用户名: 密码: 验证码:
微氧颗粒污泥+硅藻土去除焦化废水中氨氮的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着钢铁产业的快速增长,作为该产业基础原料的焦炭的需求也有了很大提高,而炼焦所用水量是所得焦产量的2.5倍,可见焦化废水的排放量之大。焦化废水中氨氮的浓度很高,并且氨氮对水体、人类、工业等都会造成严重的威胁。然而,目前对焦化废水以及焦化废水中氨氮的处理效果均不理想,导致出水氨氮的含量无法达到排放标准。因此,对焦化废水中氨氮的去除已成为目前急需解决的问题之一。本文以焦化废水为处理对象,首先采用两级微氧EGSB反应器对其进行处理,通过实验得出两级微氧颗粒污泥对氨氮的去除效果较差,需要选用更适合的工艺对焦化废水中的氨氮进行去除。后期实验分别采用两级微氧颗粒污泥+硅藻土及微氧颗粒污泥+好氧污泥两种工艺对焦化废水中的氨氮进行去除。
     本课题主要研究内容及结果如下:
     1.采用两级微氧EGSB反应器处理进水COD含量为1120-2200mg/L的焦化废水时,在水力停留时间为12h,上升流速为2.7m/h,进水水温为28-35℃的条件下,系统对氨氮的去除效果较差。通过两级反应器之后的出水中氨氮浓度为40~157mg/L,不能满足排放要求,且氨氮总去除率最高仅为46%,甚至出现负的去除率。整个系统对氨氮的去除效果较差,出水中氨氮的浓度不能达到排放标准,需要采用更适合的工艺进行处理。
     2.采用两级微氧颗粒污泥+硅藻土工艺处理进水COD含量为1100-2060mg/L的焦化废水时,在水力停留时间为12h,上升流速为3.2m/h、2.9m/h,进水水温为25-29℃的条件下,可使出水氨氮浓度为2-12mg/L满足《污水综合排放标准》(GB8978-1996)的一级排放标准,当系统保证出水中氨氮浓度达标且稳定运行半个月后,停止向反应器内加入硅藻土处理效果仍然满足排放要求。系统运行稳定后,较长时间(1个月)的停止运行对反应器的再次运行及处理效果不会产生明显的不利影响。此外,进水氨氮浓度、硅藻土的投加量以及反应器内污泥浓度均会影响该工艺对氨氮的去除效果。
     3.采用微氧颗粒污泥+好氧污泥工艺处理进水COD含量为1600-2060mg/L的焦化废水时,在水力停留时间为12h,上升流速为3.2m/h,进水水温为23-29℃的条件下,可使出水氨氮浓度为0.2~10mg/L,满足排放标准。系统运行稳定后,较长时间(1个月)的停止运行对反应器的再次运行及处理效果不会产生明显的不利影响。此外,好氧系统的曝气时间及pH值均会影响该工艺对氨氮的去除效果。
     4.从技术方面研究,两级微氧颗粒污泥+硅藻土及微氧颗粒污泥+好氧污泥两种工艺,对氨氮的去除都具有高效、稳定的效果;从经济方面研究,微氧颗粒污泥+好氧污泥工艺运行投资费用远高于两级微氧颗粒污泥+硅藻土工艺。因此,两级微氧颗粒污泥+硅藻土工艺为焦化废水中氨氮的去除提供了一种新的高效、经济的方法。
Along with the rapid growth of the steel industry, coke as the basic raw materials is increasingly demanded. However, the water consumption is2.5times in weight as the coke production. Therefore, the coking wastewater dischargement is tremendous. The concentration of ammonia nitrogen in the coking wastewater is very high and it is harmful to water body, human, industry and so on. However, the treatment on coking wastewater especially ammonia nitrogen in the coking wastewater is not satisfying at present which leading to the ammonia nitrogen concentration in effluent cannot meet discharge standards. Hence, the removal of ammonia nitrogen in coking wastewater has become one of the urgent problems at present. This experiment uses two-stage micro oxygen EGSB reactor to treat coking wastewater. It is proved that removal of ammonia nitrogen with this method is not well enough and a more suitable process is needed to remove the ammonia nitrogen in coking wastewater. Then the subsequent experiments adopt two-stage micro oxygen granular sludge+diatomite and micro oxygen granular sludge+aerobic sludge methods separately.
     The main contents and results of this research are as follows:
     1. In the two-stage micro oxygen EGSB reactors, with1120~2200mg/L of influent COD concentration, at12h of hydraulic retention time,2.7m/h of rising velocity and feeding water temperature of28~35℃, the ammonia nitrogen removal effect is low.The ammonia nitrogen concentration of the effluent after two-stage reactors is40to157mg/L and can't meet discharge requirements. The highest total removal rate is only46%and sometimes it even has negative removal rate. The ammonia nitrogen removal effect in this system is low and the ammonia concentration in the effluent can't meet the discharge standards. A more suitable process is needed.
