用户名: 密码: 验证码:
Sr_2RuO_4超导体c方向磁阻行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常规超导体超导电性的研究是近十几年来凝聚态物理最引人注目的研究内容之一。
     Sr_2RuO_4作为第一个非铜基氧化物超导体近十年来引起了研究的热潮。一系列的实验和理论研究表明Sr_2RuO_4正常态行为和高度相关的二维费米液体行为一致,而其超导态则为自旋三态p波常规配对超导态。
     理论研究表明磁阻的测量对于理解常规输运性质是一种很好的工具,因为磁阻对载流子散射率1/τ,有效质量m~*和费米面几何形状常敏感。超导涨落是超导体在超导转变温度T_c附近发生的热力学涨落现象。通过涨落分析不仅可以获得重要的超导信息还可以促进实验技术和新的微观理论的发展。
     我们利用PPMS测量了Sr_2RuO_4在c方向的电阻-温度曲线以及超导相变附近不同温度下的磁阻曲线。
     实验结果表明Sr_2RuO_4在c方向R-T行为不同于铜氧高温超导体。在低温下为很好的金属行为,随着温度升高在130K附近电阻出现最大值,而后,随着温度升高电阻逐渐降低表现出类半导体行为,并且在T<12K时,电阻表现出很好的Feimi-Liquid行为。
     我们对超导转变温度T_c附近c方向磁阻进行了分析:
     在正常态,通过分析低温4 K和6 K下磁阻数据,获得了Sr_2RuO_4在c方向的超导特性参数-平均自由程。当考虑c方向的能带色散和它的各向异性时,成功的解释了c方向磁阻在低场下所遵循的Kohler定律,即磁阻与磁场强度的平方关系。4 K和6 K下两个温度下的磁阻在△ρ/ρ与(H/ρ)~2的图中很好的归一到了一条直线上,并且斜率和温度无关这说明了正常态的磁阻主要来自于电子的轨道磁阻。
     在超导转变温度附近时,由于T_c附近的磁阻变化ΔR_c(H)/ΔH明显比正常态高约一个数量级,且R-H曲线的曲率为负值,因此对T_c附近的磁阻我们进行磁阻涨落分析:(1)在T>T_c时,我们的磁阻数据可以用AL二维磁阻涨落理论很好的拟和,这证明了在低温下近行准二维的近似是合理的。从涨落分析中我们获得了Sr_2RuO_4的超导特性参数-相干长度。(2)由于在T_c以下没有很好的磁阻涨落分析理论能够用来对我们的实验数据做出合理的解释,对于实验范围内的磁阻涨落我们提出了一个方程在此方程下,我们实验范围内的曲线都可归一到一条直线下。
The study of the nonconventional superconductivity is one of the most interesting and important topics in Condensed Matter Physics in resent years. As a first noncuprate oxide superconductivity, Sr2RuO4 has attracted so many interests since its discovery. A serial experiments and theories have proved that the normal state of Sr2RuO4 is 2D Fermi Liquid behavior and the superconducting state is unconventional spin-triplet p-wave paired superconductor.
    It is reported that the magnetoresistance (MR) measurement is a useful tool since it is more sensitive to the change in the charge carrier scattering ratel/r, effective mass m, and the geometry of the Fermi surface. The superconducting fluctuation analysis is refer to the thermodynamic behavior near superconducting phase transitions, from which the important information about superconducting can be obtained.
    Using PPMS we measured the c-axis resistance and magnetoresistance near superconducting transition temperature in Sr2RuO4.
    The result shows that when temperature is increased the resistance behaves from a good metal across a maxim at 130K then to a semiconductor. And the low temperature behavior (T<15K) follows the Fermi-Liquid behavior.
    In normal state by analyze the magnetoresistance we have obtained the in-plane mean free path l//. When the results of 4K and 6K was plotted in p/p-(H/p)2 figure both of the curves can be fall down onto one linear line, which indicate that the magnetoresistance is mostly come from the orbital contribution.
