用户名: 密码: 验证码:
磨矿过程物理化学因素对几种碳酸盐矿物浮选的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸盐矿物是重要的矿物原料,也是提取Fe、Mg、Mn、Pb、Zn、Cu等金属及放射性元素Th、U和稀土元素的重要矿物原料来源。随着硫化矿资源与富矿资源的日趋枯竭,碳酸盐类矿物等氧化矿资源的开发和利用越来越受重视,此外,方解石、白云石等一些碳酸盐矿物常作为脉石矿物与有用矿物共生,许多浮选工艺都涉及到有用矿物与碳酸盐矿物的分离,因此研究碳酸盐的浮选行为,对盐类矿物和非盐类矿物的浮选理论和工业实践均有十分重要的意义。
     当前碳酸盐的浮选主要集中在浮选药剂的开发,浮选作用机理的研究和浮选工艺流程的研究上。作为浮选前的必备工序,磨矿作业与碳酸盐矿物浮选间的联系似乎较少有选矿工作者关注。磨矿作业的任务不仅仅是为浮选作业提供粒度合乎要求、充分解离的入选物料,其对矿物的浮选行为也有着重要影响。国内外学者通过大量研究证明,在硫化矿浮选中,磨矿环境对其浮选指标有着重大的影响,在理论研究和生产实践上都取得重要进展。研究磨矿对碳酸盐矿物浮选行为的影响,寻找磨矿过程物理化学因素与碳酸盐矿物浮选行为间的联系及其规律性,有着重要的理论及实践意义。
     本文以孔雀石、菱锌矿、菱镁矿、方解石四种碳酸盐矿物和常见硅质脉石石英为研究对象,通过磨矿和浮选试验,结合X射线光电子能谱(XPS)、原子吸收光谱、ζ电位测定等现代表面及溶液分析检测技术,系统研究了磨矿介质、磨矿方式和药剂添加方式(捕收剂、调整剂)变化对五种矿物表面溶液性质及其在油酸钠、十二胺浮选体系中浮选行为的影响,并对其作用机理进行了初步探讨。
     研究表明,油酸钠浮选体系中,采用氧化锆球介质磨矿比采用钢球介质磨矿更有利于碳酸盐矿物的浮选,而采用钢球介质磨矿对石英的浮选有明显的活化作用。十二胺浮选体系中,钢球介质磨矿对五种矿物的浮选都产生了抑制作用。这可能归因于钢球介质在磨矿过程中发生的电化学腐蚀。在磨损差异腐蚀原电池和电偶原电池的作用下,发生Fe的氧化和溶解氧的还原,并发生一系列氧化还原反应,通过矿浆(Eh,pH)的测定,根据Fe—H2O体系的Eh—pH图可判断在钢球介质磨矿后的矿浆中Fe元素主要以Fe(OH)3相存在,溶液检测表明,矿浆中同时还有可溶性铁组分存在,根据矿浆溶液的pH值条件、Eh—pH图及Fe2+和Fe3+的浓度对数图判断,溶液中存在的可溶性Fe组分应以Fe2+及其羟基络合物为主。溶液中的Fe2+离子在矿物表面的吸附及Fe(OH)3在矿物表面的吸附改变了矿物的表面电性和表面性质,由此对矿物的浮游性产生影响。
     干、湿磨对四种碳酸盐矿物浮游性的影响规律不同,油酸钠浮选体系中,孔雀石氧化锆球介质湿磨的可浮性优于干磨,钢球介质干磨的可浮性优于湿磨。方解石两种介质干磨的可浮性优于湿磨。而菱锌矿和菱镁矿两种介质湿磨的可浮性优于干磨。十二胺浮选体系中,无论采用何种磨矿介质,湿磨孔雀石和方解石的可浮性优于干磨,而干磨菱锌矿和菱镁矿的可浮性优于湿磨。由XPS表面元素分析可知,干磨和湿磨过程使碳酸盐矿物表面阴离子和金属阳离子的分布产生差异,进而影响碳酸盐矿物在油酸钠和十二胺浮选体系中的浮游性。根据对碳酸盐矿物晶体结构差异及其溶解性的分析,作出了“碳酸盐干磨与湿磨浮选差异是溶解初态与溶解平衡态之间的浮选差异”的假设。通过油酸钠浮选体系搅拌时间试验及矿物干、湿磨后ζ电位的测定对该假设进行了初步验证。该假设对菱锌矿和菱镁矿具有较好的适应性,而对孔雀石和方解石的适应性不是很明显。
     在单矿物浮选试验的基础上,进行了四种人工混合矿的浮选分离试验。其中孔雀石—石英体系在氧化锆球介质湿磨时获得了较好的浮选分离效果。相同条件下,氧化锆球介质磨矿时的选择性指数略高于钢球介质磨矿时的选择性指数。
Carbonate minerals are very important nonmetal mineral materials, an important mineral source of extracting metal, such as Fe、Mg、Mn、Pb、Zn、Cu and radioactive element and rare earth elements. It is of great economic significance to the world. With sulphide ore and rich ore resources exhausted day by day, the development and utilization of Carbonate minerals draw more and more attention. Calcite and dolomite coexists valuable minerals as gangue minerals usually. Many flotation processes involve the separate of valuable minerals with carbonate minerals. So it is of great significance to the flotation theory and industrial practice of salt minerals to research on the flotation behaviors of carbonate minerals.