     2. After the two-stage micro oxygen granular sludge+diatomite process, with1100-2060mg/L of influent COD concentration,12h of hydraulic retention time,3.2m/h to2.9m/h of rising velocity, feeding water temperature of2529℃, the ammonia nitrogen concentration of the effluent is2~12mg/L which meet the first level of discharging standard in the "integrated wastewater discharge standard"(GB8978-1996).
     When the system may make sure that the ammonia nitrogen concentration in effluent could meet the standard and operated steadily for half month, the adding of diatomite is ceased and it still meet meet the standard. After the system run stably for a period of time, a long time (1month) stopping won't impact the restart and the treating effect obviously. In addition, the ammonia nitrogen concentration of influent, the diatomite dosage and the sludge concentration in the reactor all will affect the process on ammonia nitrogen removal effect.
     3. In the micro oxygen granular sludge+aerobic sludge system, with1600~2060mg/L of influent COD concentration, at12h of hydraulic retention time,3.2m/h of rising velocity and the feeding water temperature of23~29℃, the ammonia nitrogen concentration of the effluent is0.2~10mg/L which meets the discharge standard. After the system run stably for a period of time, a long time (1month) stopping won't impact the restart and and the treating effect obviously. In addition, aeration time and pH value in the aerobic system will affect the process on ammonia nitrogen removal effect.
     4. From the point of technology, the two processes of two-stage micro oxygen granular sludge+diatomite and micro oxygen granular sludge+aerobic sludge both have efficient and stable removal effect on ammonia nitrogen; From the point of economy, the micro oxygen granular sludge+aerobic sludge process costs far higher in operation than two-stage micro oxygen granular sludge+diatomite process. Therefore, two-stage micro oxygen granular sludge+diatomite process has provided a new efficient and economic method for removing ammonia nitrogen in coking wastewater.
引文
[1]张瑜,江白茹.钢铁工业焦化废水治理技术研究[J].工业安全与环保,2002,28(7):5-7.
    [2]罗伟,姚良雨,孙桐泽.传统活性污泥法处理焦化废水的改进[J].燃料与化工2008,39(2):53-54.
    [3]朱丽娜,马号明,李玉盘等.邯钢焦化厂污染物控制措施[J].河北冶金,2006(2):60-62.
    [4]杨利均,周丹,罗仙平.焦化废水及其处理技术现状研究.四川有色金属,2011,12(4):55-58.
    [5]张占平.水体中氨氮污染来源及其控制--富营养化的思考.内蒙古环境科学,2008,20(5):71-72.
    [6]D.H.K.李.环境与健康[M].北京:人民卫生出版社,1986:529-549.
    [7]周彤.污水的零费用脱氮[J],给水排水,2000,26(2):37-39.
    [8]李瑞华,韦朝海,吴超飞.吹脱法预处理焦化废水中氨氮的条件试验与工程应用[J].环境工程,2007,25(3):38-40,44.
    [9]徐颖,唐寿明,李峰等.吹脱法对垃圾渗滤液中氨氮去除效果[J].辽宁工程技术大学学报,2009,28(增):152-153.
    [10]林奇.吹脱法处理中低浓度氨氮废水[J].福建环境,2000,17(6):35-37.
    [11]何云.连续式离子交换法处理硝铵废水[J].大氮肥,2000,23(4):264-266.
    [12]刘冰扬,赵建民.离子交换法处理含铜废水的实验研究[J].南京理工大学学报,1995,19(2):184-187.
    [13]黄骏,陈建中.氨氮废水处理技术研究进展,环境污染治理技术与没备,2002,3(1):65-68.
    [14]黄海明,肖贤明,晏波.折点氯化处理低浓度氨氮废水[J].水处理技术,2008,34(8)63-65,78。
    [15]施银焕,蒋白懿,李岩岩等.村镇氨氮污水处理技术及其应用[J].辽宁化工,2011,40(12):1251.
    [16]赵庆良,李湘中.化学沉淀法去除垃圾渗滤液中的氨氮[J].环境科学,1999,20(5):90-92.
    [17]闵敏,黄种买.化学沉淀法去除养猪场废水中氨氮的试验研究[J].化学与生物工程,2005,(5):27-30.
    [18]方建章,黄少斌.化学沉淀法去除水中氨氮的试验研究[J].环境科学与技术,2002,25(5):34-35.
    [19]钱易,米祥友.现代废水处理新技术[M].北京:中国科技出版社,1993:109-111.
    [20]晓燕,肖波,杨家宽等.焦化废水处理技术的发展[J].环境技术,2003,6:44-48.
