用户名: 密码: 验证码:
静电纺丝法组装一维纳米结构单元及组装体的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静电纺丝技术在制备一维纳米材料方面具有简单快捷、规模化、纤维形貌可控等显著的优势,特别是通过将功能化组分直接加入到电纺溶液中能够制备各种复合纤维,克服了许多传统合成方法的缺点。另一方面,在电纺碳纳米管等一维纳米材料时,发现碳纳米管在电纺纤维内会沿纤维轴向排列,因此利用静电纺丝技术组装一维纳米材料成为可能。迄今为止,尽管纳米材料表现出新颖的或者更好的性质,然而将纳米构筑单元大范围组装成功能性宏观材料、并保持组装体的稳定性仍是当前该领域的一个挑战。
     本论文将集中阐述如何通过静电纺丝技术实现电纺纤维与一维功能性纳米单元的有效复合、组装及组装体的性能研究。通过电纺各种一维纳米结构单元,成功制备了纳米复合纤维,充分证明了静电纺丝技术在大范围组装一维纳米结构单元方面的广泛适用性、稳定性及简单快捷性等特点;由电纺纤维和纳米结构单元构成的柔性自支撑无纺布具有可调控的光性能,并且在表面增强拉曼(SERS)及光热杀伤癌细胞等方面表现出很好的应用前景。取得的主要研究结果如下:
     1、发展了通过静电纺丝技术在聚乙烯醇(PVA)纤维内大范围组装金纳米棒的有效方法。研究发现,金纳米棒均沿着电纺纤维轴向排列,从而证明静电纺丝技术可有效地组装金纳米棒。与传统组装方法相比,本方法具有操作简便、可实现大规模组装等优点。通过改变电纺溶液中金纳米棒的浓度,可以调节电纺纤维内金纳米棒之间的距离,从而实现对电纺膜光学性能的调控。实验结果表明,与金纳米棒水溶液及相应的电纺溶液涂布膜相比,具有相同颗粒浓度的电纺膜的横向等离子体共振波长(TPB)和纵向等离子体共振波长(LPB)均明显红移;随着金纳米棒浓度的增加,复合薄膜的LPB则明显蓝移,并且宽化,而TPB没有明显变化,从而证明组装对其光学性质的影响。制备的AuNR/PVA复合电纺纤维薄膜可作为SERS基底进行应用。研究发现,柔性自支撑复合薄膜对3,3’-二乙基硫菁碘盐(DTTCI)分子有显著的SERS效应,在作为SERS基底进行应用时,具有高重现性及高稳定性等优点。此外,通过将PVA交联,制备的包覆有金纳米棒的复合薄膜有很好的光热效应:在808nm红外光照射下,尺寸为10×5mm2大小的复合膜在60s内即可将1mL水由23℃加热到50℃;将复合薄膜像创可贴一样直接覆盖在癌细胞培养基上,进行癌细胞杀伤性能测试。实验结果表明,大部分癌细胞在30s内即可被杀伤。由此证明制备的复合膜在杀伤癌细胞方面具有使用方便,效率高等优点。
     2、基于以上有关组装金纳米棒这种单组份纳米颗粒的基础上,展示了静电纺丝技术对复合纳米结构单元的组装。首先通过静电吸附成功制备由相同维度、不同材料组成的金纳米棒-银纳米线组装体。研究发现,金纳米棒在银纳米线两侧以头对头方式排列形成串状结构,通过控制金纳米棒与银纳米线的比例,可以改变银纳米线上金纳米棒间距离,从而实现对其光学性质的调控:进一步利用静电纺丝技术将这种组装体包覆在聚合物纤维内并进一步排列,使金纳米棒-银纳米线组装体沿着电纺纤维轴向排列,实现二次组装。对制备的电纺薄膜进行了光学表征,发现与复合纳米颗粒溶液及涂布膜相比,相应的电纺薄膜的LPB明显红移,并且峰变宽。同样对几种基底进行SERS研究,发现具有相同量的金纳米棒-银纳米线组装体的电纺膜比相应的涂布膜表现出更强的SERS效应以及更好的稳定性,进一步证明了组装对复合纳米纤维膜性能的促进作用。另外,制备由相同材料组成的Au/SiO2/Au复合纳米结构单元,通过静电纺丝技术将其固定在聚合物纤维内并对其排列,制备复合功能薄膜,研究Si02层的刻蚀程度对复合薄膜性能的影响。
     3、进一步发展了利用磁场辅助的静电纺丝技术大范围组装超长纳米线。首先将制备的高长径比银纳米线进行电纺后,发现银纳米线被很好地包覆在PVP电纺纤维中,并且均沿着纤维轴向平行排列;通过改变电纺溶液中银纳米线的浓度,可调控单根电纺纤维内银纳米线的数量:利用磁场辅助的收集技术进行收集,可获得由平行排列的电纺纤维组成的电纺薄膜,从而实现整个纳米纤维膜中银纳米线的平行排列。另外利用聚合物本身的柔软性,制备了具有不同交叉角度的膜状材料和螺旋结构的纤维组装体。相邻的银纳米线之间存在着电磁场,通过改变入射光的偏振角度可以调控电纺薄膜的紫外-可见光谱,进一步证明了静电纺丝技术对银纳米线的有效组装。此外,静电纺丝超细碲纳米线,证明静电纺丝技术不但可以大面积组装银纳米线这种刚性较强的一维材料,而且可以排列像碲纳米线这种超细柔性一维材料。研究发现,选择碲纳米线不能很好分散地溶剂配置电纺溶液时,静电纺丝之后碲纳米线以束状组装体包覆在聚合物纤维内,并沿着纤维排列,形成具有核-壳结构的复合纤维。由于碲纳米线本身具有很高的反应活性,且小分子可渗透过聚合物到达纤维内部,制备的复合纤维可作为微型反应器进行应用。
Electrospinning technique can facilely fabricate one-dimensional (1D) nanomaterials on a large scale and the morphology can be controlled, especially a variety of composite nanofibers can be synthesized by directly adding functional components into the electrospinning solution, which overcomes the disadvantage of the conventional synthesis methods for1D nanomaterials. On the other hand, several reports found that anisotropic nanostructures, such as carbon nanotubes, were aligned along the axis of the electrospun fibers, thus it is possible to use electrospinning technique as a kind of assemble method. So far, although the nanomaterials have superior properties to those of their bulk counterparts, it still remains a challenge that assembling of these individual nanocomponents into macroscopic materials in a large scale and keeps the stability of the assemblies.
     This dissertation will focused on combining and assembling1D functional nanounites effectively with electrospun fibers by electrospinning technique, and the properties of the1D composite nanofibers were investigated. By electrospinning several kind of ID nanounites, composite nanofibers were successfully fabricated, which confirms the electrospinning technique could assemble1D nanounites in large scale and has the advantage of broad applicability, efficiency and stability. The main results can be summarized as follows:
     1. A novel assemble route was developed for aligning gold nanorods (AuNRs) within polyvinyl alcohol (PVA) fibers by electrospinning technique. After electrospinning, AuNRs were confined within the PVA fibers and aligned along the axial of the electrospun fibers, which confirms AuNRs can be effectively assembled by elelctrospinning technique. Compared with some traditional assemble methods, electrospinning technique has shown obvious advantages in simple operation and can assemble on a large scale. By varying the AuNRs concentration in the electrospun solution, the space among the AuNRs confined within the polymer fibers could be adjusted and therefore the optical properties of the AuNR/PVA electrospun mats could be controlled. Compared with the AuNRs solution and corresponding casting films, both the transverse Plasmon band (TPB) and the longitudinal Plasmon band (LPB) of the electrospun mat red shifted; when increasing the AuNRs concentrations, the LPB of the electrospun mats blue shifted and broadened, while there is no significant change on TPB, which confirms the effect of assemble on their optical properties. In addition, the electrospun mat could be used as surface enhanced Raman scattering (SERS) substrate. The resulting electrospun mat makes a significant SERS enhancement to3,3'-diethylthiatricarbocyanine iodide (DTTCI) molecules with large-area uniformity and good reproducibility. Lastly, PVA electrospun fibers were crosslinked, and the composite films have remarkable photothermal effect. Under808nm irradiation, the composite film with dimension of10×5mm2could heat1mL water from23℃to50℃in60s, and most of the cancer cells could be injured in30s, which confirms the Au/PVA composite films have the advantage of high efficiency and can be used facilely.
     2. Composite nanounites were electrospun and assemble within the polymer fibers. Firstly, we fabricated the nanocomposites composed of the same dimensional but different components, such as AuNR-AgNW assemblies, in which the AuNRs were arranged along the axis of the AgNWs with a preferential string-like alignment. The assembled AuNR-AgNW nanocomposites are then further embedded within PVA nanofibers by electrospinning, by which both AuNRs and AgNWs can be stabilized and arranged along the axis of polymer nanofibers. The influences of the AuNR-AgNW assemblies with different AuNRs concentrations on the optical properties and SERS enhancement have been investigated. Compared with the normal casting films composed of randomly dispersed AuNRs and AgNWs, or electrospun mats with monometallic components, the resulting AuNR-AgNW/PVA electrospun mats show red-shifted and broader absorption bands, also higher SERS performances, due to the order alignment of AuNR-AgNW nanocomposites on a large scale. Secondly, electrospinning was used to assemble the nanocomposites composed of the same components, such as Au/SiO2/Au nanoparticles. The nanocomposites were also aligned within the electrospun fibers, and the performance of the composite mats could be varied by etching the SiO2layer.
     3. Ultralong NWs were further macroscopic-scale aligned by using the magnetic-field-assisted electrospinning technique. With this method, ultrolong AgNWs can be assembled within the PVP electrospun fibers and arranged in parallel; The number of AgNWs confined within the PVP fibers can be controlled by changing the concentration of NWs within the electrospun solution; While the polymer nanofibers can also be arranged by the magnetic-assisted-field electrospinning technique, the AgNWs were manipulated to align parallel to each other throughout the entire film. The AgNWs can be further aligned as a result of the flexibility of the polymer fibers, and mats with tunable cross angle and the fiber assemblies with hierarchical structures can be prepared. Due to the high EM field existing in adjacent AgNWs, the polarization angle of the incident light strongly influences the UV-vis transmission spectra for the mats, which further confirms the effectively assemble of NWs by electrospinning technique. In addition, ultrathin TeNWs were electrospun to confirm that the electrospinning technique could not only assemble rigid NWs, but also the flexible ones.When chosing the non-benign solvent of TeNWs to solve the polymer and electrospinning, the TeNWs could be assembled like a bundle within the electrospun fibers. The obtained composite fibers could be used as microreactor, as TeNWs have high reactivity.
引文
[1]Kun Liu z, Zhaoz N and Kumacheva E.2011. Self-assembly of inorganic nanorods[J]. Chem Soc Rev,40:656-671.
