用户名: 密码: 验证码:
压电阻抗技术及其在铝合金疲劳损伤监测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在航空、船舶、海上平台、桥梁和石化管道等重要工程领域中,材料疲劳损伤是导致结构(部件)服役性能退化的主要原因之一。由于疲劳破坏具有突发性,采用无损方法对在役构件疲劳损伤累积状况进行检测或监测,能够大幅度提高结构的安全可靠性,减小灾害发生几率,避免重大人员伤亡和财产损失。
     基于压电阻抗(electro-mechanical impedance, EMI)法的结构健康监测技术具有对微小损伤检测灵敏度高、适用范围广(金属、复合材料、混凝土等结构)、抗干扰能力强、信号采集和处理方便快捷等优点,在疲劳损伤监测研究中具有广阔的应用前景。目前,EMI技术在疲劳损伤监测中的应用研究尚处于起步阶段。研究工作中存在的难点主要集中于以下几个方面:(1)理论模型发展还不完善,所建立的压电阻抗模型大多针对结构无损伤状态;(2)现有装置所提供的压电传感器驱动电压过低,振动能量对被测结构激励不充分,限制了疲劳损伤监测灵敏度的提高;(3)仅仅从压电传感器所测得的电阻抗信号中很难提取出反映损伤位置的信息,难以实现疲劳损伤精确定位;(4)对于研究工作中大多采用的压电陶瓷类传感器而言,由于它们的脆性较大,在实际应用时尚需研究出合适的封装和防护技术;(5)在材料疲劳损伤多维监测研究中,传感器网络架构、分布式信号传输及处理等关键技术,从理论模型建立到监测系统开发都需要开展大量的研究工作。
     铝合金材料由于密度小、比强度高、耐蚀性好以及优良的焊接性和成型工艺性,在航空航天、船舶、高速列车等结构上获得了广泛应用。其中作为飞机机体结构用材是铝合金的一项重要应用。在飞行过程中由于外界气压变化引起机身所受应力状态交替变化,铝合金机体的疲劳破坏将导致灾难性的空中解体事故。对铝合金疲劳断裂过程的微观观察、疲劳损伤发展状况检测和剩余寿命预测,一直是工程结构和材料科学领域的研究热点。同时,铝合金具有选材和加工方便,疲劳极限小,疲劳过程便于实验室控制等优点,在基于EMI技术的疲劳损伤监测研究中获得了普遍应用。作为一种基础性疲劳损伤监测规律探索,同时为了增强同其他学者研究结果的对比性,本研究也选用了铝合金作为监测对象。
     本文将EMI技术应用到铝合金试样低周疲劳循环过程的在线监测研究中。采用理论分析、数值模拟和实验测试等多种方式,围绕疲劳裂纹萌生和扩展过程的定量监测、高激励电压电阻抗测试系统(high excitation voltage electrical impedance measurement system, HEVEIMS)构建及损伤位置精确测定三个方面进行了系统研究。主要研究结果如下:
     (1)压电陶瓷(piezoelectric ceramic, PZT)传感器粘结强度是影响其电阻抗信号的重要因素。理论模拟和实验验证结果均表明,随着粘结强度降低,在低频范围内谐振峰逐渐向高频方向偏移,而在高频范围内谐振峰逐渐向低频方向偏移,存在一个偏移方向发生转变的临界点。
     (2)在疲劳裂纹萌生阶段,随着循环加载次数增加,损伤识别指数Δf和均方差(root mean square deviation, RMSD)的数值整体上均呈现出单调增大的变化趋势。在出现亚毫米级疲劳裂纹前,Δf和RMSD数值的变化量分别达到0.6kHz和11.68%,利用这两个指数可以对裂纹萌生阶段疲劳损伤的累积过程进行实时监测。
     (3)在疲劳裂纹扩展阶段,随着循环加载次数增加,裂纹长度逐渐增大,△f和RMSD均呈现单调增大的趋势。Δf的变化规律与裂纹扩展长度之间具有很好的相似性,而RMSD对前5,000次循环时裂纹的初期扩展更为敏感。当疲劳裂纹长度扩展到2.90mm时,Af和RMSD的变化量分别达到1.1kHz和7.61%。借助这两个指数可以对疲劳裂纹的连续扩展过程进行实时监测。
     (4)基准信号选取、环境噪声、结构应力状态和检测频段均会影响疲劳损伤监测效果,当环境噪声信号频率在所选取检测频段内时,会对所测得电阻抗信号产生严重干扰。结构所受拉应力逐渐增大时,PZT传感器电阻抗信号中各谐振峰逐渐向低频方向偏移,RMSD指数呈现单调增大的变化趋势。在千赫级频带内,随着检测频段提高,灵敏度呈现出先增大后减小的变化趋势,在130-210kHz频段具有最高的检测灵敏度。
     (5)采用ARB-1410波形发射卡、阻抗测量电路及DPO-4032型数字示波器等设备,自行搭建了一套HEVEIMS。该系统将PZT传感器的激励电压由商用阻抗分析仪的2V提高到本装置的35V,在10-300kHz频段内对电阻抗模值、实部和虚部信号具有很高的测量精度。
     (6)激励电压是影响EMI技术检测灵敏度的重要因素。随着激励电压增加,PZT传感器所提供驱动能量逐渐增大。与1V激励电压相比,当激励电压达到20V和25V时,EMI技术对亚毫米级微小疲劳裂纹的检测灵敏度提高了145%。
     (7)采用表面粘贴PZT传感器的主动Lamb波技术对铝合金材料疲劳损伤进行定位检测。提取小波系数极大值对应时刻作为相应Lamb波信号出现时间,求出两者的时间延迟,进而确定出疲劳裂纹出现位置。对距离PZT传感器25mm和60mm位置处尺寸为2.44mm和1.54mm的疲劳裂纹,测量值与真实值之间的误差分别为3.2%和-1%,满足工程需要。
Fatigue damage is the main reason for the degradation of structures (components) in the fields of aerospace, ship engineering, offshore platform, bridge and petrochemical pipeline. A suitable nondestructive technique with capability to provide reliable and reproducible quantitative information for the accumulation of fatigue damage, can significantly improve the safety and reliability of the structures, reduce the risk of disasters, and avoid heavy casualties and property losses.
     Electro-mechanical impedance (EMI) based structural health monitoring technology has many obvious advantages, such as high sensitivity to minor damages, wide range of adaptability (metals, composites, concrete and other structures), anti-interference ability, convenient signal acquisition and processing. This technique has good prospects in the monitoring of fatigue damages. At present, the application of EMI technique in the monitoring of fatigue damages is still in the infancy. The problems mainly focus on the following aspects:(1) The development of theoretical models are not perfect, the existed piezoelectric impedance models are only applicable for the structures without