     The research of carbonate flotation is mainly focus on the develop of flotation reagents, flotation mechanism research and flotation process improvement. But the relationship between grinding and flotation of carbonate minerals is paid little attention by the mineral processing researchers. Grinding is not only substantial to decrease the size and consequently to liberate the valuable minerals from its gangue to allow for their selective recovery during mineral processing processes such as flotation but also to influence the flotation behavior significantly. Many researches and industrial practices showed that the interactions between the ore and the grinding environment affect sulphide both in recovery and selectivity. It has an important theory and practice significance to study the affect of grinding on the flotation behavior of carbonate minerals and to search for the relationship and regularity between physicochemical factors of grinding process and flotation behavior of carbonate minerals.
     The study was undertaken using four carbonate minerals, including calcite, malachite, calamine and magnesite and a common gangue mineral, quartz. The influence of different grinding media, different grinding mode and the flotation reagents addition site on the flotation of five minerals using sodium oleate and lauryl amine as collector respectively was investigated using advanced surface and solution test technology such as X-ray photoelectron spectrometric (XPS), atomic absorption spectrometry (AAS) analysis andζpotential measure. And the effecting mechanism of grinding environment on floatability of five minerals was discussed.
     It is showed that grinding with zirconia media is beneficial to the flotation of carbonate minerals using sodium oleate as collector than grinding with steel media, but grinding with steel media can activate the flotation of quartz obviously. And grinding with steel media depresses the flotation of all five minerals when using lauryl amine as collector. It may be attributed to the electrochemical corrosion of steel media in grinding. The iron will be oxidized and oxygen in the solution be reduced subjected to the abrasion diversity corrosion and galvanic corrosion. It is showed that the species in slurry after grinding with steel ball are mainly Fe(OH)3 based on the (Eh, pH) value of slurry and the Eh-pH phase digram of Fe-H2O system. And the solution test shows that there is soluble Fe phase in slurry solution, which may be Fe2+ and its hydroxy complexes. The adsorption of Fe(OH)3, Fe2+ and its hydroxy complexes in the minerals surface may change the surface electricity and surface properties, then effect the minerals floatability.
     The influence law of wet and dry grinding on the flotation of four carbonate minerals is different. The floatability of malachite using sodium oleate as collector after wet grinding with zirconia media is better than dry grinding, but the floatability of malachite after dry grinding with steel media is better than wet grinding. The floatability of calcite after dry grinding is better than wet grinding, while the floatability of calamine and magnesite after dry grinding is worse than wet grinidng with both kind of grinding media. When using lauryl amine as collector, the floatability of calcite after wet grinding is better than dry grinding, while the floatability of calamine and magnesite after dry grinding is better than wet grinidng with both kind of grinding media.The XPS surface elements test shows that, wet and dry grinding process makes the distribution difference of surface anion and metal cation, then influence the floatability of carbonate minerals using sodium oleate and lauryl amine as collector. An assumption of "the flotation difference of carbonate after wet and dry grinding is the flotation difference between initial state and equilibrium state of carbonate dissolution" was made out according to the analysis of the carbonate crystal structure and solubility properties. And the "Stirring time" test andζpotential measurement were carried out to verify the validity of the assumption. The floatability of calamine and magnesite has good correlation with the assumption but the floatability of malachite and calcite shows a poor correlation.
     Flotation separation experiment of four groups of mixed mineral was carried out using sodium oleate as collector. The separation effect of malachite-quartz system wet grinding with zirconia is relatively superior. The selectivity index of grinding with zirconia media is higher than grinding with steel media under the same condition.
引文
1.塔加尔特A F,冶金工业部选矿研究院等译.选矿手册第二卷第二分册[M],北京:冶金工业出版社,1959,2.
    2.富尔斯特瑙D W,魏明安译.浮选百年[J],国外金属矿选矿,2001,(3):2-9.
    3.孙传尧,印万忠.硅酸盐矿物浮选原理[M],北京:科学出版社,2001.
    4.潘兆橹.结晶学及矿物学(下册)[M],北京:地质出版社,1994.