    [2]Burda C, Chen X, Narayanan R and El-Sayed M A.2005. Chemistry and Properties of Nanocrystals of Different Shapes[J]. Chem. Rev.,105:1025-1102.
    [3]Hochbaum AI and Yang P.2009. Semiconductor Nanowires for Energy Conversion[J]. Chem. Rev.,110:527-546.
    [4]Min Y, Akbulut M, Kristiansen K, Golan Y and Israelachvili J.2008. The role of interparticle and external forces in nanoparticle assembly[J]. Nat Mater,7:527-538.
    [5]Xu S, Qin Y, Xu C, Wei Y, Yang R and Wang Z L.2010. Self-powered nanowire devices[J]. Nat Nano,5:366-373.
    [6]Yan H, Choe H S, Nam S, Hu Y, Das S, Klemic J F, Ellenbogen J C and Lieber C M.2011. Programmable nanowire circuits for nanoprocessors[J]. nature,470:240-244.
    [7]Liang H-W, Liu S and Yu S-H.2010. Controlled Synthesis of One-Dimensional Inorganic Nanostructures Using Pre-Existing One-Dimensional Nanostructures as Templates[J], Adv. Mater.,22:3925-3937.
    [8]Correa-Duarte M A, Perez-Juste J, Sanchez-lglesias A, Giersig M and Liz-Marzan L M.2005. Aligning Au Nanorods by Using Carbon Nanotubes as Templates[J]. Angew. Chem. Int. Ed., 44:4375-4378.
    [9]Sanchez-Iglesias A, Grzelczak M, Perez-Juste J and Liz-Marzan L M.2010. Binary Self-Assembly of Gold Nanowires with Nanospheres and Nanorods[J]. Angew. Chem. Int. Ed.,9985-9989.
    [10]Liu J-W, Liang H-W and Yu S-H.2012. Macroscopic-Scale Assembled Nanowire Thin Films and Their Functionalities[J]. Chem. Rev.,112:4770-4799.
    [11]Li D and Xia Y.2004. Electrospinning of Nanofibers: Reinventing the Wheel?[J]. Advanced Materials,16:1151-1170.
    [12]Greiner A and Wendorff J.2007. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers[J]. Angewandte Chemie International Edition,46:5670-5703.
    [13]Mieszawska A J, Jalilian R, Sumanasekera G U and Zamborini F P.2007. The synthesis and fabrication of one-dimensional nanoscale heterojunctions[J]. small,3:722-756.
    [14]Huang C, Soenen S J, Rejman J, Lucas B, Braeckmans K, Demeester J and De Smedt S C. 2011. Stimuli-responsive electrospun fibers and their applications[J]. Chemical Society Reviews,2417-2434.
    [15]Yuan J Y, Xu Y Y and Muller A H E.2011. One-dimensional magnetic inorganic-organic hybrid nanomaterials[J]. Chemical Society Reviews,40:640-655.
    [16]Agarwal S, Wendorff J H and Greiner A.2009. Progress in the Field of Electrospinning for Tissue Engineering Applications[J]. Advanced Materials,21:3343-3351.
    [17]Inagaki M, Yang Y and Kang F.2012. Carbon Nanofibers Prepared via Electrospinning[J]. Advanced Materials,24:2547-2566.
    [18]Luo C J, Stoyanov S D, Stride E, Pelan E and Edirisinghe M.2012. Electrospinning versus fibre production methods: from specifics to technological convergence[J]. Chemical Society Reviews,41:4708-4735.
    [19]Zhao Y, Cao X Y and Jiang L.2007. Bio-mimic multichannel microtubes by a facile method[J]. Journal of the American Chemical Society,129:764-765.
    [20]McCann J T, Marquez M and Xia Y N.2006. Highly porous fibers by electrospinning into a cryogenic liquid[J]. Journal of the American Chemical Society,128:1436-1437.
    [21]Sun Z C, Zussman E, Yarin A L, Wendorff J H and Greiner A.2003. Compound core-shell polymer nanofibers by co-electrospinning[J]. Advanced Materials,15:1929-1931.
    [22]Li D, Babel A, Jenekhe S A and Xia Y N.2004. Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret[J]. Advanced Materials,16:2062-2064.
    [23]Canejo J P, Borges J P, Godinho M H, Brogueira P, Teixeira P I C and Terentjev E M.2008. Helical Twisting of Electrospun Liquid Crystalline Cellulose Micro-and Nanofibers[J]. Advanced Materials,20:4821-4823.
    [24]Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A and Wendorff J H.2001. Nanostructured fibers via electrospinning[J]. Advanced Materials,13:70-73.
    [25]Yoo J K, Kim J, Jung Y S and Kang K.2012. Scalable Fabrication of Silicon Nanotubes and their Application to Energy Storage[J]. Adv. Mater.,24:5452-5456.
    [26]Zhu G-T, Li X-S, Fu X-M, Wu J-Y, Yuan B-F and Feng Y-Q.2012. Electrospinning-based synthesis of highly ordered mesoporous silica fiber for lab-in-syringe enrichment of plasma peptides[J]. Chem. Commun.48:9980-9982.
    [27]Zhao T Y, Liu Z Y, Nakata K, Nishimoto S, Murakami T, Zhao Y, Jiang L and Fujishima A. 2010. Multichannel TiO2 hollow fibers with enhanced photocatalytic activity[J]. J. Mater. Chem.,20:5095-5099.
    [28]Park J H and Braun P V.2010. Coaxial Electrospinning of Self-Healing Coatings[J]. Advanced Materials,22:496-498.
    [29]Zhu S, So J-H, Mays R, Desai S, Barnes W R, Pourdeyhimi B and Dickey M D.2012. Ultrastretchable Fibers with Metallic Conductivity Using a Liquid Metal Alloy Core[J]. Adv. Func. Mater, DOI:10.1002/adfm.201202405.
    [30]Teo W E and Ramakrishna S.2006. A review on electrospinning design and nanofibre assemblies[J]. Nanotechnology,17:R89-R106.
    [31]Bhattarai N and Zhang M Q.2007. Controlled synthesis and structural stability of alginate-based nanofibers[J]. Nanotechnology,18:455601.
    [32]Bhattarai N, Li Z S, Edmondson D and Zhang M Q.2006. Alginate-based nanofibrous scaffolds:Structural, mechanical, and biological properties[J]. Advanced Materials, 18:1463-1649.
    [33]Crespy D, Friedemann K. and Popa A M.2012. Colloid-Electrospinning: Fabrication of Multicompartment Nanofibers by the Electrospinning of Organic or/and Inorganic Dispersions and Emulsions[J]. Macromolecular Rapid Communications,33:1978-1995.
    [34]Feng C, Khulbe K C and Matsuura T.2010. Recent Progress in the Preparation, Characterization, and Applications of Nanofibers and Nanofiber Membranes via Electrospinning/Interfacial Polymerization[J]. Journal of Applied Polymer Science, 115:756-776.
    [35]Merritt S R, Exner A A, Lee Z H and von Recum H A.2012. Electrospinning and Imaging[J]. Advanced Engineering Materials,14:B266-B278.
    [36]R R, P S K, R S, J S, Jayarama Reddy V and Ramakrishna S.2012. Electrospun composite nanofibers and their Multifaceted Applications[J]. Journal of Materials Chemistry,22: 12953-12971.
    [37]Dou Y, Lin K and Chang J.2011. Polymer nanocomposites with controllable distribution and arrangement of inorganic nanocomponents[J]. Nanoscale,3:1508-1511.
    [38]Su Z Q, LiJF, LiQ, Ni T Y and Wei G.2012. Chain conformation, crystallization behavior, electrical and mechanical properties of electrospun polymer-carbon nanotube hybrid nanofibers with different orientations[J]. Carbon,50:5605-5617.
    [39]Qi R, Guo R, Shen M, Cao X, Zhang L, Xu J, Yu J and Shi X.2010. Electrospun poly(lactic-co-glycolic acid)/halloysite nanotube composite nanofibers for drug encapsulation and sustained release[J]. Journal of Materials Chemistry,20: 10622-10629.
    [40]Bashouti M, Salalha W, Brumer M, Zussman E and Lifshitz E.2006. Alignment of Colloidal CdS Nanowires Embedded in Polymer Nanofibers by Electrospinning[J]. ChemPhysChem, 7:102-106.
    [41]He H, Cai W, Lin Y and Dai Z.2010. Silver Porous Nanotube Built Three-Dimensional Films with Structural Tunability Based on the Nanofiber Template-Plasma Etching Strategy[J]. Langmuir,27:1551-1555.
    [42]Liu D S, Ashcraft J N, Mannarino M M, Silberstein M N, Argun A A, Rutledge G C, Boyce M C and Hammond P T.2013. Spray Layer-by-Layer Electrospun Composite Proton Exchange Membranes[J]. Advanced Functional Materials, DOI:10.1002/adfm.201202892.
    [43]Hsu P C, Wu H, Carney T J, McDowell M T, Yang Y, Garnett E C, Li M, Hu L B and Cui Y. 2012. Passivation Coating on Electrospun Copper Nanofibers for Stable Transparent Electrodes[J]. ACS Nano,6:5150-5156.
    [44]Wang X, Kim Y-G, Drew C, Ku B-C, Kumar J and Samuelson L A.2004. Electrostatic Assembly of Conjugated Polymer Thin Layers on Electrospun Nanofibrous Membranes for Biosensors[J]. Nano Letters,4:331-334.
    [45]Drew C, Liu X, Ziegler D, Wang X, Bruno F F, Whitten J, Samuelson L A and Kumar J.2003. Metal Oxide-Coated Polymer Nanofibers [J]. Nano Letters,3:143-147.
    [46]Li Z Y, Huang H M, Shang T C, Yang F, Zheng W, Wang C and Manohar S K.2006. Facile synthesis of single-crystal and controllable sized silver nanoparticles on the surfaces of polyacrylonitrile nanofibres[J]. Nanotechnology,17:917-920.
    [47]Wang J, Yao H-B, He D, Zhang C-L and Yu S-H.2012. Facile Fabrication of Gold Nanoparticles-Poly(vinyl alcohol) Electrospun Water-Stable Nanofibrous Mats: Efficient Substrate Materials for Biosensors[J]. ACS Applied Materials & Interfaces,4:1963-1971.
    [48]Gao J, Hu M and Li R K Y.2012. Ultrasonication induced adsorption of carbon nanotubes onto electrospun nanofibers with improved thermal and electrical performances[J]. Journal of Materials Chemistry,22:10867-10872.
    [49]Xiao S L, Xu W L, Ma H and Fang X.2012. Size-tunable Ag nanoparticles immobilized in electrospun nanofibers:synthesis, characterization, and application for catalytic reduction of 4-nitrophenol[J]. Rsc Advances,2:319-327.