damage;(2) The driving voltage of currently available device is quite low, the vibration energy is not sufficient for monitored structures, and the improvement of sensitivity to fatigue damages is obviously limited;(3) It is difficult to extract damage location information from the measured electrical impedance signals, and the location of fatigue damage can't be measured precisely;(4) The piezoelectric sensors used in most of the EMI studies is brittle, proper packaging and protective teclinology should be developed before the application of this method to a real structure;(5) In the multi-dimensional monitoring of fatigue damages, many researches should be performed on the key technology such as the establishment of sensor network, the transmission and processing of distributed signals, from the development of theoretical models and monitoring systems.
     Aluminum alloy has been widely applied in the structures of aerospace, ship engineering, high-speed trains, due to the low density, high specific strength, good corrosion resistance, excellent weldability and molding manufacturability. The airframe structure material is one of the most important applications of aluminum alloy. During the flight process, the stress state of the body changes alternatively with the outside air pressure. The fatigue failure of the aluminum alloy body will lead to disastrous air disintegration accident. The microscopic observation of fatigue fracture process, the fatigue damage state detection, and the remaining life prediction of aluminum alloy have always been paid attention in the engineering and material science field. On the other hand, aluminum alloy has many advantages such as the convenient material selection and forming, the small fatigue limit, and the easily controlled fatigue process. This material has been widely used in the monitoring of fatigue damage with the EMI technique. As a basic exploration of fatigue damage monitoring principle, the aluminum alloy was also selected in this study to enhance the comparability with other researchers.
     In this paper, EMI technique was used for online monitoring of the entire process of fatigue failure in aluminum alloy specimens. With the manners of theoretical model, numerical simulation, and experimental testing, systematical studies were performed from three aspects, which were quantitative monitoring of the initiation and propagation process of fatigue crack, the establishment of high excitation voltage electrical impedance measurement system (HEVEIMS), and the accurate location method of fatigue crack. The major conclusions are as follows:
     (1) The bonding condition of piezoelectric ceramic (PZT) sensor is an important factor which affects the electrical impedance signal obviously. Theoretical simulation and experimental investigation results show that, with decrease in bonding quality, the resonant impedance peaks shifted to higher and lower frequency, respectively, in the low and high frequency ranges. There exists a critical frequency, and the shifted direction of impedance peaks changes at this point.
     (2) At the fatigue crack initiation stage, the trends of damage identification indicators Δ f and root mean square deviation (RMSD) increased monotonically with fatigue cycles. Before the formation of macroscopic submillimeter fatigue crack, the changing values of Δf and RMSD were0.6kHz and11.68%. The initial pre-crack damages can be real-time monitored with these two indicators.
