用户名: 密码: 验证码:
性能变形镁稀土合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金以其密度小、比强度的优异性能而广泛地应用于汽车、电子、航空航天等领域。但是,由于镁合金的力学性能较差,很难作为温环境下的结构部件,因此,常通过变形工艺改善镁合金的综合性能。
     本文以Mg-Al-Zn系列合金为基础,通过添加富铈稀土(MM),设计的合金为:Mg-3Al-0.5Mn-1MM、Mg-3Al-0.5Zn-0.5Mn-1MM、Mg-2Al-0.5Mn-1MM、Mg-2Al-0.5Zn-0.5Mn-1MM、Mg-2Al-0.5Zn-0.5Mn-0.5MM。采用电阻炉加热和钢模浇注制备合金,选取Mg-3Al-0.5Zn-0.5Mn-1MM和Mg-2Al-0.5Zn-0.5Mn-1MM合金进行轧制和挤压变形,并对变形后合金分别进行了退火和时效处理。
     分别对铸态、变形态及热处理态合金进行显微组织观察和力学性能测试。其中显微组织观察采用合金相组成、金相分析、扫描分析等分析手段;力学性能的测试主要为合金的显微硬度和拉伸性能。
     结果表明,添加MM提了合金结晶过程中的形核率,明显细化铸态组织。铸态合金中添加MM和锌显著提了合金的强度和伸长率。析出稀土相主要为针状的Al4MM(MM为Ce,La)和颗粒状的Al10Ce2Mn7。合金在轧制及挤压变形过程中发生了动态再结晶,得到较小的等轴晶粒,稀土相破碎并均匀弥散地分布在晶内及晶界上。在轧制后退火过程中,出现晶粒的回复再结晶,晶粒长大。挤压后时效强化效果不明显,随时效时间延长晶粒尺寸变化不大。
     断口分析表明,铸态合金断口属于准解理断裂,韧性特征明显,轧制变形后合金退火处理后,断裂由解理脆断向准解理断裂转变,挤压变形后的合金属于准解理断裂。添加少量的富铈稀土使基体合金的强度和塑性均得到提,析出相强化作用明显。
Magnesium alloys, as the lightest structural material in practical application, has achieved rapid development since coming out, attributing to its low density, high specific strength and specific rigidity, excellent damping capacity and electromagnetic shielding capacity, as well as recuperability. However, magnesium alloys are limited to be used at elevated temperature due to its poor mechanical properties. Mg-Al-Zn alloy system wrought magnesium alloys were reported to be the best candidate in practical use till now. Thus, it’s of great significance to research and develop a high Mechanical Properties magnesium alloy, serving for industry.
     In this dissertation, new magnesium alloys Mg-3Al-0.5Mn-1MM、Mg-3Al-0.5Zn-0.5Mn-1MM、Mg-2Al-0.5Mn-1MM、Mg-2Al-0.5Zn-0.5Mn-1MM、Mg-2Al-0.5Zn-0.5Mn-0.5MM are achieved by adding mischmetal(MM) on the basis of Mg-Al-Zn alloys are melted in electric resistance furnace and poured into steel mould, then select # 2 and # 4 alloys to rolling, extrusion deformation, heat treatment by annealing and aging treatment. This article studies effect of MM on solidification and microstructure, deformation capacities of as-cast alloys, mechanics property and fracture behavior of rolled and extruded alloy.
     The following are main studying content:
     (1) Selected alloy consisting of: Mg-2-3Al-0.5Mn-0~0.5Zn-0.5~1.0MM
     (2) Preparation of alloys, research on organization, structure, the composition of the precipitates, shape and distribution of as-cast, as-rolled, as-extruded and heat treatment states alloys.
     (3) Mechanical properties of the alloy, tensile fracture morphology observation and fracture mechanism analysis of the alloy for different states.
     (4) Mechanism of Rare Earth (MM) on the structure and properties of alloys, proposed alloy design.