    [50]Chen R, Zhao S Z, Han G Y and Dong J H.2008. Fabrication of the silver/polypyrrole/polyacrylonitrile composite nanofibrous mats[J]. Materials Letters, 62:4031-4034.
    [51]Demir M M, Gulgun M A, Menceloglu Y Z, Erman B, Abramchuk S S, Makhaeva E E, Khokhlov A R, Matveeva V G and Sulman M G.2004. Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdC12 solutions. Relations between preparation conditions, particle size, and catalytic activity [J]. Macromolecules, 37:1787-1792.
    [52]Shi Q, Vitchuli N, Nowak J, Noar J, Caldwell J M, Breidt F, Bourham M, McCord M and Zhang X W.2011. One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties[J]. Journal of Materials Chemistry,21:10330-10335.
    [53]Patel A C, Li S X, Wang C, Zhang W J and Wei Y.2007. Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications[J]. Chemistry of Materials,19:1231-1238.
    [54]Patel A C, Li S, Wang C, Zhang W and Wei Y.2007. Electrospinning of Porous Silica Nanofibers Containing Silver Nanoparticles for Catalytic Applications[J]. Chemistry of Materials,19:1231-1238.
    [55]Yang D J, Kamienchick I, Youn D Y, Rothschild A and Kim I D.2010. Ultrasensitive and Highly Selective Gas Sensors Based on Electrospun SnO2 Nanofibers Modified by Pd Loading[J]. Advanced Functional Materials,20:4258-4264..
    [56]Xiao X, Yuan L, Zhong J, Ding T, Liu Y, Cai Z, Rong Y, Han H, Zhou J and Wang Z L.2011. High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films[J]. Advanced Materials,23:5440-5444.
    [57]Mu J, Chen B, Guo Z, Zhang M, Zhang Z, Shao C and Liu Y.2011. Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: Controlled fabrication and high capacitive behavior[J]. Journal of Colloid and Interface Science,356:706-712.
    [58]Mu J B, Shao C L, Guo Z C, Zhang M Y, Zhang Z Y, Zhang P, Chen B and Liu Y C.2012. In(2)O(3) nanocubes/carbon nanofibers heterostructures with high visible light photocatalytic activity[J]. Journal of Materials Chemistry,22:1786-1793.
    [59]Cui K, Song Y H, Guo Q H, Xu F G, Zhang Y, Shi Y, Wang L, Hou H Q and Li Z.2011. Architecture of electrospun carbon nanofibers-hydroxyapatite composite and its application act as a platform in biosensing[J]. Sensors and Actuators B-Chemical,160:435-440.
    [60]Mimura K, Moriya M, Sakamoto W and Yogo T.2010. Synthesis of BaTiO(3) nanoparticle/poly(2-hydroxyethyl methacrylate) hybrid nanofibers via electrospinning[J]. Composites Science and Technology,70:492-497.
    [61]Pant H R, Baek W I, Nam K T, Seo Y A, Oh H J and Kim H Y.2011. Fabrication of polymeric microfibers containing rice-like oligomeric hydrogel nanoparticles on their surface:A novel strategy in the electrospinning process[J]. Materials Letters,65:1441-1444.
    [62]Long Q, Cai M, Li J, Rong H and Jiang L.2011. Improving the electrical catalytic activity of Pt/TiO2 nanocomposites by a combination of electrospinning and microwave irradiation[J]. J Nanopart Res,13:1655-1662.
    [63]Lu X F, Zhao Y Y and Wang C.2005. Fabrication of PbS nanoparticles in polymer-fiber matrices by electrospinning[J]. Advanced Materials,17:2485.
    [64]Jie B, Yaoxian L, Songtao Y, Jianshi D, Shugang W, Chaoqun Z, Qingbiao Y and Xuesi C. 2007. Synthesis of AgCl/PAN composite nanofibres using an electrospinning method[J]. Nanotechnology,18:305601.
    [65]Hansen N S, Cho D and Joo Y L.2012. Metal Nanofibers with Highly Tunable Electrical and Magnetic Properties via Highly Loaded Water-Based Electrospinning[J]. Small,8: 1510-1514.
    [66]Zhu C, Yu Y, Gu L, Weichert K and Maier J.2011. Electrospinning of Highly Electroactive Carbon-Coated Single-Crystalline LiFePO4 Nanowires[J]. Angewandte Chemie International Edition,50:6278-6282.
    [67]Lin D, Wu H and Pan W.2007. Photoswitches and memories assembled by electrospinning aluminum-doped zinc oxide single nanowires[J]. Advanced Materials,19:3968.
    [68]Ostermann R, Li D, Yin Y, McCann J T and Xia Y.2006. V2O5 Nanorods on TiO2 Nanofibers: A New Class of Hierarchical Nanostructures Enabled by Electrospinning and Calcination[J]. Nano Letters,6:1297-1302.
    [69]Yang Q B, Li D M, Hong Y L, Li Z Y, Wang C, Qiu S L and Wei Y.2003. Preparation and characterization of a pan nanofibre containing Ag nanoparticles via electrospinning[J]. Synthetic Metals,137:973-974.
    [70]Saquing C D, Manasco J L and Khan S A.2009. Electrospun Nanoparticle-Nanofiber Composites via a One-Step Synthesis[J]. Small,5:944-951.
    [71]Jin W J, Lee H K, Jeong E H, Park W H and Youk J H.2005. Preparation of polymer nanofibers containing silver nanoparticles by using poly (N-vinylpyrrolidone)[J]. Macromolecular Rapid Communications,26:1903-1907.
    [72]Jin W J, Jeon H J, Kim J H and Youk J H.2007. A study on the preparation of poly(vinyl alcohol) nanofibers containing silver nanoparticles[J]. Synthetic Metals,157:454-459.
    [73]He D, Hu B, Yao Q F, Wang K and Yu S H.2009. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles[J]. ACS Nano,3:3993-4002.
    [74]Maity S, Downen L N, Bochinski J R and Clarke LI.2011. Embedded metal nanoparticles as localized heat sources: An alternative processing approach for complex polymeric materials[J]. Polymer,52:1674-1685.
    [75]Behler K D, Stravato A, Mochalin V, Korneva G, Yushin G and Gogotsi Y.2009. Nanodiamond-Polymer Composite Fibers and Coatings[J]. ACS Nano,3:363-369.
    [76]Ji L W, Jung K H, Medford A J and Zhang X W.2009. Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization[J]. Journal of Materials Chemistry,19:4992-4997.
    [77]Barakat N A M, Abadir M F, Sheikh F A, Kanjwal M A, Park S J and Kim H Y.2010. Polymeric nanofibers containing solid nanoparticles prepared by electrospinning and their applications[J]. Chem. Eng. J.,156:487-495.
    [78]Li Z Y, Huang H M and Wang C. 2006. Electrostatic forces induce poly(vinyl alcohol)-protected copper nanoparticles to form copper/poly(vinyl alcohol) nanocables via electrospinning[J]. Macromolecular Rapid Communications,27:152-155.
    [79]Lee S.2009. Multifunctionality of Layered Fabric Systems Based on Electrospun Polyurethane/Zinc Oxide Nanocomposite Fibers[J]. Journal of Applied Polymer Science, 114:3652-3658.
    [80]Jaworek A, Krupa A, Lackowski M, Sobczyk A T, Czech T, Ramakrishna S, Sundarrajan S and Pliszka D.2009. Nanocomposite fabric formation by electrospinning and electrospraying technologies[J]. Journal of Electrostatics,67:435-438.
    [81]Sharma N, McKeown S J, Ma X, Pochan D J and Cloutier S G.2010. Structure-Property Correlations in Hybrid Polymer-Nanoparticle Electrospun Fibers and Plasmonic Control over their Dichroic Behavior[J]. ACS Nano,4:5551-5558.
    [82]Asmatulu R, Ceylan M and Nuraje N.2010. Study of Superhydrophobic Electrospun Nanocomposite Fibers for Energy Systems[J]. Langmuir, null-null.
    [83]Jin Y, Yang D, Kang D and Jiang X.2009. Fabrication of Necklace-like Structures via Electrospinning[J]. Langmuir,26:1186-1190.
    [84]Ding T, Tian Y, Liang K, Clays K, Song K, Yang G and Tung C-H.2011. Anisotropic oxygen plasma etching of colloidal particles in electrospun fibers[J], Chemical Communications,47: 2429-2431
    [85]Hsu C Y and Liu Y L.2010. Rhodamine B-anchored silica nanoparticles displaying white-light photoluminescence and their uses in preparations of photoluminescent polymeric films and nanofibers[J]. J. Colloid Interface Sci.,350:75-82.
    [86]Ding B, Lin J Y, Wang X F, Yu J Y, Yang J M and Cai Y.2011. Investigation of silica nanoparticle distribution in nanoporous polystyrene fibers[J]. Soft Matter,7:8376-8383.
    [87]Choi S K, Kim S, Lim S K and Park H.2010. Photocatalytic Comparison of TiO2 Nanoparticles and Electrospun TiO2 Nanofibers: Effects of Mesoporosity and Interparticle Charge Transfer[J]. J. Phys. Chem. C,114:16475-16480.
    [88]Medina-Castillo A L, Fernandez-Sanchez J F and Fernandez-Gutierrez A.2011. One-Step Fabrication of Multifunctional Core-Shell Fibres by Co-Electrospinning[J]. Adv. Funct.Mater,21:3488-3495.
    [89]Song T, Zhang Y Z, Zhou T J, Lim C T, Ramakrishna S and Liu B.2005. Encapsulation of self-assembled FePt magnetic nanoparticles in PCL nanofibers by coaxial electrospinning[J]. Chem. Phys. Lett.,415:317-322.
    [90]Meng F B, Zhan Y Q, Lei Y J, Zhao R, Zhong J C and Liu X B.2012. Electrospun Magnetic Fibrillar Polyarylene Ether Nitriles Nanocomposites Reinforced with Fe-phthalocyanine/Fe(3)O(4) Hybrid Microspheres[J]. Journal of Applied Polymer Science, 123:1732-1739.
    [91]Sharma N, Jaffari G H, Shah S I and Pochan D J.2010. Orientation-dependent magnetic behavior in aligned nanoparticle arrays constructed by coaxial electrospinning[J]. Nanotechnology,21:085707.
    [92]Sung Y K, Ahn B W and Kang T J.2012. Magnetic nanofibers with core (Fe(3)O(4) nanoparticle suspension)/sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning[J]. Journal of Magnetism and Magnetic Materials,324:916-922.
    [93]Kalra V, Lee J, Lee J H, Lee S G, Marquez M, Wiesner U and Joo Y L.2008. Controlling Nanoparticle Location via Confined Assembly in Electrospun Block Copolymer Nanofibers[J]. Small,4:2067-2073.