    A large positive magnetoresistance near Tc has been observed and which is originated from superconducting fluctuations. The fluctuation-enhanced magneto-conductivity very close to Tc show well agreement with Aslamasov- Larkin(AL) prediction for a 2D superconductor, and the coherence lengths of Sr2RuCO4, ab(0) and c(0) have been deduced from fluctuation magnetoresistance analysis at 1.5K. Finally, a simple power law magnetic field dependent scaling rule was proposed for magnetoresistance at temperatures below and above Tc.
引文
[1] M. Tinkham, Introduction to Superconductivity (McGraw-Hill, Inc., 1996)
    [2] J.R. Schrieffer, M. Tinkham, Rev. Mod. Phys. 71, S313 (1999)
    [3] Ching-ping S. Wang, Jeffrey W. Lynn, in High Temperature Superconductor, edited by Jeffrey W. Lynn (Springer-Verlag World Publishing Corp., 1991)
    [4] R.J. Birgeneau and G. Shirane, in Physical Properties of High Temperature Superconductors Ⅰ, edited gy Donald M. Ginsberg (World Scientific, 1991), P. 200.
    [5] A. Schilling, et al., Nature, 363, 56 (1993)
    [6] L. Gao, er al., Phys. Rev. B, 50, 4260 (1994)
    [7] C.W. Chu, Y. Y. Xue, Z. L. Du, Y. Y. Sun, L. Gao, N. L. Wu, Y. Cal, I. Rusakova, K. Ross, Science, 277, 1081 (1997)
    [8] J.C. Campuzano, G. Jennings, M. Faiz, L. Beaulaigue, B. W. Veal, J. Z. Liu, A. P. Paulikas, K. Vandervoort, and H. Claus, R. S. List, A. J. Arko, and R. J. Bartlett, Phys. Rev. Lett. 64, 2308 (1990)
    [9] Joe Orenstein, Electrons pair themselves, Natre, 401,333 (1999)
    [10] 韩汝珊,高温超导理论,北京大学出版社,1999
    [11] 谭明秋、张其瑞,“高温超导电性机理研究”,高温超导电性,张其瑞主编,杭州大学出版社,1994
    [12] High Temperature Superconductivity: Proc. Los Almos Symp., 1989, eds. K. S. Bedell, D. Coffey, D. E. Meltzer, D. Pines, J. R Schrieffer, Addison-Wesley, Redwood City (1990)
    [13] Y. Iye, T. Tamegai, T. Sakakibara, T. Boto, N. Miura, H. Takaya, and H. Takei, Phyica C153-155, 26 (1988)
    [14] S. Martin, A. T. Fiory, R. M. Fleming, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 60, 2194 (1988)
    [15] P.W. Anderson, Science, 235, 1196 (1987)
    [16] J. Millis et al., Phys. Rev. B, 42, 167 (1990)
    [17] Levin et al, Physica C, 175,449 (1991)
    [18] S. Kambe, K. Kitazawa, M. Naito, A. Rukuoka, I. Tanaka and H. Kojima, Physica C160, 35 (1989)
    [19] H.M. Duan, W. Kidhl, C. Dong, A. W. Cordes, M. J. Saeed, D. L. Viar, and A. M. Harmann, Phys. Rev. B43, 12925 (1991)
    [20] D.E. Farrell, R. O. Beth, M. F. Booth, C. J. Allen, E. D. Bukowshi, and D. M. Ginsberg,
    
    Phys. Rev. B42, 6758 (1990)
    [21] T. Kimura, S. Miyasaka, H. Takagi, Phys. Rev., B53 (1996)
    [22] P.W. Anderson et al., Phys. Rev. Lett., 67, 2092 (1991)
    [23] R.B. Laughin and D. Pines, Proc. Natl. Acad. Sci. USA, 97, 28 (2000)