     After research above, reach conclusions as fellow:
     As-cast alloys is composed ofα-Mg, pole-like Al4MM(MM is Ce、La) and grain-like Al10Ce2Mn7, In the Mg-3Al alloy system there are a small number of bone-likeβ-phase precipitates Mg17Al12.α-Mg crystal refines obviously and get coarse grain. Pole-like precipitates major segregate around the grain boundary as discontinuous eutectic structure, and grain-like precipitates are mainly distributed in the grain. Most of Zn dissolved into Mg matrix. The addition of MM, increased alloy solid-liquid phase temperature difference is conducive to the formation of segregation and composition undercooling.,MM enhanced crystallization rate in the process of nucleation, refine microstructure of as-cast alloy. And significantly enhanced mechanical properties of the alloy. The Mg-3Al-0.5Zn-0.5Mn-1MM and Mg-2Al-0.5Zn-0.5Mn-1MM alloy have outstanding performance particularly.
     In the process of rolling and extrusion deformation dynamic recrystallization phenomenon can be observed, grain size decreases, precipitates broken and uniformly distribute on the grain and the grain boundary. In the annealing process after rolling, recovery and recrystallization phenomenon can be observed, and then grain grows. In the aging process after extrusion, there is little change on grain size. Aging strengthening is not obvious.
     After the deformation, the flow stress of the alloy increase, thereby enabling alloy internal dislocation density increased significantly enhanced the strength of the alloy. In addition, at the room temperature, Al4MM and Al10Ce2Mn7 have higher hardness, under high temperature are stable phase, the second phase particles in the matrix surrounding the will bring uneven deformation, For the coordination uneven deformation in the second phase particles around Cypriot plot large dislocation, broken Al4MM and Al10Ce2Mn7 which distribute in the matrix will produce more dislocations, and further enhance the strength of alloy. MM phase can also be effective to inhibit grain growth in the process of crystallization, improve the mechanical properties of heat treatment alloy.
     After rolling, the max Vickers-hardness of Mg-3Al-0.5Zn-0.5Mn-1Ce(MM) alloy increases from 67HV to 92HV, the max ultimate tensile strength (UTS) and yield tensile strength (YTS) of rolled state alloys at room temperature are 301MPa and 228MPa, respectively, Annealed alloy strength decreased slightly, but a clear enhancement of elongation, reach 21%. For the Mg-2Al-0.5Zn-0.5Mn-1Ce(MM) alloy, the max Vickers-hardness increases from 63HV to 76HV after rolling, The UTS and YTS of rolled state alloys are 290MPa and 202MPa at room temperature, respectively, and the elongation after anneal treatment is 14%. Extruded alloy with higher tensile strength and elongation, but not rolling yield strength alloy state, only 100 MPa at room temperature.
     Fracture analysis showed that as-cast alloy fracture surface belong to quasi-cleavage fracture, exhibits obvious toughness characteristics. As to as-rolled alloys, its plasticity decreases, and fracture mechanism changes from mix fracture of intergranular fracture and cleavage fracture to quasi-cleavage fracture after annealed. A little number of MM added can increase the strength and plastic deformation of the matrix alloy, the second phase significantly enhanced role.