    [94]Garreau A, Massuyeau F, Cordier S, Molard Y, Gautron E, Bertoncini P, Faulques E, Wery J, Humbert B, Bulou A and Duvail J-L.2013. Color Control in Coaxial Two-Luminophore Nanowires[J]. ACS Nano,7:2977-2987.
    [95]Yin K, Zhang L, Lai C, Zhong L, Smith S, Fong H and Zhu Z.2010. Photoluminescence anisotropy of uni-axially aligned electrospun conjugated polymer nanofibers of MEH-PPV and P3HT[J]. J. Mater. Chem.,21:444-448.
    [96]Dong G, Xiao X, Chi Y, Qian B, Liu X, Ma Z, Ye S, Wu E, Zeng H, Chen D and Qiu J.2009. Polarized Luminescence Properties of TiO2:Sm3+ Microfibers and Microbelts Prepared by Electrospinning[J]. The Journal of Physical Chemistry C,113:9595-9600.
    [97]Friedemann K, Turshatov A, Landfester K and Crespy D.2011. Characterization via Two-Color STED Microscopy of Nanostructured Materials Synthesized by Colloid Electrospinning[J]. Langmuir,27:7132-7139.
    [98]Hou Z, Li C, Ma P, Li G, Cheng Z, Peng C, Yang D, Yang P and Lin J.2011. Electrospinning Preparation and Drug-Delivery Properties of an Up-conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite[J]. Advanced Functional Materials, 21:2356-2365.
    [99]Chigome S, Abiona A A, Ajao J A, Kana J B K, Guerbous L, Torto N and Maaza M.2010. Synthesis and Characterization of Electrospun Poly(ethylene oxide)/Europium-Doped Yttrium Orthovanadate (PEO/YVO4:Eu(3+)) Hybrid Nanofibers[J]. International Journal of Polymeric Materials,59:863-872.
    [100]Wang L, Hou Z, Quan Z, Li C, Yang J, Lian H, Yang P and Lin J.2009. One-Dimensional Ce3+-and/or Tb3+-Doped X1-Y2SiO5 Nanofibers and Microbelts: Electrospinning Preparation and Luminescent Properties[J]. Inorganic Chemistry,48:6731-6739.
    [101]Cho K, Kim M, Choi J, Kim K and Kim S.2010. Synthesis and characterization of electrospun polymer nanofibers incorporated with CdTe nanoparticles[J]. Synthetic Metals, 160:888-891.
    [102]Li M, Zhang J, Zhang H, Liu Y, Wang C, Xu X, Tang Y and Yang B.2007. Electrospinning: A facile method to disperse fluorescent quantum dots in nanofibers without Forster resonance energy transfer[J]. Advanced Functional Materials,17:3650-3656.
    [103]Mthethwa T P, Moloto M J, De Vries A and Matabola K P.2011. Properties of electrospun CdS and CdSe filled poly(methyl methacrylate) (PMMA) nanofibres[J]. Materials Research Bulletin,46:569-575.
    [104]Yang S, Wang C-F and Chen S.2011. A Release-Induced Response for the Rapid Recognition of Latent Fingerprints and Formation of Inkjet-Printed Patterns[J]. Angewandte Chemie International Edition.
    [105]Lim J M, Yi G R, Moon J H, Heo C J and Yang S M.2007. Superhydrophobic films of electrospun fibers with multiple-scale surface morphology [J]. Langmuir,23:7981-7989.
    [106]Stoiljkovic A, Ishaque M, Justus U, Hamel L, Klimov E, Heckmann W, Eckhardt B, Wendorff J H and Greiner A.2007. Preparation of water-stable submicron fibers from aqueous latex dispersion of water-insoluble polymers by electrospinning[J]. Polymer, 48:3974-3981.
    [107]Buruaga L, Sardon H, Irusta L, Gonzalez A, Fernandez-Berridi M J and Iruin J J.2010. Electrospinning of Waterborne Polyurethanes[J]. Journal of Applied Polymer Science, 115:1176-1179.
    [108]Beck-Broichsitter M, Thieme M, Nguyen J, Schmehl T, Gessler T, Seeger W, Agarwal S, Greiner A and Kissel T.2010. Novel Nano in Nano' Composites for Sustained Drug Delivery: Biodegradable Nanoparticles Encapsulated into Nanofiber Non-Wovens[J]. Macromol. Biosci.,10:1527-1535.
    [109]Sun J Y, Bubel K, Chen F, Kissel T, Agarwal S and Greiner A.2010. Nanofibers by Green Electrospinning of Aqueous Suspensions of Biodegradable Block Copolyesters for Applications in Medicine, Pharmacy and Agriculture[J]. Macromolecular Rapid Communications,31:2077-2083.
    [110]Lee S, Lee K, Moon G D, Won Y S, Yoon Y J, Park S S, Kim Y R and Jeong U.2009. Preparation of macroporous carbon nanofibers with macroscopic openings in the surfaces and their applications[J]. Nanotechnology,20:445702.
    [111]Jo E, Lee S W, Kim K T, Won Y S, Kim H S, Cho E C and Jeong U.2009. Core-Sheath Nanofibers Containing Colloidal Arrays in the Core for Programmable Multi-Agent Delivery[J]. Advanced Materials,21:968.
    [112]Park C, Hwang Y K, Hyun D C and Jeong U.2010. In situ Localization of Molecules in Crosslinked Particles during Electrohydrodynamic Process:Simple Route to Produce Microcapsules and Fibers with Controlled Release[J]. Macromolecular Rapid Communications,31:1713-1718.
    [113]Diaz J E, Barrero A, MarquezM, Fernandez-Nieves A and Loscertales IG.2010. Absorption Properties of Microgel-PVP Composite Nanofibers Made by Electrospinning[J]. Macromolecular Rapid Communications,31:183-189.
    [114]Piperno S, Gheber L A, Canton P, Pich A, Dvorakova G and Biffis A.2009. Microgel electrospinning: A novel tool for the fabrication of nanocomposite fibers[J]. Polymer, 50:6193-6197.
    [115]Yoshimatsu K, Ye L, Lindberg J and Chronakis I S.2008. Selective molecular adsorption using electrospun nanofiber affinity membranes[J]. Biosens. Bioelectron.,23:1208-1215.
    [116]Dong B, Smith M E and Wnek G E.2009. Encapsulation of Multiple Biological Compounds Within a Single Electrospun Fiber[J]. Small,5:1508-1512.
    [117]Roskov K E, Kozek K A, Wu W-C, Chhetri R K, Oldenburg A L, Spontak R J and Tracy J B. 2011. Long-Range Alignment of Gold Nanorods in Electrospun Polymer Nano/Microfibers[J]. Langmuir,27:13965-13969.
    [118]Wang P, Zhang L, Xia Y N, Tong LM.Xu X and Ying Y B.2012. Polymer Nanofibers Embedded with Aligned Gold Nanorods:A New Platform for Plasmonic Studies and Optical Sensing[J]. Nano Letters,12:3145-3150.
    [119]Chen I H, Wang C-C and Chen C-Y.2010. Fabrication and Structural Characterization of Polyacrylonitrile and Carbon Nanofibers Containing Plasma-Modified Carbon Nanotubes by Electrospinning[J]. The Journal of Physical Chemistry C,114:13532-13539.
    [120]Ge J J, Hou H Q, Li Q, Graham M J, Greiner A, Reneker D H, Harris F W and Cheng S Z D. 2004. Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments:Electrospun composite nanofiber sheets[J]. Journal of the American Chemical Society,126:15754-15761.
    [121]Ko F, Gogotsi Y, Ali A, Naguib N, Ye H H, Yang G L, Li C and Willis P.2003. Electrospinning of continuons carbon nanotube-filled nanofiber yarns[J]. Advanced Materials,15:1161.
    [122]Miyauchi M, Miao J, Simmons T J, Lee J-W, Doherty T V, Dordick J S and Linhardt R J. 2010. Conductive Cable Fibers with Insulating Surface Prepared by Coaxial Electrospinning of Multiwalled Nanotubes and Cellulose[J]. Biomacromolecules,11:2440-2445.
    [123]Yee W A, Kong J H, Zhang C, Liu T X, Kotaki M and Lu X H.2012. Polymorphism of electrospun polyvinylidene difluoride/carbon nanotube (CNT) nanocomposites: Synergistic effects of CNT surface chemistry, extensional force and supercritical carbon dioxide treatment[J]. Polymer,53:5097-5102.
    [124]Hou H Q and Reneker D H.2004. Carbon nanotubes on carbon nanofibers:A novel structure based on electrospun polymer nanofibers[J]. Advanced Materials,16:69-71.
    [125]Yang L and Leung W W-F.2013. Electrospun TiO2 Nanorods with Carbon Nanotubes for Efficient Electron Collection in Dye-Sensitized Solar Cells[J]. Advanced Materials, 25:1792-1795.
    [126]Dou Y, Lin K and Chang J.2011. Polymer nanocomposites with controllable distribution and arrangement of inorganic nanocomponents[J]. Nanoscale,3:1508-1511.
    [127]Lee J and Deng Y L.2012. Increased mechanical properties of aligned and isotropic electrospun PVA nanofiber webs by cellulose nanowhisker reinforcement[J]. Macromolecular Research,20:76-83.
    [128]Cai Y, Li Q, Wei Q, Wu Y, Song L and Hu Y.2008. Structures, thermal stability, and crystalline properties of polyamide6/organic-modified Fe-montmorillonite composite nanofibers by electrospinning[J]. Journal of Materials Science,43:6132-6138.
    [129]Dong Y, Chaudhary D, Haroosh H and Bickford T.2011. Development and characterisation of novel electrospun polylactic acid/tubular clay nanocomposites[J]. Journal of Materials Science,46:6148-6153.
    [130]Hong J H, Jeong E H, Lee H S, Baik D H, Seo S W and Youk J H.2005. Electrospinning of polyurethane/organically modified montmorillonite nanocomposites[J]. Journal of Polymer Science Part B:Polymer Physics,43:3171-3177.
    [131]Ji Y, Li B, Ge S, Sokolov J C and Rafailovich M H.2005. Structure and Nanomechanical Characterization of Electrospun PS/Clay Nanocomposite Fibers[J]. Langmuir, 22:1321-1328.
    [132]Kim G-M, Lach R, Michler G H and Chang Y-W.2005. The Mechanical Deformation Process of Electrospun Polymer Nanocomposite Fibers [J]. Macromolecular Rapid Communications,26:728-733.
    [133]Lee H W, Karim M R, Ji H M, Choi J H, Ghim H D, Park S M, Oh W and Yeum J H.2009. Electrospinning fabrication and characterization of poly(vinyl alcohol)/montmorillonite nanofiber mats[J], Journal of Applied Polymer Science,113:1860-1867.
    [134]Li Q, Gao D, Wei Q, Ge M, Liu W, Wang L and Hu K.2010. Thermal stability and crystalline of electrospun polyamide 6/organo-montmorillonite nanofibers[J]. Journal of Applied Polymer Science,117:1572-1577.
