用户名: 密码: 验证码:
铜基钎料钎焊颗粒增强复合涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用三种铜基钎料(BCu50ZnMnNiSi、BCu60Zn和BCu70Zn)和三种增强体(WC,W2C,SiC),用感应钎焊工艺在45钢表面制备颗粒增强铜基耐磨复合材料涂层,通过金相显微分析、扫描电镜观察、及拉伸和耐磨性试验,主要研究了W2C/BCu60Zn涂层的组织、力学性能及其耐磨性能,涂层复合材料的结合强度;并探讨了钎料和增强体的种类对涂层耐磨性能的影响;分析了耐磨涂层的磨损机理。
     结果表明,在增强颗粒涂层体积分数为30%时复合涂层孔隙度低,涂层中增强硬质颗粒增强颗粒弥散、均匀分布于涂层复合材料中,复合材料涂层与45钢基体为良好的冶金结合。体积分数达到30%时粒径315μm的涂层复合材料耐磨性最高,相对耐磨性(45钢)为4.6。随载荷和磨料目数的增大,涂层耐磨性逐渐下降。增强颗粒不同时,耐磨性为WC涂层最高,W2C涂层次之,SiC涂层最低:在钎料对耐磨性的影响中,BCu50ZnMnNiSi合金钎料涂层耐磨性最高。
With the development of modern industry, the performance of mechanical product surface has become increasingly important and the study has already been a major area within material science. The advantages of surface modification lies on modifying and enhancing the material surface performance, raising the length of life, diminishing abrasion and increasing economical profit through various technologies as well as maintaining the performance of original material. As one of the surface modification technologies, wear resistant brazing coating has the advantages of high-effectiveness and high-quality and has been paid significant attention in recent years. Utilizing brazing method to prepare high wear resisting and high strength granule intensified acid copper filler coating has great practical value.
     The wear resistant composite coating of three reinforced particles (WC,W2C,SiC) with three copper based filler metals (BCu50ZnMnNiSi、BCu60Zn and BCu70Zn) was prepared on the surface of 45 steel by high frequency induction brazing. With the aid of microscope SEM and wear test, the studies analyze the microstructure, bonding strength and wear resistance values of the composite coating, influence of brazing coating that the variety of both reinforced particles and filler metals on wear resistance and the wear mechanism.
     The result shows, when the volume fraction of composite coating is 30%, which achieves the lowest porosity, the reinforced particles distribute evenly in the composite coating, Surrounded by the copper-based filler metal which structure isα+βsolid solution and have high strength and plasticity, also has superior wettability to both reinforced particles and steel substrate. Metallurgical bonding was achieved between the coating and substrate, and Cu-Fe phase was formed. The hardness and wear resistant values of composite coating made a great improvement while reinforced particles added. While the 315μm composite coating reaches 30% of volume fraction, it has the best abradability performance, whose relative wear resistant extent is 4.6.
     It emerges that, through wear research on internal factors of coating, composite coating has the best wear resistant performance only if it contains the proper volume fraction of reinforced particles. With the increase of volume fraction of W2C, wear extent of composite coating will diminish. It has best resistance when the volume fraction reach 30% and the coating of 128μm is different from others. The wear extent will reach its minimum when the volume fraction reaches 20%. The average particle size of 315μm has the best resistance which follows by coat 215μm as well as coat 128μm has the most wear extent and the instability in the same time.
     The wear resistant investigation in coating of external factors has shown that, on one hand, the wear extent went up in accordance with loads. The more loads added, the lower wear performance showed, but no increasing wear extent of the 315um particle size coating with loads added. On the other hand, when the abrasive grain sizes decreased, the wear extent increased accordingly and it has better wear performance.
     It has great influence of brazing coating that the variety of both reinforced particles and filler metals on wear resistance. The WC coating has better wear performance than both W2C and SiC, which W2C is still superior to SiC. As for filler metals, BCu60Zn filler which contents proper Zn had the function of supporting the reinforced particles whose coating had well abradability. With the addition of Mn in BCu50ZnMnNiSi filler metal, FeMn3 solid solution was formed which enhanced the bonding strength, so the coating abradability is the best.
     The wear mechanism of composite coating is furrow, micro-cutting and fracture of fragile phase. Furrow and micro-cutting of copper matrix filler metal are the primary wear form; the fracture of reinforced particles is the subordinate wear form.
引文
[1] 徐滨士. 表面工程,北京:机械工业出版社,2000
    [2] 张绪寿, 余来贵, 陈建敏. 表面工程摩擦学研究进展 [J]. 摩擦学学报,2000, 20(2): 156-160.
    [3] Holleck H, Schier V. Multilayer PVD coatings for wear protection [J]. Surf-Coat Tech, 1995, 762(77): 328-336.