    5.王濮,潘兆橹,瓮玲宝,等.系统矿物学(下册)[M],北京:地质出版社,1982,344-425.
    6.M.A.爱格列斯,石增容,徐敏时译.非硫化矿浮选理论基础[M],北京:冶金工业出版社,1957.
    7.马蒂斯K A,等.菱镁矿和白云石的脂肪酸浮选[J],国外金属矿选矿,1995,(5):25-34.
    8.康加尔O,等.不常见的碳酸盐矿物碳酸钙镁石和水菱镁矿的可浮性[J],国外金属矿选矿,2006,(3):31-32.
    9.康加尔O,等.菱镁矿和碳酸钙镁石的可浮性[J],国外金属矿选矿,2007,(6):34-38.
    10.任翔,张洪恩.细粒菱锰矿、磷灰石溶液化学及浮选分离的研究[J],中国锰业,1992,10(6):3-11.
    11.肖力平,陈荩.中国有色金属学报[J],中国有色金属学报,1992,2(3):19-24.
    12.阿布拉莫夫A A.盐类矿物的疏水规律和浮选[J],国外金属矿选矿,2000,(11):30-35.
    13.胡岳华,王淀佐.脂肪酸钠浮选盐类矿物的作用机理研究[J],矿冶工程,1990,10(2):20-24.
    14.张志京,毛钜凡.油酸钠在菱镁矿浮选中作用的研究[J].武汉工业大学学报,1993,15(1):64-69.
    15.霍塞尼S H,等.用十二胺和油酸浮选菱锌矿的吸附研究[J],国外金属矿选矿,2006,(12):27-32.
    16.胡岳华,徐竞,罗超奇,袁诚.菱锌矿/方解石胺浮选溶液化学研究[J],中南工业大学学报,1995,26(5):589-595.
    17.胡岳华,王淀佐.烷基胺对盐类矿物捕收性能的溶液化学研究[J],中南矿冶学院学报,1990,21(1):31-38.
    18.Hicyilmaz C.胺对白钨矿及方解石表面性质的影响[J],国外金属矿选矿,1992,(7):11-14.
    19.丁浩,林海.双磷酸作捕收剂条件下盐类矿物的浮选特性与彼此分离[J],矿产保护与利用,1995,(5):30-34.
    20. Chen G, Tao D. Effect of solution chemistry on floatability of magnesite and dolomite[J], International Journal of Mineral Processing,2004,74:343-357.
    21.胡岳华,邱冠周,袁诚.孔雀石/菱锌矿浮选溶液化学研究[J],中南工业大学学报,1996,48(2):40-44.
    22.谭欣,李长根.国内外氧化铅锌矿浮选研究进展(Ⅰ)[J],国外金属矿选矿,2000,(3):7-14.
    23.谭欣,李长根.国内外氧化铅锌矿浮选研究进展(Ⅱ)[J],国外金属矿选矿,2000,(4): 7-14.
    24.谭欣,李长根.螯合捕收剂CF对氧化铅锌矿捕收性能初探[J],有色金属(选矿部分),2002,(4):31-36.
    25.谭欣,李长根.以CF为捕收剂氧化铅锌矿浮选新方法[J],有色金属,2002,54(4):86-94.
    26.赵景云,朱建光.水杨羟肟酸浮选菱锌矿和硫酸铅试验[J],有色金属,1991,43(4):27-32.
    27.伍喜庆,朱建光.苯甲异羟肟酸浮选菱锌矿及其机理[J],矿业工程,1991,11(2):28-31.
    28.朱建光,赵景云.铜铁灵浮选硫酸铅和菱锌矿研究[J],中南矿冶学院学报,1991,22(5):522-528.
    29. Cozza C. An X-ray photoelectroscopy(XPS) study of the interaction of mercaptobenzothiazole with cerussite[J], Int. J. Miner. Process,1992,34(1-2):23-32.
    30. Bustamante H, Shergold H L. Surface chemistry and flotation of zinc oxide minerals: 2-flotation with chelating reagents[J], Transactions of the Institution of Mining & Metallurgy,1983, (92):208-215.
    31.小林干男.孔雀石表面辛烷硫醇铜的生成[J],国外金属矿选矿,1988,(2):22-27.
    32.文书明,张文彬,刘邦瑞.硫化对氧化铜表面黄药吸附活性及吸附层稳定性的影响[J],有色金属(选矿部分),1997,(6):17-20.
    33. Zhou R, Chander S用四硫化钠硫化浮选孔雀石[J],国外金属矿选矿,1993,(3):14-18.
    34.梁冬云,张志雄,许志华.白铅矿、菱锌矿晶体化学性质与硫化行为[J],广东有色金属学报,1992,2(2),83-88.