    [135]Wang L, Yan Y B, Yang Q Q, Yu J and Guo Z X.2012. Polyamide 66/organoclay nanocomposite fibers prepared by electrospinning[J]. Journal of Materials Science, 47:1702-1709.
    [136]Park J H, Karim M R, Kim I K, Cheong I W, Kim J W, Bae D G, Cho J W and Yeum J H. 2010. Electrospinning fabrication and characterization of poly(vinyl alcohol)/montmorillonite/silver hybrid nanofibers for antibacterial applications[J]. Colloid and Polymer Science,288:115-121.
    [137]Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V and Gorchinskiy A D.1999. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chem. Mat.,11:771-778.
    [138]Kotov N A, Dekany I and Fendler J H.1996. Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: Transition between conductive and non-conductive states[J]. Advanced Materials,8:637.
    [139]Cassagneau T, Guerin F and Fendler J H.2000. Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers[J]. Langmuir,16:7318-7324.
    [140]Mack J J, Viculis L M, Ali A, Luoh R, Yang G L, Hahn H T, Ko F K and Kaner R B.2005. Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers[J]. Advanced Materials,17:77-79.
    [141]Lamastra F R, Puglia D, Monti M, Vella A, Peponi L, Kenny J M and Nanni F.2012. Poly(epsilon-caprolactone) reinforced with fibres of Poly(methyl methacrylate) loaded with multiwall carbon nanotubes or graphene nanoplatelets[J]. Chemical Engineering Journal, 195:140-148.
    [142]Wang C, Li Y D, Ding G Q, Xie X M and Jiang M H.2013. Preparation and Characterization of Graphene Oxide/Poly(vinyl alcohol) Composite Nanofibers via Electrospinning[J]. Journal of Applied Polymer Science,127:3026-3032.
    [143]Wang Q Q, Du Y Z, Feng Q, Huang F L, Lu K Y, Liu J Y and Wei Q F.2013. Nanostructures and Surface Nanomechanical Properties of Polyacrylonitrile/Graphene Oxide Composite Nanofibers by Electrospinning[J]. Journal of Applied Polymer Science,128:1152-1157.
    [144]Das S, Wajid A S, Bhattacharia S K, Wilting M D, Rivero IV and Green M J.2013. Electrospinning of polymer nanofibers loaded with noncovalently functionalized graphene[J]. Journal of Applied Polymer Science,128:4040-4046.
    [145]QiYY, Tai ZX, Sun DF, Chen JT, MaHB, YanXB, LiuB and XueQJ.2013. Fabrication and characterization of poly(vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds[J]. Journal of Applied Polymer Science,127:1885-1894.
    [146]Su X F, Ren J, Meng X W, Ren X L and Tang F Q.2013. A novel platform for enhanced biosensing based on the synergy effects of electrospun polymer nanofibers and graphene oxides[J]. Analyst,138:1459-1466.
    [147]Zhu P N, Nair A S, Peng S J, Yang S Y and Ramakrishna S.2012. Facile Fabrication of TiO2-Graphene Composite with Enhanced Photovoltaic and Photocatalytic Properties by Electrospinning[J]. Acs Applied Materials & Interfaces,4:581-585.
    [148]Zhang X, Kumar P S, Aravindan V, Liu H H, Sundaramurthy J, Mhaisalkar S G, Duong H M, Ramakrishna S and Madhavi S.2012. Electrospun TiO2-Graphene Composite Nanofibers as a Highly Durable Insertion Anode for Lithium Ion Batteries[J]. Journal of Physical Chemistry C,116:14780-14788.
    [149]Madhavan A A, Kalluri S, Chacko D K, Arun T A, Nagarajan S, Subramanian K R V, Nair A S, Nair S V and Balakrishnan A.2012. Electrical and optical properties of electrospun TiO2-graphene composite nanofibers and its application as DSSC photo-anodes[J]. Rsc Advances,2:13032-13037.
    [150]Hou H L, Dong C L, Wang L, Gao F M, Wei G D, Zheng J J, Cheng X M, Tang B and Yang W Y.2013. Electrospinning graphite/SiC mesoporous hybrid fibers with tunable structures[J]. Crystengcomm,15:2002-2008.
    [151]Zhu N, Liu W, Xue M Q, Xie Z A, Zhao D, Zhang M N, Chen J T and Cao T B.2010. Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries[J]. Electrochimica Acta,55:5813-5818.
    [152]Kim S Y, Kim B H, Yang K S and Oshida K.2012. Supercapacitive properties of porous carbon nanofibers via the electrospinning of metal alkoxide-graphene in polyacrylonitrile[J]. Materials Letters,87:157-161.
    [153]Kwon O S, Kim T, Lee J S, Park S J, Park H W, Kang M, Lee J E, Jang J and Yoon H.2013. Fabrication of Graphene Sheets Intercalated with Manganese Oxide/Carbon Nanofibers: , Toward High-Capacity Energy Storage[J]. Small,9:248-254.
    [154]Kim C H, Kim B H and Yang K S.2012. TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis[J]. Carbon, 50:2472-2481.
    [155]Lim S H and Mao H Q.2009. Electrospun scaffolds for stem cell engineering[J]. Advanced Drug Delivery Reviews,61:1084-1096.
    [156]Sell S A, McClure M J, Garg K, Wolfe P S and Bowlin G L.2009. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering[J]. Advanced Drug Delivery Reviews,61:1007-1019.
    [157]Yoo H S, Kim T G and Park T G.2009. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery[J]. Advanced Drug Delivery Reviews,61:1033-1042.
    [158]Sill T J and von Recum H A.2008. Electro spinning: Applications in drug delivery and tissue engineering[J]. Biomaterials,29:1989-2006.
    [159]Venugopal J, Prabhakaran M P, Low S, Choon A T, Zhang Y Z, Deepika G and Ramakrishna S.2008. Nanotechnology for nanomedicine and delivery of drugs[J]. Current Pharmaceutical Design,14:2184-2200.
    [160]Bellan L M, Cross J D, Strychalski E A, Moran-Mirabal J and Craighead H G.2006. Individually resolved DNA molecules stretched and embedded in electrospun polymer nanofibers[J]. Nano Letters,6:2526-2530.
    [161]Cho D, Nnadi O, Netravali A and Joo Y L.2010. Electrospun Hybrid Soy Protein/PVA Fibers[J]. Macromolecular Materials and Engineering,295:763-773.
    [162]Lopez-Rubio A, Sanchez E, Sanz Y and Lagaron J M.2009. Encapsulation of Living Bifidobacteria in Ultrathin PVOH Electrospun Fibers[J]. Biomacromolecules, 10:2823-2829.
    [163]Gensheimer M, Becker M, Brandis-Heep A, Wendorff J H, Thauer R K and Greiner A.2007. Novel biohybrid materials by electrospinning: Nanofibers of poly(ethylene oxide) and living bacteria[J]. Advanced Materials,19:2480-+.
    [164]Chew S Y, Mi R F, Hoke A and Leong K W.2007. Aligned protein-polymer composite fibers enhance nerve regeneration: A potential tissue-engineering platform[J]. Advanced Functional Materials,17:1288-1296.
    [165]Chen M L, Gao S, Dong M D, Song J, Yang C X, Howard K A, Kjems J and Besenbacher F. 2012. Chitosan/siRNA Nanoparticles Encapsulated in PLGA Nanofibers for siRNA Delivery[J]. ACS Nano,6:4835-4844.
    [166]Shi J, Wang L, Zhang F, Li H, Lei L, Liu L and Chen Y.2010. Incorporating Protein Gradient into Electrospun Nanofibers As Scaffolds for Tissue Engineering[J]. Acs Applied Materials & Interfaces,2:1025-1030.
    [167]Lee S W and Belcher A M.2004. Virus-based fabrication of micro-and nanofibers using electrospinning[J]. Nano Letters,4:387-390.
    [168]Salalha W, Kuhn J, Dror Y and Zussman E.2006. Encapsulation of bacteria and viruses in electrospun nanofibres[J]. Nanotechnology,17:4675-4681.
    [169]Wang Z G, Wan L S, Liu Z M, Huang X J and Xu Z K.2009. Enzyme immobilization on electrospun polymer nanofibers: An overview[J]. Journal of Molecular Catalysis B-Enzymatic,56:189-195.
    [170]Fang X and Reneker D H.1997. DNA fibers by electrospinning[J]. Journal of Macromolecular Science, Part B,36:169-173.
    [171]Takuya Takahashi M T, Tomoji Kawai.2005. Fabrication of DNA Nanofibers on a Planar Surface by Electrospinning[J]. Jpn. J. Appl. Phys.,44:L860-L862.
    [172]Luu Y K, Kim K, Hsiao B S, Chu B and Hadjiargyrou M.2003. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers[J]. Journal of Controlled Release,89:341-353.
    [173]Kim K, Lee C, Kim I and Kim J.2009. Performance modification of a melt-blown filter medium via an additional nano-web layer prepared by electrospinning[J]. Fibers Polym, 10:60-64.
    [174]Patanaik A, Jacobs V and Anandjiwala R D.2010. Performance evaluation of electrospun nanofibrous membrane[J]. Journal of Membrane Science,352:136-142.
    [175]Sundarrajan S, Pliszka D, Jaworek A, Krupa A, Lackowski M and Ramakrishna S.2009. A Novel Process for the Fabrication of Nanocomposites Membranes[J]. Journal of Nanoscience and Nanotechnology,9:4442-4447.
    [176]Uyar T, Havelund R, Nur Y, Hacaloglu J, Besenbacher F and Kingshott P.2009. Molecular filters based on cyclodextrin functionalized electrospun fibers[J]. Journal of Membrane Science,332:129-137.
    [177]Pant H R, Bajgai M P, Nam K T, Seo Y A, Pandeya D R, Hong S T and Kim H Y.2011. Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles:A multifunctional nanocomposite textile material[J]. Journal of Hazardous Materials, 185:124-130.
    [178]Liu H A and Balkus Jr K J.2009. Electrospinning of beta silicon carbide nanofibers[J]. Materials Letters,63:2361-2364.
    [179]Homaeigohar S S, Buhr K and Ebert K.2010. Polyethersulfone electrospun nanofibrous composite membrane for liquid filtration[J]. Journal of Membrane Science,365:68-77.
    [180]Wang X, Zhang K, Yang Y, Wang L, Zhou Z, Zhu M, Hsiao B S and Chu B.2010. Development of hydrophilic barrier layer on nanofibrous substrate as composite membrane via a facile route[J]. Journal of Membrane Science,356:110-116.