    [21]杨云龙,谢朝霞.焦化废水处理技术浅析[J].科技情报开发与经济,2002,12(4):141-142.
    [22]M Yang, Y Sun, A H Xu, etc.Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor [J].Bull Environ Contam Toxicol, 2007,79(1):66-70.
    [23]钟理,Kuo. C.H臭氧湿式氧化氨氮的降解过程研究[J].中国给水排水,2000,16:14-16.
    [24]贾艳萍,郗丽娟.湿式氧化法处理污水的条件优化[J].西南给排水,2007,29(2):24-25.
    [25]陈嵩,孙石,李福华等.CWO技术处理我国高浓度工业废水的应用研究[J].贵州环保科技,2003,9(1):1-5,18.
    [26]孙佩石,杨英,陈嵩等.湿式催化氧化处理炼油碱渣废水试验研究[J].水处理技术,2005,31(1):46-49.
    [27]D F ollis. Contaminant Degradation in Water[J].Environ.Sci&Technol,1985,19(6):480.
    [28]R W Mattews.PHotoxidation of Organix Material in Aqueous Suspensions of Titanium Dioxide[J].Water Res,1986,20(5):569-578.
    [29]徐锐,尹卫平.光催化氧化法处理氨氮废水的研究[J].郑州工程学院学报,2003,24(3):84-87.
    [30]Kenichi E.Ammonia removal from wastewatere [J]Japan Kokai,1977,77 (4):649.
    [31]陈凤冈,李伟光,潘桂眠等.缺氧-好氧生物膜法脱氮技术的研究[J].中国环境科学,1995,15(2):135-138.
    [32]陈宏平,樊红辉,李峰.校园再生水回用工程调试[J].中国给水排水,2011,27(6):97-99.
    [33]钟梅英,张文艺.SBR工艺处理焦化废水的可行性研究[J].安徽机电学院学报,2001,16(1):62-66.
    [34]R.L.Irvine,Wilderer PA,FlemmingHC.ControlledWat Sci Tech,1997,35(1):1-10.
    [35]方先金.SBR工艺特性及降解过程的研究[J].给水排水,2000,26(7):18-21.
    [36]耿艳楼,钱易,顾夏声.简捷硝化-反硝化过程处理焦化废水的研究[J].环境科学,1993,14(3):2-6,41.
    [37]袁林江,彭党聪.短程硝化-反硝化生物脱氮[J].中国给水排水,2000,16(2):29-31.
    [38]周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备[J].2000,1(6):11-12.
    [39]朱明石,周少奇.厌氧氨氧化-反硝化协同脱氮研究[J].化工环保,2008,28(3):214-217.
    [40]姚俊芹,周少奇.厌氧氨氧化生物脱氮研究进展[J].化工学报,2005,56(10):1826-1831.
    [41]卫学玲,李超,孟庆波.应用MBR处理焦化废水的中试试验研究[J].有色矿冶,2010,26(2):53-54.
    [42]胡九如,姚亮,蔡建安等.膜生物反应器去除焦化废水中氨氮的试验研究[J].中国给水排水,2006,22(21):71-77.
    [43]温丽丽,倪晋仁,叶正芳.固定化微生物法去除模拟渗滤液中氨氮的研究[J].环境工程学报,2011,5(9):2060-2065.
    [44]徐英.固定化微生物厌氧-好氧处理焦化废水中COD及氨氮的研究[J].电力学报,,2007,22(2):162-165.
    [45]李贤胜,施永生.固定化微生物技术在废水脱氮中的应用[J].云南环境科学.2006,25(3):30-33.
    [46]倪既勤.拉丁美洲沼气能源的开发利用[J].新能源.1993,15(1):20-23.
    [47]R.Van.Der Last,A.R.M.and G.Lettinga.6th Int.Symp.Anaerobic Diges-tion.Braizif.Sao Paulo,1991:153.
    [48]耿亮,陈玉霞,黄民生等EGSB反应器处理城市污水的工艺特性研究[J].华东师范大学学报,2011,1:148-155.
    [49]张选军,张亚雷,方骁等.常温下EGSB处理低浓度城市污水的初步研究[J].中国给水排水,2007,23(9):81-84.
    [50]张建强.高效厌氧反应器处理高浓度生活污水[J].工业安全与环保,2008,34(10):3-5.
    [51]王凯军.低浓度污水厌氧-水解处理工艺[M].北京:中国环境科学出版社,1991.
    [52]董春娟,耿炤宇,吕炳南.低温低有机物浓度下EGSB反应器的运行特性[J].中国给水排水,2011,27(1):96-98,101.
    [53]董春娟,吕炳南,赵庆良EGSB反应器的低温运行性能研究[J].安全与环境学报,2007,7(6);41-44.
    [54]初里冰,杨凤林,张兴文.低温厌氧处理低浓度废水研究进展[J].环境污染治理技术与设备,2003,4(4):61-65.