     (3) At the fatigue crack propagation stage, the crack length increased gradually, and the trends of Δf and RMSD increased monotonically with fatigue cycles. The increment trend of Δf was evidently similar to that of crack length, and the RMSD values were more sensitive to the initial expansion of crack length in the first5,000cycles. When the crack length expanded to2.90mm, the changing values of Δf and RMSD were1.1kHz and7.61%, respectively. The process of crack propagation can be real-time monitored with these two indicators.
     (4) The selection of baseline, environmental noise, the state of structural stress, and the testing frequency band can affect the fatigue monitoring results of EMI technique obviously. The measured electrical impedance signals are seriously influenced when the frequency of environmental noise is in the selected monitoring band. The resonant peaks in the electrical impedance signals shift to lower frequency and the values of RMSD increase monotonically, when the tensile stress in the monitored specimens increases gradually. In the kHz frequency range, the sensitivity first increases and then decreases with the increase of testing frequency band, and the frequency band of130-210kHz has the highest testing sensitivity.
     (5) A HEVEIMS was established with ARB-1410wave generation card, impedance measurement circuit and DPO-4032digital oscilloscope. The excitation voltage of PZT sensor was extended from2V to35V, and the measurement accuracy of electrical impedance modulus, real and imaginary parts is quite high in the frequency band of10-300kHz.
     (6) The excitation voltage of PZT sensor is an important factor of EMI sensitivity. The driving energy of PZT sensor increases with excitation voltage. Compared with1V excitation voltage, the sensitivity to submillimeter small fatigue cracks increased145%, when the excitation voltage increased to20and25V.
     (7) The location of fatigue damage in aluminum alloy was measured with active Lamb wave technique, which was excited by PZT sensor bonded on the surface of the specimen. The time delay between the excitation and reflection signals was calculated according to the extracted maximum values of wavelet coefficients, and then the location of fatigue crack was determined. For the2.44mm and1.54mm fatigue cracks generated at25mm and60mm from the PZT sensor, the relative error between the measured and the real values were3.2%and-1%, respectively, and the location accuracy satisfies the engineering requirement.
引文
[1]伍颖.断裂与疲劳[M].武汉:中国地质大学出版社,2008.
    [2]常金玲.碳钢惯性摩擦焊接头的疲劳性能研究[D]:北京航空航天大学硕士学位论文,2006.
    [3]ISRAEL M G, DOUCET J P, BATHIAS C. Development of a new device to perform torsional ultrasonic fatigue testing [J]. International Journal of Fatigue,2007,29(9/11):2094-2101.
    [4]朱劲松,宋玉普.混凝土双轴抗压疲劳损伤特性的超声波速法研究[J].岩石力学与工程学报,2004,23(13):2230-2234.
    [5]STINCHCOMB W. Nondestructive evaluation of damage accumulation processes in composite laminates [J]. Composites Science and Technology,1986,25(2):103-118.
    [6]石惠宁,姚红星,丁建东等.抽油杆疲劳裂纹的超声检测与形貌观察研究[J].无损探伤,2005,29(1):12-16.
    [7]TAKAHASHI I, USHIJIMA M. Detection of fatigue cracks at weld toes by crack detection paint and surface SH wave [J]. Materials Transactions,2007,48(6):1190-1195.
    [8]王丹生.基于反共振频率和压电阻抗的结构损伤检测[D]:华中科技大学博士学位论文,2006.
    [9]胡自力,熊克,杨红.基于智能材料结构的几种损伤评价方法[J].航空学报,2002,23(1):1-5.
    [10]GIURGIUTIU V, ZAGRAI A, BAO J J. Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring [J]. Structural Health Monitoring,2002,1(1):41-61.
    [11]GIURGIUTIU V, ZAGRAI A, BAO J J. Damage identification in aging aircraft structures with piezoelectric wafer active sensors [J]. Journal of Intelligent Material Systems and Structures,2004, 15(9/10):673-687.
    [12]BOIS C, HOCHARD C. Monitoring of laminated composites delamination based on electro-mechanical impedance measurement [J]. Journal of Intelligent Material Systems and Structures,2004,15(1):59-67.
    [13]LALANDE F, ROGERS C A, CHILDS B W, et al. High-frequency impedance analysis for NDE of complex precision parts [C]. Proceedings of SPIE-The International Society for Optical Engineering, 1996,2717:237-243.
    [14]AYRES J W, LALANDE F, CHAUDHRY Z, et al. Qualitative impedance-based health monitoring of civil infrastructures [J]. Smart Materials and Structures,1998,7(5):599-605.
    [15]SHANKER R, BHALLA S, GUPTA A. Integration of electro-mechanical impedance and global dynamic techniques for improved structural health monitoring [J]. Journal of Intelligent Material Systems and Structures,2010,21(2):285-295.