    [181]Wang X, Si Y, Wang X, Yang J, Ding B, Chen L, Hu Z and Yu J.2013. Tuning hierarchically aligned structures for high-strength PMIA-MWCNT hybrid nanofibers[J]. Nanoscale,
    [182]Bergshoef M M and Vancso G J.1999. Transparent Nanocomposites with Ultrathin, Electrospun Nylon-4,6 Fiber Reinforcement[J]. Advanced Materials,11:1362-1365.
    [183]Sen R, Zhao B, Perea D, Itkis M E, Hu H, Love J, Bekyarova E and Haddon R C.2004. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning[J]. Nano Letters,4:459-464.
    [184]Leung L H, Fan S and Naguib H E.2012. Fabrication of 3D electrospun structures from poly(lactide-co-glycolide acid)-nano-hydroxyapatite composites[J]. Journal of Polymer Science Part B-Polymer Physics,50:242-249.
    [185]Lee H W, Karim M R, Ji H M, Choi J H, Do Ghim H, Park S M, Oh W and Yeum J H.2009. Electrospinning Fabrication and Characterization of Poly(vinyl alcohol)/Montmorillonite Nanofiber Mats[J]. Journal of Applied Polymer Science,113:1860-1867.
    [186]Li Z Y, Zhang H N, Zheng W, Wang W, Huang H M, Wang C, MacDiarmid A G and Wei Y. 2008. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers[J]. Journal of the American Chemical Society,130:5036-5040.
    [187]Qi Q, Zhang T and Wang L J.2008. Improved and excellent humidity sensitivities based on KCl-doped TiO(2) electrospun nanofibers[J]. Appl. Phys. Lett.,93:023105.
    [188]Wang X Y, Drew C, Lee S H, Senecal K J, Kumar J and Sarnuelson LA.2002. Electrospun nanofibrous membranes for highly sensitive optical sensors[J]. Nano Letters,2:1273-1275.
    [189]Liu H Q, Kameoka J, Czaplewski D A and Craighead H G.2004. Polymeric nanowire chemical sensor[J]. Nano Letters,4:671-675.
    [190]Yoon J, Chae S K and Kim J M.2007. Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers[J]. Journal of the American Chemical Society,129:3038.
    [191]Sawicka K, Gouma P and Simon S.2005. Electrospun biocomposite nanofibers for urea biosensing[J]. Sens. Actuator B-Chem.,108:585-588.
    [192]Patel A C, Li S X, Yuan J M and Wei Y.2006. In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications[J]. Nano Letters,6:1042-1046.
    [193]He D, Hu B, Yao Q-F, Wang K and Yu S-H.2009. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity:Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles[J]. Acs Nano,3:3993-4002.
    [194]Hassoun J and Scrosati B.2010. A High-Performance Polymer Tin Sulfur Lithium Ion Battery[J]. Angewandte Chemie International Edition,49:2371-2374.
    [195]Hu Y-S, Demir-Cakan R, Titirici M-M, Muller J?O, Schlogl R, Antonietti M and Maier J. 2008. Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries[J]. Angewandte Chemie International Edition,47:1645-1649.
    [196]Kim M G and Cho J.2009. Reversible and High-Capacity Nanostructured Electrode Materials for Li-Ion Batteries[J]. Advanced Functional Materials,19:1497-1514.
    [197]Sato K, Noguchi M, Demachi A, Oki N and Endo M.1994. A Mechanism of Lithium Storage in Disordered Carbons[J]. Science,264:556-558.
    [198]Yu Y, Gu L, Zhu C, van Aken P A and Maier J.2009. Tin Nanoparticles Encapsulated in Porous Multichannel Carbon Microtubes: Preparation by Single-Nozzle Electrospinning and Application as Anode Material for High-Performance Li-Based Batteries[J]. Journal of the American Chemical Society,131:15984-15985.
    [199]Ji L W and Zhang X W.2009. Electrospun carbon nanofibers containing silicon particles as an energy-storage medium[J]. Carbon,47:3219-3226.
    [200]Choi H S, Lee J G, Lee H Y, Kim S W and Park C R.2010. Effects of surrounding confinements of Si nanoparticles on Si-based anode performance for lithium ion batteries[J]. Electrochim. Acta,56:790-796.
    [201]Zou L, Gan L, Kang F Y, Wang M X, Shen W C and Huang Z H.2010. Sn/C non-woven film prepared by electrospinning as anode materials for lithium ion batteries[J], J. Power Sources, 195:1216-1220.
    [202]Yu Y, Gu L, Zhu C B, van Aken P A and Maier J.2009. Tin Nanoparticles Encapsulated in Porous Multichannel Carbon Microtubes: Preparation by Single-Nozzle Electrospinning and Application as Anode Material for High-Performance Li-Based Batteries[J]. Journal of the American Chemical Society,131:15984.
    [203]Wang L, Yu Y, Chen P C and Chen C H.2008. Electrospun carbon-cobalt composite nanofiber as an anode material for lithium ion batteries[J]. Scr. Mater.,58:405-408.
    [204]Wang L, Yu Y, Chen P C, Zhang D W and Chen C H.2008. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries[J]. J. Power Sources,183:717-723.
    [205]Ji L W, Medford A J and Zhang X W.2009. Porous carbon nanofibers loaded with manganese oxide particles: Formation mechanism and electrochemical performance as energy-storage materials[J]. Journal of Materials Chemistry,19:5593-5601.
    [206]Nataraj S K, Kim B H, dela Cruz M, Ferraris J, Aminabhavi T M and Yang K S.2009. Free standing thin webs of porous carbon nanofibers of polyacrylonitrile containing iron-oxide by electrospinning[J]. Materials Letters,63:218-220.
    [207]Ji L W and Zhang X W.2009. Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries[J]. Electrochem. Commun.,11:795-798.
    [208]Ji L W, Lin Z, Zhou R, Shi Q, Toprakci O, Medford A J, Millns C R and Zhang X W.2010. Formation and electrochemical performance of copper/carbon composite nanofibers[J]. Electrochim. Acta,55:1605-1611.
    [209]Ji L W, Lin Z, Medford A J and Zhang X W.2009. In-Situ Encapsulation of Nickel Particles in Electrospun Carbon Nanofibers and the Resultant Electrochemical Performance[J]. Chem.-Eur. J.,15:10718-10722.
    [210]Hagen R, Lorrmann H, Moller K C and Mathur S.2012. Electrospun LiFel-yMnyPO4/C Nanofiber Composites as Self-Supporting Cathodes in Li-Ion Batteries[J]. Advanced Energy Materials,2:553-559.
    [211]Wang H G, Ma D L, Huang X L, Huang Y and Zhang X B.2012. General and Controllable Synthesis Strategy of Metal Oxide/TiO2 Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance[J]. Scientific Reports,2:
    [212]Iijima S and Ichihashi T.1993. SINGLE-SHELL CARBON NANOTUBES OF 1-NM DIAMETER[J]. Nature,363:603-605.
    [213]Kim C, Yang K S and Lee W J.2004. The use of carbon nanofiber electrodes prepared by electrospinning for electrochemical supercapacitors[J]. Electrochem. Solid State Lett., 7:A397-A399.
    [214]Inagaki M, Konno H and Tanaike O.2010. Carbon materials for electrochemical capacitors[J]. J. Power Sources,195:7880-7903.
    [215]Ju Y W, Park S H, Jung H R and Lee W J.2009. Electrospun Activated Carbon Nanofibers Electrodes Based on Polymer Blends[J]. J. Electrochem. Soc.,156:A489-A494.
    [216]Ju Y W, Choi G R, Jung H R and Lee W J.2008. Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole[J]. Electrochim. Acta, 53:5796-5803.
    [217]Guo Q H, Zhou X P, Li X Y, Chen S L, Seema A, Greiner A and Hou H Q.2009. Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes[J]. Journal of Materials Chemistry,19:2810-2816.
    [218]Kim C, Ngoc BTN, Yang K S, Kojima M, Kim Y A, Kim Y J, Endo M and Yang S C.2007. Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride[J]. Advanced Materials,19:2341-2345.
    [219]Li J, Liu E H, Li W, Meng X Y and Tan S T.2009. Nickel/carbon nanofibers composite electrodes as supercapacitors prepared by electrospinning[J]. J. Alloy. Compd.,478:371-374.
    [220]Nataraj S K, Kim B H, Yun J H, Lee D H, Aminabhavi T M and Yang K S.2009. Effect of added nickel nitrate on the physical, thermal and morphological characteristics of polyacrylonitrile-based carbon nanofibers[J]. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.,162:75-81.
    [221]Ji L W and Zhang X W.2009. Generation of activated carbon nanofibers from electrospun polyacrylonitrile-zinc chloride composites for use as anodes in lithium-ion batteries[J]. Electrochem. Commun.,11:684-687.
    [222]Kim B H, Yang K S and Woo H G, 2011. Thin, bendable electrodes consisting of porous carbon nanofibers via the electrospinning of polyacrylonitrile containing tetraethoxy orthosilicate for supercapacitor[J]. Electrochem. Commun.,13:1042-1046.
    [223]Kim B H, Yang K S and Woo H G.2011. Preparation and Electrochemical Properties of Carbon Nanofiber Composite Dispersed with Silver Nanoparticles Using Polyacrylonitrile and beta-Cyclodextrin[J]. Journal of Nanoscience and Nanotechnology,11:7193-7197.
    [224]Kim B H, Yang K S, Kim Y A, Kim Y J, An B and Oshida K.2011. Solvent-induced porosity control of carbon nanofiber webs for supercapacitor[J]. J. Power Sources, 196:10496-10501.
    [225]Ju Y W, Choi G R, Jung H R, Kim C, Yang K S and Lee W J.2007. A hydrous ruthenium oxide-carbon nanofibers composite electrodes prepared by electrospinning[J]. J. Electrochem. Soc.,154:A192-A197.
    [226]Im J S, Woo S W, Jung M J and Lee Y S.2008. Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst[J]. J. Colloid Interface Sci., 327:115-119.
    [1]Grzelczak M, Vermant J, Furst E M and Liz-Marzan L M.2010. Directed Self-Assembly of Nanoparticles[J]. ACS Nano,4:3591-3605.
    [2]Sanchez-Iglesias A, Grzelczak M, Perez-Juste J and Liz-Marzan L M.2010. Binary Self-Assembly of Gold Nanowires with Nanospheres and Nanorods[J]. Angew. Chem. Int. Ed.,49:9985-9989.
    [3]Kotov N A.2011. Practical aspects of self-organization of nanoparticles:experimental guide and future applications[J]. J. Mater. Chem.,21:16673-16674.
    [4]Shen X, Chen L, Li D, Zhu L, Wang H, Liu C, Wang Y, Xiong Q and Chen H.2011. Assembly of Colloidal Nanoparticles Directed by the Microstructures of Polycrystalline Ice[J]. ACS Nano,5:8426-8433.
    [5]Kun Liu, Nana Zhao and Kumacheva E.2011. Self-assembly of inorganic nanorods[J]. Chem Soc Rev,40:656-671.