    [4] Bull S J. Jones A M. Multilayer coatings for improved performance [J]. Surf- Coat Tech, 1996, 78: 173-184.
    [5] Holmberg K, Ronkainen H, Watthew S. A. Coatings tribology contact mechanisms and surface design [M]. In New Directions in Tribology, London: Mech Eng Press, 1997, 2:123-125.
    [6] 姜焕中. 电弧焊与电渣焊,北京:机械工业出版社,1992, 241-242
    [7] Suchentrunk R,Fuesser H J,Staudigl G,et al. Plasma surface engineering-innovation processes and coating systems for high-quality products [J]. Surf Coat Technol,1999,112:351-357.
    [8] Smith R W. Plasma spraying process. Pro. 2nd. Plasma Technik Symposium, 1991, 1: 17-18.
    [9] Thorpe M L. Advanced materials & processes, 1993, 3: 256-259.
    [10] 王振民,黄石生. 离子喷涂设备的现状与进展. 中国表面工程,2000, 4: 16-19.
    [11] 单际国,徐滨士. 我国堆焊技术的发展及其在基础工业中的应用现状. 中国表面工程,2002, 4:159-162.
    [12] 周永强,李午申,冯灵芝. 表面工程技术的发展与应用 [M]. 焊接技术2001, 30(4): 5-7.
    [13] 董祖珏,黄庆云. 国内外堆焊发展现状 [C]. 第八次全国焊接会议论文集,北京机械工业出版社,1997.
    [14] Aghion E, Bronfin B, Friedrich H, et al. PVD-Bechich tung von Umformworkzeugen [N]. VDIZeitschrift Spec, 1994, 2: 251-259.
    [15] Myers P S. Chromium nitride PVD coating [J]. Metalluriga, 1993, 3: 251-256.
    [16] Skoric B. Tribolgical behavior of TiN and TiAlN deposited on substrates plasma nitrided at low pressure [J]. Mate and Manu processes, 1995, 2: 136-138.
    [17] 李健. 物理气相沉积技术的新进展. 材料保护,2000, 1: 23-29.
    [18] 阎洪. 金属表面处理新技术. 冶金工业出版社,1996, 37: 293-296.
    [19] Heramnn A J. Homogeneity of multicomponent PVD hard coatings deposited dry multisource arrangements [J]. Surface and Coatings Technology, 1999, 3: 109-112.
    [20] 黄荣芳. 先进表面工程技术发展前沿. 中国表面工程,2003, 8: 359-362.
    [21] Noda T. Shimizu T and Okabe M. Jointing of TiAl and steels by Induction Brazing [J]. Material Science and Engineering: A, 1997, 3: 239-240.
    [22] 潘蕾, 陶杰. 45钢表面钎焊WC/Cu-Mn-Ni涂层的研究 [J]. 复合材料学报,2002,19(4): 114-117.
    [23] 胡传炘. 表面处理技术手册. 北京:北京工业大学出版社,1997.
    [24] 吴承康.我国等离子体工艺研究进展.物理,1999, 28(7): 388-393.
    [25] Blue C A, Blue R A and Lin R Y. Microstructural evolution in joining of TiAl with a liquid Ti alloy [J]. Scripta Metallurgica et Materiala, 1995, 32(1):127-132.
    [26] L. Cao, Y. Wang, C. K. Yao. The wear properties of an SiC-reinforced aluminum composite. Wear, 1990, 140: 273-277.
    [27] 王金明,李明利. 贵金属材料 [J]. 贵金属,1997, 18(增刊): 70-74.
    [28] Tillmann E, Lugscheider E, Schlimbachk, et al. Heat-resistant active brazing of silicon nitride [J].Welding Journal, 1997, 76 (8): 300-304.
    [29] Mizuhara H, Mally K. Ceramic-to-metal jointing with active brazing filler metal [J]. Welding Journal, 1985, 64 (10): 27-32.
    [30] H. J. Kim et al. Assessment of wear performance of flame sprayed and fused Ni-based coatings. Surface and Coating Technology, 2003, 172: 262-269.
    [31] Shan-Ping Lu, Oh-Yang Kwon. Microstructure and bonding strength of WC reinforced Ni-base alloy brazed composit coating. Surface and Coatings Technology, 2002, 15(3): 40-48.
    [32] Shan-Ping Lu, Oh-Yang Kwon, Yi Guo. Wear behavior of brazed WC/NiCrBSi(Co) composite coatings. Wear, 2003, 254 : 421-428.
    [33] 胡树兵. 过渡层对TiN涂层结合力的影响 [J]. 材料保护,2001, 34(9): 1-3.
    [34] 陈爱智,张永振,肖宏滨, 等. 耐磨涂层材料摩擦磨损特性的研究进展[J].洛阳工学院学报,2001, 22(2): 12-16.