    [16]SHIN S W, QURESHI A R, LEE J Y, et al. Piezoelectric sensor based nondestructive active monitoring of strength gain in concrete [J]. Smart Materials and Structures,2008,17(5):ID 055002.
    [17]SHIN S W, OH T K. Application of electro-mechanical impedance sensing technique for online monitoring of strength development in concrete using smart PZT patches [J]. Construction and Building Materials,2009,23(2):1185-1188.
    [18]戚燕杰,吕志刚,刘马宝等.寿命无极限:飞机寿命管理的技术革命[J].中国民航大学学报,2011,29(1):29-34.
    [19]CANFIELD R A, MORGENSTERN S D, KUNZ D L. Alleviation of buffet-induced vibration using piezoelectric actuators [J]. Computers & Structures,2008,86(3/5):281-291.
    [20]姚起航,姚军.结构振动疲劳问题的特点与分析方法[J].机械科学与技术,2000,19(S):56-58.
    [21]刘文光,陈国平,贺红林等.结构振动疲劳研究综述[J].工程设计学报,2012,19(1):1-8.
    [22]JOEL P, WELSH G, CHRIST R, et al. Observations of fatigue crack initiation in 7075-T651 [J]. International Journal of Fatigue,2010,32(2):247-255.
    [23]XUE Y, KADIRI H E, HORSTEMEYER M F, et al. Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy [J]. Acta Materialia,2007,55(6):1975-1984.
    [24]蔡彪,郑子樵,廖忠全等.航空铝合金耐疲劳损伤特征微结构研究现状[J].材料导报,2010,24(9):134-138.
    [25]LIN M W, ROGERS C A. Formulation of a beam structure with induced strain actuators based on an approximated linear shear stress field [C]. Proceedings of 33rd SDM Conference,1992, Dallas, Texas, April 13-15:896-904.
    [26]HA S K, KEILERS C, CHANG F K. Finite element analysis of composite structures containing distributed piezoelectric sensors and actuators [J]. AIAA Journal,1992,30(3):772-780.
    [27]LIANG C, SUN F P, ROGERS C A. Impedance method for dynamic analysis of active material systems [J]. Journal of Vibration and Acoustics,1994,116(1):120-128.
    [28]LIANG C, SUN F P, ROGERS C A. Coupled electromechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer [J]. Journal of Intelligent Material Systems and Structures,1994,5(1):12-20.
    [29]LIANG C, SUN F P, ROGERS C A. An impedance method for dynamic analysis of active material systems [J]. Journal of Intelligent Material Systems and Structures,1997,8(4):323-334.
    [30]ZHOU S W, LIANG C, ROGERS C A. Integration and design of piezoelectric patch actuators [J]. Journal of Intelligent Material Systems and Structures,1995,6(1):125-133.
    [31]ZHOU S W, LIANG C, ROGERS C A. Integration and design of piezoceramic elements in intelligent structures [J]. Journal of Intelligent Material Systems and Structures,1995,6(6):733-743.
    [32]ZHOU S W, LIANG C, ROGERS C A. An impedance-based system modeling approach for induced strain actuator-driven structures [J]. Journal of Vibration and Acoustics,1996,118(3):323-331.
    [33]BHALLA S, SOH C K. Structural health monitoring by piezo-impedance transducers. I. Modeling [J]. Journal of Aerospace Engineering,2004,17(4):154-165.
    [34]BHALLA S, SOH C K. Structural health monitoring by piezo-impedance transducers. II. Applications [J]. Journal of Aerospace Engineering,2004,17(4):166-175.
    [35]SOH C K, TSENG K K H, BHALLA S, et al. Performance of smart piezoceramic patches in health monitoring of a RC bridge [J]. Smart Materials and Structures,2000,9(4):533-542.
    [36]PARK G, FARRAR C R, SCALEA F L, et al. Performance assessment and validation of piezoelectric active-sensors in structural health monitoring [J]. Smart Materials and Structures,2006, 15(6):1673-1683.
    [37]PARK S, PARK G, YUN C B, et al. Sensor self-diagnosis using a modified impedance model for active sensing-based structural health monitoring [J]. Structural Health Monitoring,2008,7(1): 71-82.
    [38]QING X P, CHAN H L, BEARD S J, et al. Effect of adhesive on the performance of piezoelectric elements used to monitor structural health [J]. International Journal of Adhesion and Adhesives, 2006,26(8):622-628.
    [39]XU Y G, LIU G R. A modified electro-mechanical impedance model of piezoelectric actuator-sensors for debonding detection of composite patches [J]. Journal of Intelligent Material Systems and Structures,2002,13(6):389-396.