    35.陈经华,孙传尧.白铅矿浮选体系中硫化钠作用机理研究[J],国外金属矿选矿,2006,(2):19-20.
    36.邱显扬,李松平,邓海波,何晓娟.菱锌矿加温硫化浮选动力学研究[J],有色金属(选矿部分),2007(1):24-26.
    37.邱显扬,李松平,邓海波,何晓娟.菱锌矿加温硫化浮选药剂作用机理的研究[J],广东有色金属学报,2006,16(4):233-235.
    38. Marabini A M.氧化铅锌矿的浮选[J],国外金属矿选矿,1990,6(7):1-11.
    39.戈保梁,张文彬.氧化铜矿选矿研究进展[J],云南冶金,1994,(4):13-18.
    40.向平,顾愚.用高效捕收剂Y89分选铜录山难选泥质氧化铜矿石的研究[J],广东有色金属学报,2000,10(2):100-103.
    41.韦华祖.烃基含氧酸盐捕收剂浮选孔雀石的研究[J],有色金属(选矿部分),1988,(1):39-40.
    42.林强,王淀佐.二烃基次膦酸结构及其浮选细粒孔雀石和赤铁矿的关系研究[J],矿冶工程,1989,9(3):16-20.
    43.李晓安,陈公伦,王绍艳,张志强.十二烷基磷酸酯作为捕收剂浮选分离菱镁矿和白云石的探索[J],中国矿业,1997,6(3):78-81.
    44.杨晓玲,王淀佐.二烃基硫代次膦酸对某些硫化矿的捕收性能研究[J],有色矿冶,1997(2):17-20.
    45.林强,王淀佐,杨晓玲,吉付光.磷酸酯基二硫代甲酸钠的制备及其浮选性能的量子化学研究[J],有色金属,1991,43(2):25-29.
    46. PrabhakrS.氧化铜矿选矿研究[J],国外金属矿选矿,1989,(5):14-22.
    47. Fuerstenau D W.用羟肟酸类捕收剂浮选矿物[J],国外金属矿选矿选矿,1987,(2):1-12.
    48. Fuerstenau D W,等.用螯合剂作为铜矿物的通用捕收剂的研究[J],国外金属矿选矿,2000,(7):27-36.
    49.何晓娟,程德明,宫中桂.螯合型捕收剂-辛基羟肟酸浮选氧化锌矿机理的研究[J],广东有色金属学报,1991,1(1):1-6.
    50. Kicrszncki T,等.5-烷基水杨醛肟作捕收剂单泡浮选闪锌矿、菱锌矿及白云石[J],国外金属矿选矿,1982(7):28-32.
    51.程琼,库建刚,刘殿文.氧化铜矿浮选方法研究[J],矿产保护与利用,2005,(5):32-35.
    52.唐丽娟,郦希,周春山.菱锌矿混合捕收剂的HPLC测定及其协同作用研究[J].湖南有色金属,1997,13(6):25-28.
    53. Krompiec S, Majewski J, Mzyk J, et al. Collecting activity of 1-acinitroalkanes in flotation of smithsonite and sphalerite [J]. Rudy Met. Niezelaz,1986,31(2):45-49.
    54. Barbaro M P. Comparision of Pb-Zn selective collectors using statistical methods[J], Minerals Engineering,1999,12(4):356-366.
    55.朱永楷.一种螯合捕收剂的合成与捕收性能研究[D],北京:北京科技大学,2006.
    56.周源,艾光华.难选氧化铜矿的浮选试验研究[J],有色矿冶,2004,20(3):23-25.
    57.陈经华.会泽铅锌矿硫化矿等可浮异步浮选及氧化矿浮选基础研究[D),沈阳:东北大学,2006.
    58.戈保梁,张覃,张文彬.硫酸铜在氧化铜矿相转移活化浮选中的作用[J],有色金属,1999,51(1):22-24.
    59.王资.有机活化剂在菱锌矿浮选中的作用及机理[J],有色金属(选矿部分),1996,(3):13-18.
    60.汪兆龙.某含大量易浮石英的氧化锌矿石的浮选[J],云南冶金,1995,(2):26-30.
    61.吴卫国.有机螯合调整剂在矿物浮选中的抑制与活化作用[D],北京:北京科技大学
    62.徐晓军,刘邦瑞.有机螯合剂活化硅孔雀石浮选特性研究[J],昆明工学院学报,1993,18:36-41.
    63.徐晓军,刘邦瑞.用乙二胺磷酸盐和D2药剂活化难浮氧化铜矿物的研究[J],有色金属,1991,43:28-33.
    64.徐晓军,刘邦瑞.三乙醇胺对微细粒孔雀石的活化作用特性及机理研究[J],有色金属,1993,45:28-33.