    [24] J. Tallon et al., Phys. Stat. Sol.(b), 215, 531 (1999); cond-mat/9911157
    [25] N.E. Hussey, M. Abdel-Jawad, A. Carrington, A. P. Mackenzie, L. Balicas, Nature, 425,814 (2003)
    [26] S.J. Blundell and J. Singleton, Phys. Rev. B, 53, 5609 (1996)
    [27] R. Hlubina, T. M. Rice, Phys. Rev. B51, 9253, (1995)
    [28] A.T. Zheleznyak, V. M. Yakovenko, H. D. Drew, Phys. Rev. B59, 207, (1999)
    [29] Z.X. Shen, J. R. Schrieffer, Phys. Rew Lett., 78, 1771, (1997)
    [30] D. Van de Marel, Phys. Rev. B60, R765, (1999)
    [31] T. Xiang, C. Panagopoulos, J. R. Cooper, International J. Nod. Phys., B12,1067 (1998)
    [32] A. Dragulescu, V. M. Yakovenko, Phys. Rev., B60, 6312, (1999)
    [33] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Nature, 372, 532 (1994)
    [34] O. Chmaissem, J. D. Jorgensen, H. Shaked, S. Ikeda, and Y. Maeno, Phys. Rev. B 57, 5067 (1998)
    [35] J.J. Randall, and R. Ward, J. Am. Chem. Soc. 81, 2629 (1959)
    [36] A. Callaghan, C. W. Moeller, and R. Ward, Inorg, Chem. 5, 1572 (1966)
    [37] S. Nishizaki, Y. Maeno and T. Fujita, J. Phys. Soc. Jpn. 65, 1876 (1996)
    [38] T. Oguchi, Phys. Rev. B 51, 1385 (1995)
    [39] S.R. Julian, A. P. Machenzie, G. G, Lonzarich, C. Bergemann, R. K. Haselwimmer, Y. Maeno, S. Nishizaki, A. W. Tyler, S. Ikeda, and T. Fujita, Phyaica B 259, 928 (1999)
    [40] Perez-Navarro, A. J. Costa-Quintana, and F. Lopez-Aguilar, Phys. Rev. B 61, 10125 (2000)
    [41] C. Noce, and M. Cuoco, Phys. Rev. B 62, (884 (2000)
    [42] C. Bergemann, S. R. Julian, A. P. Mackenzie, S. Nishizaki, and Y. Maeno, Phys. Rev. Lett. 84, 2662 (2000)
    [43] C. Bergemann, A. P. Mackenzie, S. R. Julian, D. Forsythe, and E. Ohmichi, Adv. Phys. 52, 639 (2003)
    [44] C. Bergemann, J. S. Brooks, L. Balicas, A. P. Mackenzie, S. R. Julian, Z. Q. Mao, and Y. Maeno, Physica B 294, 371 (2001)
    [45] T.M. Rice, and M. Sigrist, J. Phys.: Condens. Matter 7, L643 (1995)
    [46] F. Lichtenberg, A. Catana, J. Mannhart, and D. G. Schlom, Appl. Phys. Lett. 60, 1138 (1992)
    
    
    [47] N.E. Hussey, A. P. Mackenzie, J. R. Cooper, S. Nishizaki, Y. Maeno, and T. Fujita, Phys. Rev. B 57, 5505 (1998)
    [48] Y. Maeno, Y. Koji, et al., J. Phys. Soc. Jpn. 66, 1405 (1997)
    [49] A.J. Schofield, Contemp. Phys. 40, 95 (1999)
    [50] S. Ikeda, Y. Maeno, Nakatsuji, M. Kosaka, and Y. Uwatoko, Phys. Rev. B 62, R6089 (2000)
    [51] T. Oguchi, Phys. Rev. B 59, 7263 (1999)
    [52] P.W. Anderson, Phys. Rev. Lett. 3,325 (1959)
    [53] A.A. Abrikosov, and L. P. Gor'kov, Zh. Eksp. Teor. Foz. 42, 1088 (1960) [Sov. Phys. JETP 15,752]
    [54] A.I. Larkin, Zh. EKSP. TERor. Fiz., Pis'ma Red. 2, 205 (1965) [JETP Lett. 2, 130 (1965)]
    [55] A.P. Mackenzie, R. K. W. Haselwimmer, A. W. Tyler, G.G. Lonzarich, Y. Mori,S. Nishizaki, and Y. Maeno, Phys. Rev. Lett. 80, 161 (1998a)