    [6]Glotzer S C and Solomon M J.2007. Anisotropy of building blocks and their assembly into complex structures[J]. Nature Materials,6:557-562.
    [7]Nie Z, Petukhova A and Kumacheva E.2010. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles[J]. Nature Nanotechnology, 5:15-25.
    [8]Srivastava S and Kotov N A.2009. Nanoparticle assembly for 1D and 2D ordered structures[J]. Soft Matter,5:1146-1156.
    [9]Pan B F, Ao L M, Gao F, Tian H Y, He R and Cui D X.2005. End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization [J]. Nanotechnology,16:1776-1780.
    [10]Lee A, Andrade G F S, Ahmed A, Souza M L, Coombs N, Tumarkin E, Liu K, Gordon R, Brolo A G and Kumacheva E.2011. Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman ScatteringfJ]. J. Am. Chem. Soc.,7563-7570.
    [11]Pan B F, Cui D X, Ozkan C G, Xu P, Huang T, Li Q, Chen H, Liu F T, Gao F and He R.2007. DNA-Templated ordered array of gold nanorods in one and two dimensions[J]. Journal of Physical Chemistry C,111:12572-12576.
    [12]Yang D P and Cui D X.2008. Advances and Prospects of Gold Nanorods[J]. Chemistry-an Asian Journal,3:2010-2022.
    [13]Sanchez-Iglesias A, Grzelczak M, Perez-Juste J and Liz-Marzan L M.2010. Binary Self-Assembly of Gold Nanowires with Nanospheres and Nanorods[J]. Angew. Chem. Int. Ed.,9985-9989.
    [14]Funston A M, Novo C, Davis T J and Mulvaney P. 2009. Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries[J]. Nano Lett.,9:1651-1658.
    [15]He D, Hu B, Yao Q-F, Wang K and Yu S-H.2009. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles[J]. ACS Nano,3:3993-4002.
    [16]Roskov K E, Kozek K A, Wu W-C, Chhetri R K, Oldenburg A L, Spontak R J and Tracy J B. 2011. Long-Range Alignment of Gold Nanorods in Electrospun Polymer Nano/Microfibers[J]. Langmuir,27:13965-13969.
    [17]Xiao M, Chen H, Ming T, Shao L and Wang J.2010. Plasmon-Modulated Light Scattering from Gold Nanocrystal-Decorated Hollow Mesoporous Silica Microspheres[J]. ACS Nano, 6565-6572.
    [18]Vermant J and Solomon M J.2005. Flow-induced structure in colloidal suspensions[J]. J. Phys.:Condens. Matter,17:R187.
    [19]Jain P K, Eustis S and El-Sayed M A.2006. Plasmon Coupling in Nanorod Assemblies: Optical Absorption, Discrete Dipole Approximation Simulation, and Exciton-Coupling Model[J]. J. Phys. Chem. B,110:18243-18253.
    [20]Pazos-Perez N s, Baranov D, Irsen S, Hilgendorff M, Liz-Marzan L M and Giersig M.2008. Synthesis of Flexible, Ultrathin Gold Nanowires in Organic Media[J]. Langmuir, 24:9855-9860.
    [21]McLintock A, Hunt N and Wark A W.2011. Controlled side-by-side assembly of gold nanorods and dye molecules into polymer-wrapped SERRS-active clusters[J]. Chem. Commun.,47:3757-3759.
    [22]Zhang B, Wang H, Lu L, Ai K, Zhang G and Cheng X.2008. Large-Area Silver-Coated Silicon Nanowire Arrays for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy[J]. Adv. Funct. Mater.,18:2348-2355.
    [1]Kotov N A.2011. Practical aspects of self-organization of nanoparticles:experimental guide and future applications[J]. J. Mater. Chem.,21:16673-16674.
    [2]Boissiere C, Grosso D, Chaumonnot A, Nicole L and Sanchez C.2010. Aerosol Route to Functional Nanostructured Inorganic and Hybrid Porous Materials[J]. Adv. Mater., 23:599-623.
    [3]Jiang H-L, Akita T, Ishida T, Haruta M and Xu Q.2011. Synergistic Catalysis of Au@Ag Core-Shell Nanoparticles Stabilized on Metal-Organic Framework[J]. J. Am. Chem. Soc., 133:1304-1306.
    [4]Chen G, Wang Y, Yang M, Xu J, Goh S J, Pan M and Chen H.2010. Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers[J]. J. Am. Chem. Soc.,132:3644-3645.
    [5]Camargo P H C, Xiong Y, Ji L, Zuo J M and Xia Y.2007. Facile synthesis of tadpole-like nanostructures consisting of Au heads and Pd tails[J]. J. Am. Chem. Soc.,129:15452-15453.
    [6]Kalsin A M, Fialkowski M, Paszewski M, Smoukov S K, Bishop K J M and Grzybowski B A. 2006. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice[J]. Science,312:420-424.
    [7]Tao F, Grass M E, Zhang Y, Butcher D R, Renzas J R, Liu Z, Chung J Y, Mun B S, Salmeron M and Somorjai G A.2008. Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles[J]. Science,322:932-934.
    [8]Shen X, Chen L, Li D, Zhu L, Wang H, Liu C, Wang Y, Xiong Q and Chen H.2011. Assembly of Colloidal Nanoparticles Directed by the Microstructures of Polycrystalline Ice[J]. ACS Nano,5:8426-8433.
    [9]Sanchez-Iglesias A, Grzelczak M, P6rez-Juste J and Liz-Marzan L M.2010. Binary Self-Assembly of Gold Nanowires with Nanospheres and Nanorods[J]. Angew. Chem. Int. Ed.,49:9985-9989.
    [10]Li L, Hollinger J, Coombs N, Petrov S and Seferos D S.2011. Nanocrystal Self-Assembly with Rod-Rod Block Copolymers[J]. Angew. Chem. Int. Ed.,50:8148-8152.
    [11]Barreca D, Gasparotto A and Tondello E.2011. Metal/oxide interfaces in inorganic nanosystems: what's going on and what's next?[J]. J. Mater. Chem.,21:1648-1654.
    [12]Shevchenko E V, Talapinl D V, Kotov N A, S O B and Murray C B.2006. Structural diversity in binary nanoparticle superlattices[J]. Nature,439:55-59.
    [13]Xing S, Feng Y, Tay Y Y, Chen T, Xu J, Pan M, He J, Hng H H, Yan Q and Chen H.2010. Reducing the Symmetry of Bimetallic Au@Ag Nanoparticles by Exploiting Eccentric Polymer Shells[J]. J. Am. Chem. Soc.,132:9537-9539.
    [14]Wilson O M, Scott R W J, Garcia-Martinez J C and Crooks R M.2004. Synthesis, Characterization, and Structure-Selective Extraction of 1-3-nm Diameter AuAg Dendrimer-Encapsulated Bimetallic Nanoparticles[J]. J. Am. Chem. Soc.,127:1015-1024.
    [15]Ma Y, Li W, Cho E C, Li Z, Yu T, Zeng J, Xie Z and Xia Y.2010. Au@Ag Core-Shell Nanocubes with Finely Tuned and Well-Controlled Sizes, Shell Thicknesses, and Optical Properties[J]. ACS Nano,4:6725-6734.
    [16]Liu H, Zhang X, Wu X, Jiang L, Burda C and Zhu J-J.2011. Rapid sonochemical synthesis of highly luminescent non-toxic AuNCs and Au@AgNCs and Cu (ii) sensing[J]. Chem. Commun.,47:4237-4239.
    [17]Seo D and Song H.2009. Asymmetric Hollow Nanorod Formation through a Partial Galvanic Replacement Reaction[J]. J. Am. Chem. Soc.,131:18210-18211.
    [18]Bao Z, Sun Z, Xiao M, Chen H, Tian L and Wang J.2011. Transverse oxidation of gold nanorods assisted by selective end capping of silver oxide[J]. J. Mater. Chem., 21:11537-11543.
    [19]Hong X, Wang D, Yu R, Yan H, Sun Y, He L, Niu Z, Peng Q and Li Y.2011. Ultrathin Au-Ag bimetallic nanowires with Coulomb blockade effects[J]. Chem. Commun.,47:5160-5162.
    [20]Netzer N L, Qiu C, Zhang Y, Lin C, Zhang L, Fong H and Jiang C.2011. Gold-silver bimetallic porous nanowires for surface-enhanced Raman scattering[J]. Chem. Commun., 47:9606-9608.
    [21]Correa-Duarte M A, Perez-Juste J, Sanchez-Iglesias A, Giersig M and Liz-Marzan L M.2005. Aligning Au Nanorods by Using Carbon Nanotubes as Templates[J]. Angew. Chem. Int. Ed., 44:4375-4378.
    [22]Grzelczak M, Vermant J, Furst E M and Liz-Marzan L M.2010. Directed Self-Assembly of Nanoparticles[J]. ACS Nano,4:3591-3605.
    [23]Rogach A L.2004. Binary superlattices of nanoparticles:Self-assembly leads to "metamaterials"[J]. Angew. Chem. Int. Ed.,43:148-149.
    [24]Hu K W, Huang C C, Hwu J R, Su W C, Shieh D B and Yeh C S.2008. A new photothermal therapeutic agent: Core-free nanostructured AuxAgl-x dendrites[J]. Chemistry-A European Journal,14:2956-2964.
    [25]Liusman C, Li S, Chen X, Wei W, Zhang H, Schatz G C, Boey F and Mirkin C A.2010. Free-Standing Bimetallic Nanorings and Nanoring Arrays Made by On-Wire Lithography[J]. ACS Nano,4:7676-7682.
    [26]Mulvihill M J, Ling X Y, Henzie J and Yang P.2009. Anisotropic Etching of Silver Nanoparticles for Plasmonic Structures Capable of Single-Particle SERS[J]. J. Am. Chem. Soc.,132:268-274.
    [27]Xu X, Peng B, Li D, Zhang J, Wong L M, Zhang Q, Wang S and Xiong Q.2011. Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing[J]. Nano Lett.,11:3232-3238.
    [28]Tognalli N G, Cortes E, Hernandez-Nieves A D, Carro P, Usaj G, Balseiro C A, Vela M E, Salvarezza R C and Fainstein A.2011. From Single to Multiple Ag-Layer Modification of Au Nanocavity Substrates: A Tunable Probe of the Chemical Surface-Enhanced Raman Scattering Mechanism[J]. ACS Nano,5:5433-5443.
    [29]Kun Liu, Nana Zhao and Kumacheva E.2011. Self-assembly of inorganic nanorods[J]. Chem Soc Rev,40:656-671.
    [30]Greiner A and Wendorff J H.2007. Electrospinning: A fascinating method for the preparation of ultrathin fibres[J]. Angewandte Chemie-International Edition,46:5670-5703.