    65.徐晓军,刘邦瑞.浮选孔雀石时8-羟基喹啉对黄药的协同活化作用[J],中国有色金属学报,1993,(3):41-44.
    66.胡绍彬.消除矿泥对汤丹难选氧化铜矿浮选影响的研究进展[J],云南冶金,1999,28(3):15-18.
    67.郑桂兵,黄国智.萤石与方解石浮选分离抑制剂研究[J],非金属矿,2002,25(5):41-42.
    68.陈华强.几种无机、有机抑制剂对方解石浮选抑制行为的研究[J],四川有色金属,1998(2):42-45.
    69. Gallios G P, Matis KA,1989, "Floatability of magnesium carbonates by sodium oleate in the presence of modifiers," Separation Science and Technology, Vol.24,182, pp. 129-143.
    70. Gence N. Surface properties of magnesite and surfactant adsorption mechanism [J], International Journal of Mineral Processing,1995,43:37-47.
    71.周文波,张一敏.调整剂对隐晶质菱镁矿与白云石分离的影响[J],矿产综合利用,2005,(5):21-23.
    72.胡岳华,徐竞,王淀佐.水玻璃与磷灰石、方解石作用的溶液化学研究[J],矿冶工程,1992,12(2):23-26.
    73. Rey M, Formanek V. Some factors affecting selectivity in the differential flotation of lead-zinc ores, particularly in the presence of oxidised lead minerals[C], Proc. Int. Miner. Process. Congr. Institution of Mining and Metallurgy, London:1960,343-352.
    74. Thornton E. The effect of grinding media on flotation selectivity[C], Proc 5th Annual Meeting of Canadian Mineral Processors, Ottawa:Elsevier,1973,224.
    75. Cullinan V J, Grano S R, Greet C J, Johnson N W. Investigating fine galena recovery problems in the lead circuit of Mount Isa Mines lead/zinc Concentrator Part 1:Grinding Media Effects[J], Minerals Engineering,1999,12(2):147-163.
    76. Bradshaw D J, Buswell A M, Harris P J. Interactive effects of the type of milling media and copper sulphate addition on the flotation performance of sulphide minerals from Merensky ore:Part Ⅰ.Pulp chemistry[J]. Int J Miner Process,2006,78(3/4):153-163.
    77. Adam K, Natarajan K A, Iwasaki I. Grinding media wear and its effect on the flotation of sulfide minerals [J], Int. J. Miner. Process.,1984,12:39-54.
    78. Learmont M E, Iwasaki I. Effect of grinding media on flotation of galena [J], Miner. Metall. Process.,1984,1(3):136-143.
    79. Grano S, Ralston J and Smart R St C. Influence of electrochemical environment on the flotation behaviour of Mt. Isa copper and lead-zinc ore[J], Int. J. Miner. Process.,1990, 30,69-97.
    80. Heyes G W, Trahar W J. The natural flotability of chalcopyrite[J], Int. J. Miner. Process., 1977,4:317-344.
    81. Peng Y, Grano S, Fornasiero D, Ralston J. Control of grinding conditions in the flotation of galena and its separation from pyrite[J]. Int. J. Miner. Process.2003,70:67-82.
    82. Peng Y, Grano S, Ralston J, Fornasiero D. Towards prediction of oxidation during grinding I. Galena flotation[J], Minerals Engineering,2002,15:493-498
    83. Peng Y, Grano S, Fornasiero D, John Ralston. Control of Grinding Conditions in the Flotation of Chalcopyrite and its Separation from Pyrite [J], Int. J. Miner. Process.,2003, 69:87-100.
    84. Natarajan, K A, Iwasaki I. Electrochemical aspects of grinding media-mineral interactions in magnetite ore grinding[J], Int. J. Miner.Process,1984,13,53-71.
    85. Yelloji Rao M K, Natarajan K A. Influence of galvanic interaction between chalcopyrite and some materials on flotation[J], Minerals Engineering,1988,1,281-294.
    86. Vathsala, Natarajan K A. Some electrochemical aspects of grinding media corrosion and sphalerite flotation[J], Int. J. Miner. Process.,1989,26:193-203.
    87. Deshoande R J, Natarajan K A, Studies on grinding media wear and its effect on flotation of ferruginous phosphate ore[J], Minerals Engineering,1999,12(9):1119-1125.
    88. Gundewar C S, Natarajan K A, Nayak U B, Satyanarayan K. Laboratory studies on ball wear in the grinding of a hematite-magnetite ore[J], Int. J. Miner. Process.,1990,29: 121-139.
    89. Natarajan K A, Riemer S C, Iwasaki I. Corrosive and erosive wear in magnetic taconite grinding[J], Miner. Metall. Process.,1984,1:10-14.