    [40]BHALLA S, SOH C K. Electromechanical impedance modeling for adhesively bonded piezo-transducers [J]. Journal of Intelligent Material Systems and Structures,2004,15(12):955-972.
    [41]MADHAV A V G, SOH C K. An electromechanical impedance model of a piezoceramic transducer-structure in the presence of thick adhesive bonding [J]. Smart Materials and Structures, 2007,16(3):673-686.
    [42]CHENG C C, LIN C C. An impedance approach for vibration response synthesis using multiple PZT actuators [J]. Sensors and Actuators A,2005,118(1):116-126.
    [43]PARK G, CUDNEY H H, INMAN D J. An integrated health monitoring technique using structural impedance sensors [J]. Journal of Intelligent Material Systems and Structures,2000,11(6):448-455.
    [44]GIURG1UTIU V, ZAGRAI A. Embedded self-sensing piezoelectric active sensors for on-line structural identification [J]. Journal of Vibration and Acoustics,2002,124(1):116-125.
    [45]KUANG Y D, LI G Q, CHEN C Y. An admittance function of active piezoelectric elements bonded on a cracked beam [J]. Journal of Sound and Vibration,2006,298(1-2):393-403.
    [46]ZAGRAI A N, GIURG1UTIU V. Electro-mechanical impedance method for crack detection in thin plates [J]. Journal of Intelligent Material Systems and Structures,2002,12(10):709-718.
    [47]KUANG Y D, LI G Q, CHEN C Y. Dynamic analysis of actuator-driven circular arch or ring using impedance elements [J]. Smart Materials and Structures,2006,15(3):869-876.
    [48]YANG Y, HU Y. Electromechanical impedance modeling of PZT transducers for health monitoring of cylindrical shell structures [J]. Smart Materials and Structures,2008,17(1):ID 015005.
    [49]YAN W, L1M C W, CHEN W Q, et al. Modeling of EMI response of damaged Mindlin-Herrmann rod [J]. International Journal of Mechanical Sciences,2007,49(12):1355-1365.
    [50]YAN W, LIM C W, CAI J B, et al. An electromechanical impedance approach for quantitative damage detection in Timoshenko beams with piezoelectric patches [J]. Smart Materials and Structures,2007,16(4):1390-1400.
    [51]严蔚,陈伟球,林志华等.基于高频电阻抗信号的结构损伤监测[J].浙江大学学报(工学版),2007,41(1):6-11.
    [52]蔡金标,陈勇,严蔚.基于三维有限元分析的压电阻抗模型及其应用[J].浙江大学学报(工学版),2010,44(12):2342-2347.
    [53]LIANG C, SUN F P, ROGERS C A. Electro-mechanical impedance modeling of active material systems [J]. Smart Materials and Structures,1996,5(2):171-186.
    [54]PEA1RS D M, PARK G, INMAN D J. Improving accessibility of the impedance-based structural health monitoring method [J]. Journal of Intelligent Material Systems and Structures,2004,15(2): 129-139.
    [55]XU B, GIURGIUTIU V. A low-cost and field portable electromechanical (E/M) impedance analyzer for active structural health monitoring [C]. Proceedings of 5th International Workshop on Structural Health Monitoring, Stanford University,2005, September 15-17.
    [56]KIM M H. A smart health monitoring system with application to welded structures using piezoceramic and fiber optic transducers [J]. Journal of Intelligent Material Systems and Structures, 2006.17(1):35-44.
    [57]MASCARENAS D L, TODD M D, PARK G, et al. Development of an impedance-based wireless sensor node for structural health monitoring [J]. Smart Materials and Structures,2007,16(6): 2137-2145.
    [58]WANG S, YOU. C. A circuit design for impedance-based structural health monitoring [J]. Journal of Intelligent Material Systems and Structures,2008,19(9):1029-1040.
    [59]BAPTISTA F J, FILHO J V. A new impedance measurement system for PZT based structural health monitoring [J]. IEEE Transactions on Instrumentation and Measurements,2009,58(10):3602-3608.
    [60]PANIGRAHI R, BHALLA S, GUPTA A. A low-cost variant of electro-mechanical impedance (EMI) technique for structural health monitoring [J]. Experimental Techniques,2010,34(2):25-29.
    [61]熊先锋,杨光瑜,杨拥民等.压电阻抗技术用于结构健康诊断的一种方法[J].传感器技术,2003,22(10):62-64.
    [62]熊先锋.压电阻抗技术用于结构健康监测的研究[D].长沙:国防科学技术大学硕士学位论文,2003.
    [63]张兢,侯旭东,王玉菡等.基于压电技术的结构健康诊断便携式系统[J].重庆工学院学报(自然科学版),2009,23(9):58-62.
    [64]张玉祥,刘明春.基于AD5933的小型压电阻抗分析仪设计[J].电子测量技术,2009,32(11):76-79.
