear of Lightly Loaded Surfaces. Standardization, 1974(9): 29
    129王世中,臧鑫士.现代材料研究方法.哈尔滨:哈尔滨工业大学出版社, 1991: 105-135
    130范天佑.断裂力学基础.南京:江苏科学出版社, 1978: 15-61
    131钟群鹏,宋光雄,张峥.机械失效模式、原因和机理的诊断思路和主要依据.北京航空航天大学学报, 2004, 30(10): 913-918
    132王仁东.断裂力学理论和应用.北京:化学工业出版社, 1984: 81-122
    133 Chen Q Z, Chu W Y, Hsiao C M. In Situ Tem Observations of Nucleation and Bluntness ofManocracks in Thin Crystals of 310 Stainless Steel. Acta. Metall. Mater., 1995, 43: 4371
    134董蕙茹,郭万林,杨政等. X60管线钢非穿透裂纹体的断裂研究.金属学报, 2001, 37(6):579-584
    135郑冶沙,王中光,艾素华.疲劳裂纹尖端的位错结构.金属学报, 1995, 31(3): 106-114
    136吴崇周,李兴无,黄旭等. TA15钛合金疲劳裂纹扩展与显微组织的关系.稀有金属材料与工程, 2007, 36(12): 2128-2131
    137龙靖宇,王宏波.基于有限元法的二维裂纹应力强度因子研究.武汉科技大学学报(自然科学版), 2005, 28(3): 244-246
    138沙江波,井晓天,楼秉哲等.接触疲劳裂纹的萌生与扩张行为的研究.金属学报, 1995, 31(9):422-430
    139于慧臣,孙燕国,张岩基等.不锈钢在扭转/拉伸复合载荷下近门槛值的疲劳裂纹扩展行为.金属学报, 2006, 42(2): 186-190
    140贾蔚菊,曾卫东,段风川等. Ti8LC低成本钛合金疲劳裂纹扩展行为研究.稀有金属材料与工程, 2009, 38(12): 2171-2174
    141钟群鹏,张峥,武淮生.金属疲劳扩展区和瞬断区的物理数学模型.航空学报, 2000, 21(增刊): 11-14
    142张平祥,赵丽琴,马勤.套筒裂纹分析及热处理工艺改进.金属热处理, 2006, 31(12): 85-86
    143徐灏,吴志学. 45钢疲劳短裂纹的形成和扩展.金属学报, 1995, 31(2): 85-89
    144应中伟,冯蕴雯,薛小锋等.应力场强计算裂纹应力强度因子的方法研究.机械强度, 2009,31(1): 117-121
    145 Griffith A A. Phil. Trans. Roy. Soc. (London), 1920, A221: 163
    146张跃,褚武扬,王燕斌.金属间化合物脆性微裂纹形核的TEM观察.中国科学, 1994, 24: 551
    147许志强,张沛,杜凤山.铸轧辊表面裂纹的萌生及扩展机理.中国有色金属学报, 2008, 18(3):421-425
    148王章忠,杜百平,李年.不同类型过载下I型疲劳裂纹的扩展行为.金属学报, 2003, 39(8):843-847
    149史国普,王志,季英瑞等. Ti/Al2O3梯度功能材料热疲劳裂纹扩展机理.稀有金属材料与工程,2007, 36(增刊): 685-688
    150仇仲翼.应力强度因子手册.北京:科学出版社, 1993: 75-158
    151吴欢,赵永庆,曾卫东等.不同温度下Ti40合金的疲劳裂纹扩展行为.稀有金属材料与工程,2008, 37(8): 1403-1406
    152施伟,黄小平,崔维成.基于疲劳裂纹扩展率单一曲线模型的疲劳寿命预测.船舶力学, 2008,12(2): 265-271
    153 Hideaki K, Hiroshi I, Takashi K, Masahiro Y. Study on Estimation Methods of Applied StressUsing Fractography Analysis. Mitsubishi Heavy Industries, Ltd. Technical Review, 2001, 38(3):156-160
    154陈勃,刘建中,胡本润.基于小裂纹的2024-T3铝合金中心孔试样疲劳寿命预测.航空材料学报, 2009, 29(2): 97-100
    155董海红,王庆新.宝钢1580热轧平整线开卷机卷筒的国产化研制.宝钢技术, 2006(5): 54-58
    156杨逵.宝钢1580热轧卷取机卷筒和助卷辊辊型改进.轧钢机械, 2003, 20(1): 50-51
    157李汉俊.卷取机改造新工艺及设备情况介绍.轧钢, 1994(5): 15-19
    158邓国平. 610张力卷取机卷筒的研制.武钢技术, 1994(11):23-2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700