    90.孙传尧,吕永信.用络合侵蚀法浮选分离霓石和铁矿物[J],有色金属(季刊),1982,34(2):43-51.
    91. Guy P J, Trahar W J. The influence of grinding and flotation environments on the laboratory batch flotation of galena[J], Int. J. Miner. Process,1984,12:15-38.
    92. Van Deventer J S J, Ross V E, Dunne R C. The effect of milling environment on the selective flotation of chalcopyrite from a complex sulphide ore[J], Proc. ⅩⅦ Int. Min. Proc. Cong.,1991:129-140.
    93. Yuan X M, Palsson B I, Forssberg K E. Flotation of a complex sulphide ore:Ⅱ. influence of grinding environments on Cu/Fe sulphide selectivity pulp chemistry [J], Int. J. Miner. Process.,1996,46:181-204.
    94. Yuan X M, Palsson B I, Forssberg K S E. Flotation of a complex sulphide ore Ⅰ.Cu/Zn selectivity control by adjusting pulp potential with different gases [J], Int. J. Miner. Process,1996, (45):155-179.
    95. Yuan X M, Palsson B I, Forssberg K E. Flotation of a complex sulphide ore:Ⅱ. influence of grinding environments on Cu/Fe sulphide selectivity pulp chemistry[J], Int. J. Miner. Process.,1996,46:181-204.
    96. Morizot G,等.锡及铌-钽的优先浮选:磨矿条件对锡石可浮性的影响[J],国外金属矿选矿,1992,(6):21-25.
    97. Wei Y, Sandenbergh R F. Effects of grinding environment on the flotation of Rosh Pinah complex Pb/Zn ore[J], Minerals Engineering,2007,20(3):264-272.,
    98.钟素姣,顾帼华,锁军.氮气环境下磨矿介质对磁黄铁矿浮选的影响[J],金属矿山,2006,(4):26-29.
    99.何发钰.磨矿环境对硫化矿物浮选的影响[D],沈阳:东北大学,2006.
    100. Rao S R, Labonte G, Finch J A电化学在选矿厂的应用[J],国外金属矿选矿,1997,(4):1-23.
    101. Goncalves K L C, Andrade V L L, Peres A E C. The effect of grinding conditions on the flotation of a sulphide copper ore[J], Minerals Engineering,2003, (16):1213-1216.
    102. Freeman W A, Newell R, Quast K B. Effect of grinding media and NaHS on copper recovery at Northparkes mines[J], Minerals Engineering,2000,13(13):1395-1403.
    103.Leppinen J O, Hintikka V V, Kalapudas R P. Effect of electrochemical control on selective flotation of copper and zinc from complex ores [J], Minerals Engineering,1998, 11(1):39-51.
    104. Kirjavainen V, Schreithofer N, Heiskanen K. Effect of some process variables on flotability of sulfide nickel ores[J], Int. J. Miner. Process,2002(6):59-72.
    105. Kirjavainen V, Nora Schreithofer, Kari Heiskanen. Effect of calcium and thiosulfate ions on flotation selectivity of nickel-copper ores[J], Minerals Engineering,2002, (15):1-5.
    106. Ward K, Grano S R. The effect of grinding environment on sulphide flotation[J], Ian Wark Research Institute Report, University of South Australia,1999.
    107.东乃良,鞠义武,吴峰.矿石中硫酸铜在选矿过程中的行为[J],有色金属(选矿部分),1983,(4):5-9.
    108.魏以和,周高云.磨矿方法对某硫化矿浮选的影响[J],有色金属,2007,59(4):131-136.
    109. Houot R, Duhamet, D. Importance of oxygenation of pulps in the flotation of sulphide ores[J], Int. J. Miner.Process,1990,29:77-87.
    110.Kuopanportti H, Suorsa T, Dahl O, Niinimaki J. A model of conditioning in the flotation of a mixture of pyrite and chalcopyrite ores[J], Int. J. Miner. Process.,2000,59:327-338.
    111.黎小玲.铬对铸铁介质特性及湿磨性能的影响[J],国外选矿快报,1993,(8):6-10.
    112. Seke M D, Pistorius P C. Effect of cuprous cyanide, cry and wet milling on the selective flotation of galena and sphalerite [J], Minerals Engineering,2006,19:1-11.
    113. Forssberg K S E, Subrahmanyam, Nilsson L K. Influence of grinding method on complex sulphide ore flotation:a pilot plant study [J], International Journal of Mineral Processing, 1993,38:157-175.
    114.Erdemoglu M, Sarikaya M. The Effect of grinding on pyrophyllite flotation[J], Minerals Engingeering,2002, (15):723-725.
    115. Feng D, Aldrich C. A comparison of the flotation of ore from the Merensky Reef ater wet and dry grinding[J],2000, (60):115-129.