    [65]KRISHNAMURTHY K, LALANDE F, ROGERS CA. Effects of temperature on the electrical impedance of piezoelectric sensors [C]. Proceedings of SPIE,1996,2717:302-310.
    [66]PARK G, KABEYA K, CUDNEY H H, et al. Impedance-based structural health monitoring for temperature varying applications [J]. JSME International Journal,1999,42(2):249-258.
    [67]PARK G, CUDNEY H H, INMAN D J. Impedance-based health monitoring of civil structural components [J]. Journal of Infrastructure Systems,2000,6(4):153-160.
    [68]PARK G, CUDNEY H H, INMAN D J. Feasibility of using impedance-based damage assessment for pipeline structures [J]. Earthquake Engineering and Structural Dynamics,2001,30(10):1463-1474.
    [69]GRISSO B L, INMAN D J. Temperature corrected sensor diagnostics for impedance-based SHM [J]. Journal of Sound and Vibration,2010,329(12):2323-2336.
    [70]ANNAMDAS V G M, SOH C K. Embedded piezoelectric ceramic transducers in sandwiched beams [J]. Smart Materials and Structures,2006,15(2):538-549.
    [71]ANNAMDAS V G M, RADHIKA M A, SOH C K. Health monitoring of concrete structures using embedded PZT transducers based electromechanical impedance model [C]. Proceedings of SPIE, 2009,7292:251-259.
    [72]ANNAMDAS V G M, RADHIKA M A, YANG Y W. Easy installation method of piezoceramic (PZT) transducers for health monitoring of structures using electro-mechanical impedance technique [C]. Proceedings of SPIE,2009,7292:271-278.
    [73]COTTREL A H, HULL D. Extrusion and intrusion by cyclic slip in copper [C]. Proceedings of the Royal Society, London,1957, A242:211-213.
    [74]KUNG C, FINE M. Fatigue crack initiation and microcrack growth in 2024-T4 and 2124-T4 aluminum alloys [J]. Metallurgical and Materials Transactions A,1979,10(5):603-610.
    [75]XUE Y, KADIRI H E I, HORSTEMEYER M F, et al. Micromechanism of multistage crack growth in high-strength aluminum alloy [J]. Acta Materialia,2007,55(6):1975-1984.
    [76]PAYNE J, WELSH G, CHRIST R J, et al. Observations of fatigue crack initiation in 7075-T651 [J]. International Journal of Fatigue,2010,32(2):247-255.
    [77]LAIRD C, SMITH G C. Crack propagation in high stress fatigue. Philosophical Magazine,1962, 7(77):847-857.
    [78]PARIS P C, GOMEZ M P, ANDERSON W P. A rational analytic theory of fatigue [J]. The Trend in Engineering,1961,13(1):9-14.
    [79]PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws [J]. Journal of Basic Engineering,1963,85(4):528-534.
    [80]WAGLE S, KATO H. Ultrasonic wave intensity reflected from fretting fatigue cracks at bolt joints of aluminum alloy plates [J]. NDT & E International,2009,42(8):690-695.
    [81]KIM J Y, ROKHLIN S I. Surface acoustic wave measurements of small fatigue cracks initiated from a surface cavity [J]. International Journal of Solids and Structures,2002,39(6):1487-1504.
    [82]KIM J Y, YAKOVLEV V A, ROKHLINA S I. Surface acoustic wave modulation on a partially closed fatigue crack [J]. Journal of the Acoustic Society of the America,2004,115(5):1961-1972.
    [83]ROKHLIN S I, KIM J Y, XIE B, et al. Nondestructive sizing and localization of internal microcracks in fatigue samples [J]. NDT & E International,2007,40(6):462-470.
    [84]GUPTA S, SINGH D S, RAY A. Statistical pattern analysis of ultrasonic signals for fatigue damage detection in mechanical structures [J]. NDT & E International,2008,41(8):601-607.
    [85]王慧晶,林哲,赵德有.声发射技术在工程结构疲劳损伤监测中的应用和展望[J].振动与冲击,2007,26(6):157-161.
    [86]HAN Z Y, LUO H Y, CAO J W, et al. Acoustic emission during fatigue crack propagation in a micro-alloyed steel and welds [J]. Materials Science and Engineering A,2011,528(26):7751-7756.
    [87]YU J G, PAUL Z, ZARATE B, et al. Prediction of fatigue crack growth in steel bridge components using acoustic emission [J]. Journal of Constructional Steel Research,2011,67(8):1254-1260.
    [88]GRONDEL S, DELEBARRE C, ASSAAD J, et al. Fatigue crack monitoring of riveted aluminum strap joints by Lamb wave analysis and acoustic emission measurement techniques [J]. NDT & E International,2002,35(3):137-146.