    [35] 韩修训,阎逢元,阎鹏勋, 等. 多层涂层的摩擦学研究进展 [J]. 机械工程材料, 2002, 26(5): 1-5.
    [36] Yeong, Yan guu. The tribological characterizatics of titannium nitride coating[J]. Wear, 1996, 194: 12-21.
    [37] 李旸. 表面涂层摩擦机理研究 [J]. 岳阳师范学院学报,2000, 13(4): 15-17.
    [38] 赵树萍. 电火花沉积涂层厚度及表面光洁度分析 [J]. 国外金属热处理,2001, 22(6): 35-36.
    [39] 马红玉.金属基复合材料涂层摩擦学的研究进展. 北京石油大学机电工程学院,2005, 1: 13-19.
    [40] 张国定. 金属基复合材料界面问题. 材料研究学报,1997, 11(6): 649-657.
    [41] 苏修梁,张欣宇. 表面涂层与基体间的界面结合强度及其测定[J]. 电镀与环保,2004, 24(2): 6-11.
    [42] 曲敬信,汪鸿宏. 表面工程手册. 北京化学工业出版社,1998
    [43] 孙国雄. 颗粒增强金属基复合材料的制备技术和界面反应与控制[J]. 特种铸造及有色合金,1998, (4): 12-17.
    [44] 邓键. 钎焊. 机械工业出版社,1979.
    [45] 许斌,冯承明,杨胶溪. 碳化钨-高铬铸铁表面复合材料耐磨粒磨损性能的研究 [J]. 摩擦学学报,1998, 18(4): 322-326.
    [46] R. Zhou et al. The effect of volume fraction of WC particles on erosion resistance of WC reinforced iron matrix surface composites. Wear, 2003, 255: 134-138.
    [47] 李沐山. 国外钢结硬质合金新进展.硬质合金. 1994, 2(11): 105-114.
    [48] 陆善平. 耐磨复合钎焊涂层制备性能及连接机制 [D],中科院金属研究所博士学位论文,1999.
    [49] 杨瑞成,王军民,王夏冰, 等. 碳化物增强钢基复合材料的奥氏体化行为 [J]. 甘肃工业大学学报,1998, 24(3): 22-26.
    [50] 杨瑞林. 钢结硬质合金的磨料磨损耐磨性. 硬质合金,1996,2:132-138.
    [51] Vardavoulias M, Jouanny-Tresy C and Jeandin M. Sliding wear behavior of ceramic particle reinforced high speed steel obtained by powder metallurgy. Wear, 1993, 165: 141-145.
    [52] A. Abdel Aal, Khaled M, Ibrahim and Z, Abdel Hamid. Enhancement of wear resistance of ductile cast iron by Ni–SiC composite coating. wear, 2005.
    [53] 舍克里,彭一川等译. 冶金中的流动现象. 北京:冶金工业出版社,1985.
    [54] G. G. Gnesin, Y. V. Naidich. Sov. Powder Meta. Metal. Ceram, 1970, 89: 170.
    [55] H. K. Lee, J. Y. Lee. Decomposition and interfacial reaction in brazing of SiC by copper-based active alloys. J. Mater. Sci. Lett., 1992, 11: 550-553.
    [56] Nikolopoulos P, Agathopoulos S, Angelopoulos G N. Wettability and interfacial energies in SiC-liquid metal systems. J. Mater, Sci. 1992, 27: 139.
    [57] J. Pelleg, M.Ruhr, M. Ganor. Control of the reaction at the fibre-matrix interface in a Cu/SiC metal matrix composite by modifying the matrix with 2.5wt.% Fe. Mater.Sci. Eng., 1996, A212: 139-142.
    [58] 邹僖. 钎焊. 北京:机械工业出版社,1997.
    [59] Lum Gahy K H. Metal Progress. 1979, 116(4): 46-52.
    [60] 刘家浚. 材料磨损原理及其耐磨性. 北京:清华大学出版社,1993
    [61] Khruschov M. M. Principles of Abrasive Wear. Wear, 1974, 8: 69-88.
    [62] B.Q. Han, D.C. Dumand. Gas metal-arc welding of AZ31B magnesium alloy sheet [J]. Materials Science and Engineering A, 2000, 277: 297-304
    [63] 邹僖. 焊接方法及设备. 北京:机械工业出版社,1981
    [64] P. S. Mutton. Some Effects of Microstructure on the Abrasion Resistance of Metals. Wear, 1978, 6: 385-398.
    [65] Y. Li, B. Bhushan. Wear and Friction Studies of Contact Recording Interface with Micro-fabricated Heads. Wear, 1996, 12: 60-67.
    [66] 邵荷生, 等. 摩擦与磨损. 北京:煤炭工业出版社,1992
    [67] 任露泉,邱小明,李建桥,徐德生. BCu50ZnMnNiSi多元铜基钎料的研究. 功能材料2000,31(3):313-315

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700