    116. Rao S R, Moon K S, Leja J磨矿介质对重金属硫化物表面反应和浮选的影响[C],Fuerstenau M C(主编),浮选,上卷,第三部分:其他浮选基础,北京:冶金工业出版社,1981,388-402.
    117. Hanna H S, Somasundaran P.盐类矿物的浮选[C],Fuerstenau M C(主编),浮选,上卷,第一部分:非金属矿浮选基础,北京:冶金工业出版社,1981,136-194.
    118. Wills B A国外选矿技术的发展—选矿年评(Ⅰ)[J],国外金属矿选矿,1990,(1):18-24.
    119.覃文庆,邱冠周,徐竞,王淀佐.磨矿过程硫化矿物表面电化学性质及其对其浮选的影响[J],矿产综合利用,1999,(3):6-10.
    120.方振鹏.凡口铅锌矿深部矿体矿石浮选电化学研究[J],有色金属(选矿部分),2005(3):1-5.
    121.王彩霞,张立征,姚凯.活化调整剂提高选金回收率的研究及应用[J],有色金属(选矿部分),2003(4):32-33.
    122.于建中,曾晓晰,周世伯等.金川二矿区矿石中性介质浮选工艺的研究[J],有色金属(选矿部分),1982,(4):6-10.
    123.孟宇群,吴敏杰,宿少玲,王隆保.边磨边浮新工艺试验研究[J],矿冶工程,2003,23(1):28-31.
    124.郑伦,张笃.电位调控浮选在凡口铅锌矿的应用[J],中国矿山工程,2005,34(2):1-5.
    125.王聘仪,亚硫酸及其盐在浮选过程中作用机理的探讨[J],精细化工中间体,1981,(2):55-57.
    126.覃文庆.硫化矿物颗粒的电化学行为和电位调控浮选技术[D],长沙:中南工业大学,1997.
    127.段秀梅,罗琳.氧化锌矿浮选研究现状评述[J],矿冶,2000,9(4):47-51.
    128.冯其明.硫化矿矿浆体系中的电偶腐蚀及对浮选的影响(Ⅰ):电偶腐蚀原理及硫化矿矿浆体系中的电偶腐蚀模型[J],国外金属矿选矿,1999,(9):2-4.
    129.冯其明.硫化矿矿浆体系中的电偶腐蚀及对浮选的影响(Ⅱ):电偶腐蚀对磨矿介质损耗及硫化矿物浮选的影响[J],国外金属矿选矿,1999,(9):5-8.
    130.Haye R A s,等.控制Eh电位的硫化矿无捕收剂浮选分离[J],国外金属矿选矿,1991,(12):21-36.
    131. Yelloji Rao M K and Natarajan K A. Effect of galvanic interactions between grinding medium and minerals on sphalerite flotation [J], Int. J. Miner. Process.,1989,27: 95-109.
    132. Yelloji Rao M K and Natarajan K A. Effect of electrochemical interactions among sulphide minerals and grinding medium on the flotation of sphalerite and galena [J], Int. J. Miner. Process.,1990,29:175-194.
    133.顾帼华,胡岳华,徐竞等.方铅矿原生电位浮选及应用[J],矿冶工程,2002,22(4):30-32.
    135. Cases J M, Kongolo M, Donato P De, Micho L and Erre R. Interaction of finely ground galena and potassium amylxathate in flotation,1. Influence of alkaline grinding [J], Int. J. Miner. Process.,1990,28:313-337.
    136. Cases J M, Kongolo M, Donato P, Michot L and Erre R. Interaction between finely ground galena and pyrite with potassium amylxathate in relation to flotation,2. Influence of grinding at natural pH [J], Int. J. Miner. Process.,1990,30:35-67.
    137. Cases J M, Kongolo M, Donato P, Micho L and Erre R. Interaction of finely ground galena and potassium amylxathate in relattion to flotation,3. Influence of acid and neutral grinding [J], Int. J. Miner. Process.,1990,30:195-215.
    138. Wang X H, Xie Y. The effect of grinding media and environment on the surface properties and flotation behaviour of sulfide minerals [J], Mineral Processing and Extractive Metallurgy Review,1990,7:49-79.
    139. Huang G Z, Grano S. Galvanic interaction between grinding media and arsenopyrite and its effect on flotation:Part Ⅰ.Quantifying galvanic interaction during grinding[J], Int J Miner Process,2006,78(3):182-197.
    140. Huang G Z, Grano S, Skinner W. Galvanic interaction between grinding media and arsenopyrite and its effect on flotation:Part Ⅱ. Effect of grinding on flotation[J], Int J Miner Process,2006,78(3):198-213.