引文
[1]曾小勤, 王渠东, 吕宜振等. 镁合金应用进展[J], 铸造, 1998 (11):39
    [2] Mitsuguki I, Murakami S. Development and application of aluminum extrusion for automotive parts. Journal of Mater [J]. Processing Tech., 1993, 38 (4): 635-654
    [3] 彭晓东 , 李玉兰 , 刘江 . 轻合金在汽车上的应用 [J]. 机械工程材料 , 1999,23(2):1-4
    [4]A I Nussboum. 52nd annual IMA world magnesium conference. Light Metal Age[R], 1995, 53(7-8): 58-63
    [5] B Brown. 49th annual magnesium conference. Light Metal Age[R], 1992,50(5-6): 21-24
    [6]Robert B Aronson, Materials for the next generation vehicle.Manufacturing Engineering[J], 1999, 123(2): 94-102
    [7]R.W.Cahn,师昌绪,柯俊等. 非铁合金的结构与性能[M], 北京:科学出版社,1999
    [8]余琨, 黎文献. Mg-Al-Zn 系变形镁合金轧制及热处理后的组织和性能[J], 金属热处理, 2002, 27 (5): 231-234
    [9]I.J.Polmear, Magnesium Alloys and Applications[J]. Mater.Sci.&Tech.,1994, 10 (1)
    [10]范才河, 陈刚, 严红革, 陈振华. 稀土在镁及镁合金中的作用[J]. 材料导报. 2005,19(7): 61-68
    [11]郭旭涛, 李培杰, 熊玉华, 刘树勋, 曾大本. 稀土在铝、镁合金中的应用[J]. 材料工程. 2004,(8): 60-64
    [12]R. W. Cahn, Y. D. Ding. Structure and Properties of Nonferrous Alloys[J]. Beijing: Science Press. 1999:129
    [13]Y .K ojima ,Mater .Sci. Forum,2000,V ol-350-351:3
    [14]Asm International,Magnesium And Magnesium[M] Alloy,OH:Metal Park,1999
    [15]Buck R S. Magnesium Products Design [M]. New York : Marcel Dekker INC , 1987.
    [16]Kojima Y. Platform science and technology for advanced magnesium alloy [J].Mater Sci Forum, 2000, 3(12): 350-351.
    [17]吕宜振, 瞿春泉, 王渠东等.压铸镁合金的应用现状及发展趋势[J]. 铸造, 1998 (12): 50-53
    [18]吕宜振,曾小勤,丁文江等.镁合金铸造成形技术的发展[J].铸造 2000,(7):383-387
    [19]王建.我国推进镁合金产业化进程, 中国校技术市场[J], 2000,(8):23-24
    [20]陶令恒, 铸造手册(非铁合金卷)[M]. 北京, 机械工业出版社, 1994.
    [21]陈振华等. 镁合金[M], 北京: 化学工业出版社 2004.5
    [22]Mordike B L,Ebert T.,Magnesium properties applications potential [J]. Mater. Sci. Eng. A,2001,(302): 37-45
    [23]Friedrich H, Schumann S, Research for a new age of magnesium in the automotive industry,[J]. Materials Processing Technology,2001,(117):276-281
    [24]Schumann S, Friedrich H,Current and future use of magnesium in the automobile industry,[J]. Material Science Forum,2003,(419-422):51-56
    [25]Kaneko T,Suzuki M.,Automotive applications of magnesium alloys,[J]. Material Science Forum, 2003, 419-422: 67-71
    [26]王渠东, 丁文江, 镁合金及其成形技术的国内外动态与发展[J],世界科技研究与发展,2004, (3): 44-45
    [27]Barnett M R. Influence of Deformation Conditions and Texture on the High Temperature Flow Stress of Magnesium AZ31[J]. Journal of Light Metals, 2001, (1): 167
    [28]Frost H J, Ashby M F. Deformation Mechanism Maps [M] .Oxford: Pergamon , 1982
    [29]Galiyev A, Kaibyshev R , Gottstein G. [J]. Acta Mater. 2001, (49): 1199
    [30]McQeen H J, Myshlave M, Sauerborn M, et al. Magnesium Technology 2000[J], Warrendale, 2000: 355
    [31]Sellars C M. Modeling Microstructural Development During Hot Rolling [J]. Materials Science and Technology, 1990, (6): 1072