    [31]Gensheimer M, Becker M, Brandis-Heep A, Wendorff J H, Thauer R K and Greiner A.2007. Novel Biohybrid Materials by Electrospinning: Nanofibers of Poly(ethylene oxide) and Living Bacteria[J]. Adv. Mater.,19:2480-2482.
    [32]Yarin A L, Zussman E, Wendorff J H and Greiner A.2007. Material encapsulation and transport in core-shell micro/nanofibers, polymer and carbon nanotubes and micro/nanochannels[J]. J. Mater. Chem.,17:2585-2599.
    [33]Li D and Xia Y.2004. Electrospinning of Nanofibers: Reinventing the Wheel?[J]. Adv. Mater.,16:1151-1170.
    [34]Ge J J, Hou H, Li Q, Graham M J, Greiner A, Reneker D H, Harris F W and Cheng S Z D. 2004. Assembly of Well-Aligned Multiwalled Carbon Nanotubes in Confined Polyacrylonitrile Environments:(?)BElectrospun Composite Nanofiber Sheets[J]. J. Am. Chem. Soc.,126:15754-15761.
    [35]He D, Hu B, Yao Q-F, Wang K and Yu S-H.2009. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles[J]. ACS Nano,3:3993-4002.
    [36]Zhang C L, Lv K P, Cong H P and Yu S H.2011. Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning[J]. Small,
    [37]Xiao M, Chen H, Ming T, Shao L and Wang J.2010. Plasmon-Modulated Light Scattering from Gold Nanocrystal-Decorated Hollow Mesoporous Silica Microspheres[J]. ACS Nano, 4:6565-6572.
    [38]Chen T, Wang H, Chen G, Wang Y, Feng Y, Teo W S, Wu T and Chen H.2010. Hotspot-Induced Transformation of Surface-Enhanced Raman Scattering Fingerprints[J]. ACS Nano,4:3087-3094.
    [39]Kun Liu, Zhao N and Kumacheva E.2011. Self-assembly of inorganic nanorods[J]. Chem Soc Rev,40:656-671.
    [40]Zhang D and Chang J.2007. Patterning of Electrospun Fibers Using Electroconductive Templates[J]. Adv. Mater.,19:3664-3667.
    [41]McLintock A, Hunt N and Wark A W.2011. Controlled side-by-side assembly of gold nanorods and dye molecules into polymer-wrapped SERRS-active clusters[J]. Chem. Commun.,47:3757-3759.
    [42]Zhang B, Wang H, Lu L, Ai K, Zhang G and Cheng X.2008. Large-Area Silver-Coated Silicon Nanowire Arrays for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy[J]. Adv. Funct. Mater.,18:2348-2355.
    [1]Burda C, Chen X, Narayanan R and El-Sayed M A.2005. Chemistry and Properties of Nanocrystals of Different Shapes[J]. Chem. Rev.,105:1025-1102.
    [2]Hochbaum AI and Yang P.2009. Semiconductor Nanowires for Energy ConversionfJ]. Chem. Rev.,110:527-546.
    [3]Du Y-P, Zhang Y-W, Yan Z-G, Sun L-D and Yan C-H.2009. Highly Luminescent Self-Organized Sub-2-nm EuOFNanowires[J]. J. Am. Chem. Soc.,131:16364-16365.
    [4]Liu J-W, Zhu J-H, Zhang C-L, Liang H-W and Yu S-H.2010. Mesostructured Assemblies of Ultrathin Superlong Tellurium Nanowires and Their Photoconductivity [J]. J. Am. Chem. Soc.,132:8945-8952.
    [5]Xu S, Qin Y, Xu C, Wei Y, Yang R and Wang Z L.2010. Self-powered nanowire devices[J]. Nat Nano,5:366-373.
    [6]Yan H, Choe H S, Nam S, Hu Y, Das S, Klemic J F, Ellenbogen J C and Lieber C M.2011. Programmable nanowire circuits for nanoprocessors[J]. nature,470:240-244.
    [7]Liang H-W, Liu S and Yu S-H.2010. Controlled Synthesis of One-Dimensional Inorganic Nanostructures Using Pre-Existing One-Dimensional Nanostructures as Templates[J]. Adv. Mater.,22:3925-3937.
    [8]Lu X, Wang C and Wei Y.2009. One-Dimensional Composite Nanomaterials:Synthesis by Electrospinning and Their Applications[J]. Small,5:2349-2370.
    [9]Shen X, Chen L, Li D, Zhu L, Wang H, Liu C, Wang Y, Xiong Q and Chen H.2011. Assembly of Colloidal Nanoparticles Directed by the Microstructures of Polycrystalline Ice[J]. ACS Nano,5:8426-8433.
    [10]Correa-Duarte M A, Perez-Juste J, Sanchez-Iglesias A, Giersig M and Liz-Marzan L M.2005. Aligning Au Nanorods by Using Carbon Nanotubes as Templates[J]. Angew. Chem. Int. Ed., 44:4375-4378.
    [11]Kun Liu, Zhao N and Kumacheva E.2011. Self-assembly of inorganic nanorods[J]. Chem Soc Rev,40:656-671.
    [12]Kotov N A.2011. Practical aspects of self-organization of nanoparticles: experimental guide and future applications[J]. J. Mater. Chem.,21:16673-16674.
    [13]Grzelczak M, Vermant J, Furst E M and Liz-Marzan L M.2010. Directed Self-Assembly of Nanoparticles[J]. ACS Nano,4:3591-3605.
    [14]Srivastava S and Kotov N A.2009. Nanoparticle assembly for ID and 2D ordered structures[J]. Soft Matter,5:1146-1156.
    [15]Min Y, Akbulut M, Kristiansen K, Golan Y and Israelachvili J.2008. The role of interparticle and external forces in nanoparticle assembly[J]. Nat Mater,7:527-538.
    [16]Shi H-Y, Hu B, Yu X-C, Zhao R-L, Ren X-F, Liu S-L, Liu J-W, Feng M, Xu A-W and Yu S-H. 2010. Ordering of Disordered Nanowires:Spontaneous Formation of Highly Aligned, Ultralong Ag Nanowire Films at Oil-Water-Air Interface[J]. Adv. Funct. Mater, 20:958-964.
    [17]Greiner A and Wendorff J H.2007. Electrospinning: A fascinating method for the preparation of ultrathin fibres[J]. Angewandte Chemie-International Edition,46:5670-5703.
    [18]Li D and Xia Y. 2004. Electrospinning of Nanofibers:Reinventing the Wheel?[J]. Adv. Mater.,16:1151-1170.
    [19]He D, Hu B, Yao Q-F, Wang K and Yu S-H.2009. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles[J]. Acs Nano,3:3993-4002.
    [20]Sharma N, McKeown S J, Ma X, Pochan D J and Cloutier S G.2010. Structure-Property Correlations in Hybrid Polymer-Nanoparticle Electrospun Fibers and Plasmonic Control over their Dichroic Behavior[J]. ACS Nano,4:5551-5558.
    [21]Gensheimer M, Becker M, Brandis-Heep A, Wendorff J H, Thauer R K and Greiner A.2007. Novel Biohybrid Materials by Electrospinning: Nanofibers of Poly(ethylene oxide) and Living Bacteria[J]. Adv. Mater.,19:2480-2482.
    [22]Wall B D, Diegelmann S R, Zhang S, Dawidczyk T J, Wilson W L, Katz H E, Mao H-Q and Tovar J D.2011. Aligned Macroscopic Domains of Optoelectronic Nanostructures Prepared via Shear-Flow Assembly of Peptide Hydrogels[J]. Adv. Mater.,23:5009-5014.
    [23]Bellan L M, Cross J D, Strychalski E A, Moran-Mirabal J and Craighead H G.2006. Individually Resolved DNA Molecules Stretched and Embedded in Electrospun Polymer Nanofibers[J]. Nano Lett.,6:2526-2530.
    [24]Ge J J, Hou H, Li Q, Graham M J, Greiner A, Reneker D H, Harris F W and Cheng S Z D. 2004. Assembly of Well-Aligned Multiwalled Carbon Nanotubes in Confined Polyacrylonitrile Environments:Electrospun Composite Nanofiber Sheets[J]. J. Am. Chem. Soc,126:15754-15761.
    [25]Sen R, Zhao B, Perea D, Itkis M E, Hu H, Love J, Bekyarova E and Haddon R C.2004. Preparation of Single-Walled Carbon Nanotube Reinforced Polystyrene and Polyurethane Nanofibers and Membranes by Electrospinning[J]. Nano Lett.,4:459-464.
    [26]Dou Y, Lin K and Chang J.2011. Polymer nanocomposites with controllable distribution and arrangement of inorganic nanocomponents[J]. Nanoscale,3:1508-1511.
    [27]Roskov K E, Kozek K A, Wu W-C, Chhetri R K, Oldenburg A L, Spontak R J and Tracy J B. 2011. Long-Range Alignment of Gold Nanorods in Electrospun Polymer Nano/Microfibers[J]. Langmuir,27:13965-13969.
    [28]Zhang C-L, Lv K-P, Cong H-P and Yu S-H.2011. Controlled Assemblies of Gold Nanorods in PYA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning[J]. Small,8:648-653.
    [29]Zhang C-L, Lv K-P, Huang H-T, Cong H-P and Yu S-H.2012. Co-assembly of Au nanorods with Ag nanowires within polymer nanofiber matrix for enhanced SERS property by electrospinning[J]. Nanoscale,4:5348-5355.
    [30]Liu Y, Zhang X, Xia Y and Yang H.2010. Magnetic-Field-Assisted Electrospinning of Aligned Straight and Wavy Polymeric Nanofibers[J]. Adv. Mater.,22:2454-2457.
    [31]Wiley B, Sun Y, Mayers B and Xia Y.2005. Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver[J]. Chemistry-A European Journal,11:454-463.
    [32]Liang H-W, Liu S, Gong J-Y, Wang S-B, Wang L and Yu S-H.2009. Ultrathin Te Nanowires: An Excellent Platform for Controlled Synthesis of Ultrathin Platinum and Palladium Nanowires/Nanotubes with Very High Aspect Ratio[J]. Adv. Mater.,21:1850-1854.
    [33]Qian H-S, Yu S-H, Gong J-Y, Luo L-B and Fei L-f.2006. High-Quality Luminescent Tellurium Nanowires of Several Nanometers in Diameter and High Aspect Ratio Synthesized by a Poly (Vinyl Pyrrolidone)-Assisted Hydrothermal Process[J]. Langmuir,22:3830-3835.
    [34]Li D, Wang Y and Xia Y.2003. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays[J]. Nano Lett.,3:1167-1171.
    [35]Garcfa-Vidal F J and Pendry J B.1996. Collective Theory for Surface Enhanced Raman Scattering[J]. Phys. Rev. Lett.,77:1163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700