    [56] A.P. Mackenzie, R. K. W. Haselwimmer, A. W. Tyler, G. G. Lonzarich, Y. Mori, S. Nishizaki, and Y. Maeno, Phys. Rev. Lett. 80, 3890 (1998b)
    [57] A.A. Abrikosov, and L. P. Gor'kov, Zh. Eksp. Teor. Fiz. 39, 1781 (1960a) [Sov. Phys. JETP 12, 1243]
    [58] A.A. Abrikosov, L. P Gor'kov, Zh. Eksp. Teor. Fiz. 42, 1088 (1960b) [Soy. Phys. JETP 15,752]
    [59] A.J. Millis, S. Sachdev, and C. M. Varma, Phys. Rev. B 37, 4975 (1988)
    [60] M.Y. Choi, P. M. Chaikin, and R. L. Greene, Phys. Rev. B 34, 7727 (1984)
    [61] T. Akima, S. Nishizaki, and Y. Maeno, J. Phys. Rev. Lett. 76, 1308 (1999)
    [62] Z.Q. Mao, Y. Mori, and Y. Maeno, Phys. Rev. B 60, 610 (1999)
    [63] M. Tinkham, 1996, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, Singapore)
    [64] S. Nishizaki, Y. Maeno, and Z. Q. Mao, J.Low Temp. Phys. 117, 1581 (1999)
    [65] K. Ishida, H. Mukuda, Y. Kitaoka, Z. Q. Mao, Y. Kitaoka, Y. Mori and Y. Maeno, Nature (London) 396, 658 (1998)
    [66] J.A. Duffy, S. M. Hayden, Y. Maeno, Z. Mao, J. Kulda, and G J. Mclntyre, Phys. Rev. Lett. 85, 5412 (2001)
    [67] C. G. Shull, and F. A. Wedgewood, Phys. Rev. Lett. 16, 513 (1966)
    [68] M. Sigrist, and K. Ueda, Rev. Mod. Phys. 63,239 (1991)
    [69] G. M. Luke, Y. Fudamoto, K. M. Kojima, M. I. Larkin, J. Merrin, B. Nachumi, Y. J. Uemura, J. E. Sonier, Y. Maeno, Z. Q. Mao, Y. Mori, H. Nakamura, and M. Sigrist, Nature (Londn) 394, 558 (1998)
    [70] M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, Singapore), 1996
    
    
    [71] S. Nishizaki, Y. Maeno, S. Farner, S. Ikeda, and T. Fujita, J. Phys. Soc. Jpn. 67, 560 (1998)
    [72] S. Nishizaki, Y. Maeno, and Z. Q. Mao, J. Low Temp. Phys. 117, 1581 (1999)
    [73] S. Nishizaki, Y. Maeno, and Z. Q. Mao, J. Phys. Soc. Jpn. 69, 572 (2000)
    [74] K. Izawa, H. Takahashi, H. Yamaguchi, Y. Matsuda, M. Suzuki, T. Sasaki, T. Fukase, Y. Yoshida, R. Settai, and Y. Onuki, Phys. Rev. lett. 86, 2653 (2001)
    [75] M.A. Tanatar, S. Nagai, Z. Q. Mao, Y. Maeno, and T. Ishiguro, Phys. Rev. B 63, 064505(2001)
    [76] M.A. Tanatar, M. Suzuki, S. Nagai, Z. Q. Mao,Y. Maeno, and T. ishiguro, Phys. Rev. Lett. 86, 2649 (2001)
    [77] K. Izawa, H. Takahashi, H. Yamaguchi, Y. Matsuda, M. Suzuki, T. Sasaki, T. Fukase, Y. Yoshida, R. Settai, and Y. Onuki, Phys. Rev. Lett. 86, 2653 (2001T. Dahm, H. Won, and K. Maki, cond-mat/0006301 (2002))
    [78] A.Q. Mao, Y. Maeno, S. Nishizaki, T. Akima, and T. Ishiguro, Phys. Rev. Lett. 84, 991 (2000)
    [79] Deguchi, M. Tanatar, Z. Mao, T. Ishiguro, andY. Maeno, J. Phys. Soc. Jpn. 71, 2 839 (2002)
    [80] L. G., Aslamazov and A. I. Larkin, Sov. Phys. Solid State 10, 875 (1968)