    [55]孙凯,陆晓峰,周保昌EGSB反应器处理高浓度豆制品废水的研究[J].水处理技术,2010,36(8):108-112.
    [56]R.Ma.Anaerobic Treatment of Long-chain Fatty Acids in UASB and Expanded Granular Sludge Bed Reactor.Process Biochemistry.1993,28:527~537.
    [57]吴根,赵秀梅,吴红等.厌氧膨胀颗粒污泥床处理高浓度链霉素含硫有机废水试验研究 [J].环境污染治理技术与设备,2003,4(9):31-34,62.
    [58]王路光,贾璇,王靖飞EGSB工艺处理青霉素生产废水试验研究[J].水处理技术,2009,35(2):92-95.
    [59]方勇,杨友强EGSB-CASS工艺处理制药废水[J].给水排水,2009,35(12):55-57.
    [60]马兴冠,崔伟,刘知远等EGSB-好氧组合工艺处理极压剂离型剂混合废水的研究[J].辽宁化工,2010,39(2):147-149.
    [61]J.Thaveesri.Granulation and Sludge Stability in Up-flow Anaerobic Sludge Bed Reactor in Relation to Surface Thermodynamics.Environ Microbiol. Appl,1995,61(10):3679~3685.
    [62]M.M.Ghangrekar.S.R.Asolekar,K.R.Ranganthan,et al.Experience with UASB Reactor Start-up under Diferent Operating Conditions.Wat.Sci.Tech.1996,34(5-6):421~428.
    [63]张琦,董春娟,王增长等EGSB反应器在微氧条件下去除焦化废水中挥发酚[J].水处理技术,2011,37(11):107-110.
    [64]刘晓,董春娟,曹国凭EGSB反应器微氧颗粒污泥的快速培养及其除污效能研究[J].市政公用建设,2011(6):43-45.
    [65]董春娟,吕炳南EGSB反应器在微氧条件下的运行特性[J].环境科学学报,2006,26(2):220-224.
    [66]成彦等.中国硅藻土及其应用[M],北京科学出版社,1993.
    [67]赵洪石,何文,罗守全等.硅藻土应用及研究进展[J].山东轻工业学院学报,2007,21(1):80-82.
    [68]Yang Y X,Chen R S,Dai A B.Study on structure of local diatomite[J].Acta Chim.Sinica,1996,54(1):57~64.
    [69]徐文征.生物硅藻土反应器处理城市生活污水工艺中试研究.[D].同济大学,2006.
    [70]原培胜,赵瀛,李勇华等.硅藻精土技术处理生活污水[J].环境科学与管理,2006,31(8):120-122.
    [71]蒋小红,曹达文,周恭明等.硅藻土处理城市污水技术[J].重庆环境科学,2003,25(11)73-76.
    [72]王亮,张宏伟,李霞.改性硅藻土/生物滤池处理城镇污水[J].中国给水排水,2005,21(11):89-90.
    [73]张秀丽,曹新,赵增迎.改性硅藻土处理含重金属Cu废水[J].中国非金属矿工业导刊,2007(1):58-59,62.
    [74]毛世春,林舒佳,李军.硅藻土应急处理铜离子污染水试验研究[A].第四届中国城镇 水务发展国际研讨会暨中国城镇供水排水协会2009年会论文集[C].2009,303-306.
    [75]李门楼.改性硅藻土处理含锌电镀废水的研究[J].湖南科技大学学报,2004(3):81-84.
    [76]彭书传.硅藻土复合净水剂处理印染废水[J].环境科学与技术,1998(1):24-25,封三
    [77]王泽民,黄德明,马小凡.利用硅藻土复合净水剂处理造纸废水的研究[J].非金属矿,1997(3):33-35.
    [78]刘建伟.改性硅藻土新工艺使制浆造纸废水达到新排放标准的应用研究[J].化学工程与装备,2009(7):173-175.
    [79]徐亚同.废水氮磷的处理[M].上海:华东师范大学出版社,1996:1-3.
    [80]安飞,耿炤宇,董春娟等.2级EGSB反应器处理焦化废水试验研究[J].水处理技术,2011,37(4):68-71.
    [81]董春娟,吕炳南EGSB反应器在微氧条件下的运行特性[J].环境科学学报,2006,26(2):220-224.
    [82]董春娟,吕炳南.接种厌氧消化污泥EGSB反应器的快速启动[J].环境污染治理技术与设备,2006,10(7):118-123.
    [83]国家环境保护总局.《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
    [84]李亚新,董春娟.激活甲烷菌的微量元素及其补充量的确定[J].环境污染与防治.2001,23(3):16-17.
    [85]沈耀良.废水生物处理新技术[M].北京:中国环境科学出版社,1999,89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700