    [89]HARRIS D O. Continuous monitoring of fatigue-crack growth by acoustic-emission techniques [C]. Third SESA International Congress on Experimental Mechanics, May13-18, Los Angeles CA,1973.
    [90]ROBERTS TM, TALEBZADEH M. Fatigue life prediction based on crack propagation and acoustic emission count rates [J]. Journal of Constructional Steel Research,2003,59(6):679-694.
    [91]ROBERTS T M, TALEBZADEH M. Acoustic emission monitoring of fatigue crack propagation [J]. Journal of Constructional Steel Research,2003,59(6):695-712.
    [92]CHANG H, HAN E H, WANG J Q, et al. Acoustic emission study of fatigue crack closure of physical short and long cracks for aluminum alloy LY12CZ [J]. International Journal of Fatigue, 2009,31(3):403-407.
    [93]耿荣生,吴克勤,景鹏等.全尺寸飞机机体疲劳试验时中央翼与外翼连接区域疲劳损伤的声发射监测[J].无损检测,2008,30(1):37-41.
    [94]李冬生,胡倩.碳纤维桥梁拉索疲劳损伤声发射信号小波分析[J].防灾减灾工程学报,2010,30(S1):318-322.
    [95]吴斌,李佳锐,颜丙生等.LY12铝合金早期性能退化下超声非线性系数测量和金相观察[J].北京工业大学学报,2012,38(1):22-27.
    [96]颜丙生,张士雄.LY12铝合金疲劳损伤的非线性超声检测[J].航空材料学报,2012,32(2):93-98.
    [97]HUR D H, LEE D H, CHOI M S, et al. Discrimination method of through-wall cracks in steam generator tubes using eddy current signals [J]. NDT & E International,2006,39(5):361-366.
    [98]YUSA N, JANOUSEK L, REBICAN M, et al. Detection of embedded fatigue cracks in Inconel weld overlay and the evaluation of the minimum thickness of the weld overlay using eddy current testing [J]. Nuclear Engineering and Design,2006,236(18):1852-1859.
    [99]ZBIGNIEW H Z. Magnetic monitoring of the fatigue process of the rim material of railway wheel sets [J]. NDT & E International,2006,39(8):675-679.
    [100]Wincheski B, Yu F, Simpon J, et al. Development of SDT sensor based eddy current probe for detection of deep fatigue cracks in multi-layer structure [J]. NDT & E International,2010,43(8): 718-725.
    [101]ZILBERSTEIN V, SCHLICKER D, WALRATH K, et al. MWM eddy current sensors for monitoring of crack initiation and growth during fatigue tests and in service [J]. International Journal of Fatigue,2001,23(6):477-485.
    [102]ZILBERSTEIN V, WALRATH K, GRUNDY D, et al. MWM eddy-current arrays for crack initiation and growth monitoring [J]. International Journal of Fatigue,2003,25(9/11):1147-1155.
    [103]WAGNER D, RANC N, BATHIAS C, et al. Fatigue crack initiation detection by an infrared thermography method [J]. Fatigue & Fracture of Engineering Materials & Structures,2010,33(1): 12-21.
    [104]CHARLES J A, APPL F J, FRANCIS J E. Using the scanning infrared camera in experimental fatigue studies [J]. Experimental Mechanic,1975,15(4):133-138.
    [105]BERTHEL B A, CHRYSOCHOOS B, WATTRISSE A G. Infrared image processing for the calorimetric analysis of fatigue phenomena [J]. Experimental Mechanics,2008,48(1):79-90.
    [106]WEI B S, JOHNSON S, RAMI H A. A stochastic fatigue damage method for composite materials based on Markov chains and infrared thermography [J]. International Journal of Fatigue,2010,32(2): 350-360.
    [107]童小燕,王德俊,徐灏.低周疲劳损伤过程的自热温升变化特征[J].金属学报,1991,27(2):149-152.
    [108]徐长航,陈国明,谢静等.基于红外图像处理的钢制构件疲劳损伤识别[J].石油矿场机械,2008,37(11):37-40.
    [109]GIURGIUTIU V, REYNOLDS A, ROGERS C A. Experimental investigation of E/M impedance health monitoring for spot welded structural joints [J]. Journal of Intelligent Material Systems and Structures,1999,10(10):802-812.
    [110]SEVOSTIANOV I, ZAGRAI A, KRUSE W A, et al. Connection between strength reduction, electric resistance and electro-mechanical impedance in materials with fatigue damage [J]. International Journal of Fracture,2010,164(1):159-166.
    [111]LIM Y Y, SOH C K. Estimation of fatigue life using electromechanical impedance technique [C]. Proceedings of SPIE:Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems,2010.