    141.Girczys J,等.在碱性条件下用硫酸铜活化铅—锌—铁硫化矿选矿时闪锌矿—白铁矿的浮选选择性[C],第十五届国际选矿会议论文集,中国选矿科技情报网,1986,183-189.
    142.Pozzo R L, Iwasaki I. Effect of pyrite and pyrrhotite on the corrosive wear of grinding media[J], Miner. Metall. Process.,1987,4(2):166-171.
    143.Forssberg E, Sundberg S, Zhai H X. Influence of different grinding methods on floatability [J], Int. J. Miner. Process.,1988,22:183-192.
    144. Trahar W J. A laboratory study of the influence of sodium sulphide and oxygen on the collectorless flotation of chalcopyrite [J], Int. J. Miner. Process.,1983,11:57-74.
    145.Beyzavi A N复杂硫化矿优先浮选特别是关于比表面积、氧化还原电位和氧含量的相互影响[J],国外金属矿选矿,1989,26(2):27-34.
    146. Subrahmanyam T V, Forssberg E. Grinding and flotation pulp chemistry of a low grade copper ore [J], Minerals Engineering,1995,8(8):913-921.
    147. Forssberg E, Subrahmanyam T V.磨矿、矿浆化学与颗粒可浮性[J],国外金属矿选矿,1994,(8):31-37.
    148.胡岳华,孙伟,覃文庆.方铅矿浮选的机械电化学行为[J].中国有色金属学报,2002, 12(5):1060-1064.
    149.董青海,孙伟,胡岳华,等.黄铁矿浮选过程的机械电化学行为研究[J],矿冶工程,2006,26(1):32-36.
    150. Sui C C, Brienne S H R, Ramachandra Rao S. Metal ion production and transfer between sulphide minerals [J], Minerals Engineering,1995,8(12):1523-1539.
    151. Rao S R, Finch J A. Galvanic interaction studies on sulfide minerals [J], Can. Met. Quart., 1988,27:253-259.
    152.徐秉权,周放良.凡口铅锌矿磨矿过程对矿浆电位的影响[J],有色金属(选矿部分),1991,(3):17-20.
    153.徐秉权.磨矿过程对硫化矿矿浆电位的影响[J],湖南有色金属,1995,11(3):21-27.
    154. Page P W, Hazell L B. X-ray Photoelectron Spectroscopy (XPS) studies of potassium amyl xanthate (KAX) adsorption on precipitated PbS related to galena flotation [J], Int. J. Miner. Process.,1989,25:87-100.
    155.崔林.矿物的晶体缺陷与可浮性[J],国外金属矿选矿,1982,(10):10-20.
    157.何伯泉,汪桂兰,赵明林.强化辉钼矿浮选的途径[J],北京矿冶研究总院院报,1984,(2):37-43.
    158.赵中伟.含金硫化矿的机械化学及其浸出工艺研究[D],长沙:中南工业大学,1995.
    159.邹俭鹏,尹周澜,陈启元等.机械活化黄铁矿物理性能和表面结构变化的表征[J],湖南有色金属,2001,17(5):36-39.
    160.邹俭鹏,尹周澜,陈启元等.机械活化黄铁矿的活性与失效性[J],中国有色金属学报,2002,12(1):201-204.
    161.肖奇,邱冠周,胡岳华.黄铁矿机械化学的计算机模拟(Ⅰ)—晶格畸变与化学反应活性的关系[J],中国有色金属学报,2001,11(5):900-905.
    162.米特罗法诺夫C И.矿石可选性研究[M],北京:冶金工业出版社,1957,149-178.
    163.梁英教.物理化学[M],北京:冶金工业出版社,1995.
    164.王建祺.电子能谱学(XPS/XAES/UPS)引论[M],北京:国防工业出版社,1992,519-559.
    165.胡为柏.浮选[M],北京:冶金工业出版社,1989.
    166.王淀佐,胡岳华.浮选溶液化学[J],长沙:湖南科学技术出版社,1988.
    167.周乐光.矿石学基础[J],北京:冶金工业出版社,2002,195.
    168.Krushchov M M, Babichev M A. Investigation of the wear of metals and alloys by rubbing on an abrasive surface[J], Friction and Wear in Machinery,1956, (11):12-21.
    169.邵荷生,张清.金属的磨料磨损与耐磨材料[M],北京:机械工业出版社,1988.
    170.Bowden F P, Tabor D. The friction and lubrication of solids[M], Oxford:Clarendon Press, 1950.
    171. Hoey G R, Dingley W, Lui A W. Inhibitors help to reduce ball loss[J], Canadian Chemical Processing, 1975, (5):36-41.
    172.邵美成.鲍林规则与键价理论[M],北京:高等教育出版社,1993,71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700