    [32]Michael M. Avedesian , Hugh Baker. ASM Specialty Handbook-Magnesium and Magnesium Alloys.[M]. Ohio: ASM International , Materials Park , 1999
    [33]K. Mueller, S. Mueller Severe plastic deformation of the magnesium alloy AZ31 Journal of Materials Processing Technology, 2007, (187-188): 775-779
    [34]陈吉华, 傅定发, 严红革, 夏伟军, 陈振华. 镁合金材料的塑性变形理论及其技术[J] 化工进展.2004, (2): 54-55
    [35]Becker J , Fischer G, Schemme K. Light Weight Construction Using Extruded and Forged Semi-Finished Products Made of Magnesium Alloys[J], 1998
    [36]轻金属材料加工手册编写组. 轻金属材料加工手册[M]. 北京: 冶金工业出版社, 1980
    [37]Closset B M, Perey J F, Timminco S A. Microstructure and Properties of Wrought Magnesium Alloys. In: Mordike B L, Kainer K U. Papers presented at the Conference Magnesium Alloys and Their Applications[R], Wolfsburg , Germany , 1998
    [38]Hiroyaki Hosokawa, Yasumasa Chino, Koyi Shimojima, et al.[J]. Materials Transactions , 2003 , 44 (4): 489
    [39]Eitaro Yukutake, J unichi Kaneko, Mokoto Sugamata, et al.[J]. Materials Transactions, 2003 , 44 (4): 452
    [40]中国机械工程学会锻压学会. 锻压手册(第一卷)——锻造[M]. 北京: 机械工业出版社, 1993
    [41]刘勤. 金属的超塑性[M]. 上海: 上海交通大学出版社, 1989
    [42]日本塑性加工学会. 旋压成形技术[M] . 北京: 机械工业出版社, 1988
    [43]Galiyev A , Kaibyshev R , Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J]. Acta. Mater. 2001, (49): 1199-1207
    [44]Polmear I. J.,Light Alloys: Metallurgy of Light Metals[M],London: Edward Arnold Press,1989,(6): 128-129
    [45]A.Luo, Pekuleryuz M.O, Cast magnesium alloys for elevated temperature applications[J] Mater.Sci.,1994, (29): 525
    [46]编辑委员会,工程材料实用手册[M],中国标准出版社,1989: 405
    [47]Pekguleryuz M O. Magnesium alloys , some potentials for alloy development [J]. Light Metal, 1992, (12): 679-686
    [48]Unsworth Wm , King J F. A new magnesium alloys system [J].Light Metal Age , 1979, (8): 29-32
    [49]Housh S. and Mikucki B , Selection and Application of Magnesium and Magnesium Alloys ,Metals Handbook,10thed. ASM,1990, (9): 455-479
    [50]张诗昌, 段汉桥; 蔡启舟等. 主要合金元素对镁合金组织和性能的影响[J], 铸造,2001 (6): 310-315
    [51]张诗昌等. 钇及铈镧混合稀土对 AZ91 镁合金铸态组织的影响[J], 中国有色金属学报, 2001, 11(2): 99-102
    [52]WUAnru,XIA Changqingl and WANG Shaowu, Effects of cerium on the microstructure and mechanical properties of AZ31 alloy[J]. RARE METALS, 2006, 25(4): 371
    [53]余琨, 黎文献. 细晶粒 AZ31(Ce)镁合金板材的组织与性能[J]. 金属热处理,2005, 30(4): 121-123
    [54]Petersen G, Westengen H.and Hoier R.et al, Magnesium-4wt% aluminum alloy modified with rare earth additions[J] Mater.Sci.Eng, 1996, (207): 115-120
    [55]ClarkJ.B,Age hardening in a Mg-9wt.%Al alloy[J],Acta metall,1968,(16):141-152
    [56]MohriT,Mabuchi M,Nakamura N,et al.Microstructure evolution and superplasticity of rolled Mg29Al21Zn[J].Mat Sci Eng, 2000, (290): 139
    [57]刘满平,马春江, 王渠东等. 工业态 AZ31 镁合金的超塑性变形行为[J],中国有色金属学报,2002, (4): 797

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700