    [112]PALOMINO L V, MOURA J R V, TSURUTA K M, et al.Impedance-based health monitoring and mechanical testing of structures [J]. Smart Structures and Systems,2011,7(1):15-25.
    [113]RUTHERFORD A C, PARK G, FARRAR C R. Non-linear feature identifications based on self-sensing impedance measurements for structural health assessment [J]. Mechanical Systems and Signal Processing,2007,21(1):322-333.
    [114]ZAGRAI A, KRUSE W A, GIGINEISHVILI V. Active sensing of fatigue damage using embedded ultrasonics [C]. Proceedings of SPIE:Health Monitoring of Structural and Biological Systems,26-29 March 2009.
    [115]KRUSE W A, ZAGRAI A, GIGINEISHVILI V. Active sensing of fatigue damage using embedded ultrasonics [C]. Proceedings of SPIE:Health Monitoring of Structural and Biological Systems,8-11 March 2010.
    [116]PARK S, CHANG H, KIM J W, et al. Wireless structural health monitoring and early-stage damage detection using piezoelectric impedance sensors [C].12th International Conference on Engineering, Science, Construction, and Operations in Challenging Environments,2010.
    [117]MEIROVITCH L. Elements of Vibration Analysis [M]. New York:McGraw-Hill,1986.
    [118]INMAN D J. Engineering Vibration [M]. Englewood Cliffs, N.J:Prentice Hall,1996.
    [119]BLEVINS R D. Formulas for Natural Frequency and Mode Shape [M]. New York:Van Nostrand ReinholdCo.,1979.
    [120]TANAHASHI M, YAO G, KOKUBO T, et al. Apatite coating on organic polymers by a biomimetic process [J]. Journal of the American Ceramic Society,1994,77(11):2805-2808.
    [121]PARK S H, YI J H, YUN C B, et al. Impedance-based damage detection for civil infrastructures [J]. KSCE Journal of Civil Engineering,2004,8(4):425-433.
    [122]TSENG K K H, NAIDU ASK. Non-parametric damage detection and characterization using smart piezoceramic material [J]. Smart Materials and Structures,2002,11(3):317-329.
    [123]YANG Y W, DIVSHOLI B S. Sub-frequency interval approach in electromechanical impedance technique for concrete structure health monitoring [J]. Sensors,2010,10(12):11644-11661.
    [124]HU Y H, YANG.Y.W. Wave propagation modeling of the PZT sensing region for structural health monitoring [J].Smart Materials and Structures,2007,16(3):706-716.
    [125]ABEELEA V D K, VISSCHER D J. Damage assessment in reinforced concrete using spectral and temporal nonlinear vibration techniques [J]. Cement and Concrete Research,2000,30(9): 1453-1464.
    [126]ABEELEA V D K, JOHNSON P A, SUTIN A. Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I:nonlinear wave modulation spectroscopy (NWMS) [J]. Research in Nondestructive Evaluation,2000,12(1):17-30.
    [127]SUN F P, CHAUDHRY Z, ROGERS C A, et al. Automated real-time structure health monitoring via signature pattern recognition [C]. SPIE North American Conference on Smart Structures and Materials, San Diego, California,1995,2443:236-247.
    [128]王智.超声导波技术及其在管道无损检测中的应用研究[D].北京:北京工业大学硕士学位论文,2002.
    [129]李家伟,陈积懋.无损检测于册[M].北京:机械工业出版社,2002.
    [130]NAYFEY A H, CHIMENTI D E. The general problem of elastic waves propagation in multilayered anisotropic media [J]. Journal of the Acoustical Society of the America,1999,89(4):1521-1631.
    [131]WANG C H, CHANG F K. Scatting of plate waves by a cylindrical inhomogeneity [J]. Journal of Sound and Vibration,2005,282(1/2):429-451.
    [132]曹正敏.兰姆波检测技术及HHT时频分析方法研究[D].大连:大连理工大学硕士学位论文,2008.
    [133]吴斌,何存富,王秀彦.固体中的超声导波[M].北京:科学出版社,2004.
    [134]WORLTON D C. Experimental confirmation of Lamb waves at megacycle frequencies [J]. Journal of Applied Physics,1961,32(6):967-971.
    [135]SARAVANOS D A, HEYLIGER P R. Coupled layerwise analysis of composite beams with embedded piezoelectric sensors and actuators [J]. Journal of Intelligent Material Systems and Structures,1995,6(3):350-362.
    [136]MORLET J. Wave propagation and sampling theory and complex wave [J]. Geophysics,1982, 47(2):222-236.
    [137]LIN X, YUAN F G. Diagnostic Lamb waves in an integrated piezoelectric sensor/actuator plate: analytical and experimental studies [J]. Smart Materials and Structures,2001,10(5):907-913.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700