    [81] W.E. Lawrence and S. Doniach, in Proceedings of the 12th International Conference on Low Temperature Physics, Kyoto, 1970, edited by E. Kanda(Keigaku, Tokyo, 1971), p.361
    [82] K. Maki, Prog. Thero. Phys. 39, 897 (1968)
    [83] R.S. Thompson, Phys. Rev. B 1,327 (1970)
    [84] E. Abrahams, R. E. Prange, and M. J. Stephen, Physica 55, 230 (1989)
    [85] S. Hikami and A. I. Larkin, Mod. Phys. Lett. B2, 693 (1988)
    [86] K. Maki and R. S. Thompson, Phys. Rev. B39, 2767 (1989)
    [87] L. G. Aslamazov and A. I. Larkin, Phys, Lett. 26A, 238 (1968)
    [88] K. Maki, Prog. Theor. Phys. 39, 897 (1968); R. S. Thompson, Phys. Rev. B1,327 (1970)
    [89] G. Balestrino, A. Nigro, R. Vaglio, and M. Marinelli, Phys. Rev. B 39, 12264 (1989)
    [90] H. Makoto and S. Minoru, Phys. Rev. B 39, 4756 (1989)
    [91] 《高温超导电性》,张其瑞 主编,浙江大学出版社
    [92] 《凝聚态物理学》,冯端、金国均,高等教育出版社
    [93] 超导物理》,张裕恒、李玉芝,中国科学技术大学出版社
    [94] M. Tinkham, 1996, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, Singapore)
    [95] J.R. Waldram, Superconductivity of Metals and Cuprates (Institute of Physics, University of Reading, Berkshire), 1996
    [96] Ching-ping S. Wang, Jeffrey W. Lynn, in High Temperature Superconductor, edited by Jeffrey W. Lynn (Springer-Verlag World Publishing Corp., 1991)
    
    
    [97] R.J. Birgeneau and G. Shirane, in Physical Properties of High Temperature Superconductors Ⅰ, edited gy Donald M. Ginsberg (World Scientific, 1991), P. 200.
    [98] 《高温超导物理》,韩汝珊,北京大学出版社
    [99] Y. Iye, T. Tamegai, T. Sakakibara, T. Boto, N. Miura, H. Takaya, and H. Takei, Phyica C153-155, 26(1988)
    [100] S. Martin, A. T. Fiory, R. M. Fleming, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 60, 2194 (1988)
    [101] T. Ito, H. Takagi, S. Ishibashi, T. Ido, and S. Uchida, Nature 350, 596 (1991)
    [102] S. Kambe, K. Kitazawa, M. Naito, A. Rukuoka, I. Tanaka and H. Kojima, Physica C160, 35 (1989)
    [103] H. M. Duan, W. Kidhl, C. Dong, A. W. Cordes, M. J. Saeed, D. L. Viar, and A. M. Harmann, Phys. Rev. B43, 12925 (1991)
    [104] D. E. Farrell, R. O. Bech, M. F. Booth, C. J. Allen, E. D. Bukowshi, and D. M. Ginsberg, Phys. Rev. B42, 6758 (1990)
    [105] T. Kimura, S. Miyasaka, H. Takagi, Phys. Rev., B53 (1996)
    [106] D. G. Clarke, and S. P. Srong, Adv. Phys. 46,545. (1997)
    [107] R. G. Chambers, Proc. Phys. Soc. A 65, 903 (1952)
    [108] J. M. Ziman, Electron in the Metals. LondonL: Taylor & Francis. (1963)
    [109] R. G. Chambers. Electrons in Metals and Semiconductors London: Chapman and Hall, (1990)
    [110] Z. Q. Mao, Y. Mori, Y. Maeno, Phys. Rev. B, 60, 610, (1994)
    [111] N. Shirakawa et al. J. Phys. Soc. Jpn. 64, 1072 (1995)
    [112] K.Yoshida, F. Nakamura, T. Goto, T. Fujita, Y. Maeno, Y. Mori, and S. Nishizaki, Phys. Rev. B 58, 15062 (1998)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700